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Highly efficient baculovirus-mediated multigene
delivery in primary cells
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Multigene delivery and subsequent cellular expression is emerging as a key technology

required in diverse research fields including, synthetic and structural biology, cellular

reprogramming and functional pharmaceutical screening. Current viral delivery systems

such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding

unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic,

non-integrating, baculovirus-based vector system expediting highly efficient transient

multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a

wide range of cell types, including non-dividing primary neurons and induced-pluripotent

stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome

editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific

cassettes enabling multiprotein expression in insect and mammalian cells using a

single reagent. Our experiments establish MultiPrime as a powerful and highly efficient

tool, to deliver multiple genes for a wide range of applications in primary and established

mammalian cells.
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M
ultigene delivery into cultured cells or tissues is
emerging as an indispensable tool for many
applications in biological research and development.

Examples include simultaneous labelling of living cells with various
fluorescently-tagged sensors for monitoring changes in cellular
architecture or metabolism, lineage tracing during morphogenesis
to follow regenerative tissue processes, visualization of multi-
component molecular pathways for high-content screening in
pharmacological applications or the construction of recombinant
adeno-associated viruses for gene therapy1–5. Multigene delivery
systems also allow reprogramming of somatic cells to stem cells6 or
to specifically differentiated cell lines7. The construction of
complex multigene circuits in mammalian cells is a core concept
in synthetic biology requiring the flexible generation of modular
multigene expression systems8,9. Moreover, structural and
biophysical characterization of multiprotein complexes relies on
co-expression of an ensemble of genes that may include ancillary
factors, such as chaperones or protein modifying enzymes10. All
applications share in common that they require versatile tool-kits
to flexibly engineer and to simultaneously, efficiently and
reproducibly deliver multiple genes into target host cells.

Several strategies for multigene expression in mammalian cells
exist, each with its own merits11. All of these applications require
specific boundary conditions. For instance, it is essential that
all transfected cells in a population express all heterologous genes
at the same defined level, on an equal time frame. Other
applications require that the proteins of interest retain native
N- or C termini. Furthermore, long-term stable expression versus
transient expression is a crucial parameter to be considered.
Ideally, an efficient multigene-delivery system would provide the
means to afford many or all of these requirements.

We have developed systems for the delivery of multigene
constructs in prokaryotic and eukaryotic hosts12–14. A central
feature of these technologies is the assembly of multiple gene
expression cassettes by recombineering15, from custom designed
plasmids encoding specific genes, into a single multicomponent
DNA construct for gene delivery. This approach was shown to
overcome the limitations hampering classical co-transfection or
co-infection techniques, which for statistical reasons, are
inherently unbalanced16,17. More recently, we introduced
MultiLabel14 and demonstrated that homogenous mammalian
cell populations could be achieved by transient introduction of
single recombineering-based multigene expression plasmids by
classical transfection methods. This method performs well with
cell lines that are readily transfected, such as HEK293 or HeLa
cells. However, a large number of cell lines and particularly
primary cells are markedly recalcitrant to plasmid transfection,
thus requiring a different approach. Primary cells are a central
focus of contemporary biological research efforts, and efficient
multigene delivery in primary cells is thus highly desirable.

Infection by viral vectors emerged as the dominant method of
choice to deliver genes into primary cells18. An ideal viral vector
for multigene delivery should have virtually unlimited foreign
DNA cargo capacity allowing for integration of a multitude of
independent expression cassettes, functionalities and regulatory
elements. Moreover, such an optimal viral vector should exhibit
low cytotoxicity in mammalian cells and should enable
transduction of dividing and non-dividing mammalian cells
alike. Currently used lenti- and other retroviruses, as well as
adeno- and adeno-associated viruses have a limitation on DNA
cargo size due to spatial constraints imposed by the tight
geometry of their capsids.

Baculoviral vectors, in contrast, can accommodate very large
DNA cargo insertions19. The Autographa californica multiple
nuclear polyhedrovirus (AcMNPV), is a baculovirus with a large
(134 kb) double-stranded circular DNA genome that normally

infects specific moth larvae19. Transgene capacity of AcMNPV is
very large, extending probably beyond 100 kbp. Replication of
AcMNPV is highly insect-cell specific; however, AcMNPV is
capable of efficiently transducing not only insect but also
mammalian cells. Transduction is usually transient without
DNA integration into the target cell genome and such viruses
are replication deficient20,21. In baculoviruses used for
mammalian cell transduction (BacMam)22,23 heterologous genes
are placed under the control of mammalian promoters and
inserted into the baculoviral genome, and viral stocks are
produced in insect cells. Once the baculovirus enters
mammalian cells, these genes are actively transcribed within 9 h
and the cells produce the heterologous gene product. In the last
decade, baculovirus has emerged as a useful and safe technology
to deliver heterologous genetic material to mammalian cell types
both in vitro and in vivo24.

Here we introduce MultiPrime, a novel tool-kit specifically
designed for efficient delivery of large multigene constructs into
primary and established mammalian cells. MultiPrime enables
simultaneous expression of multiple, independent cassettes in
mammalian cells. This system combines the ease and flexibility
of our recombination-mediated multigene DNA assembly
technology with the superior performance of baculovirus as a
viral vector for transducing mammalian cells. We transduced
with MultiPrime a large variety of cell types including difficult to
transfect stem cells and primary neurons. Moreover, we
utilized MultiPrime for reprogramming mouse embryo
fibroblasts (MEFs) into neurons. Further, we show that our
system is not limited to mammalian transduction but can also be
used to transduce zebrafish embryos. We applied our system to
create synthetic multicomponent intracellular biosensor
systems, such as Rab GTPases regulating vesicular membrane
traffic in cells, phosphoinositide binding signalling proteins or
fluorescently-labelled cytoskeletal markers. These biosensors were
simultaneously delivered and expressed in mammalian cells
allowing to quantitatively monitor a large variety of intracellular
parameters. A wide range of promoters are available in
MultiPrime, to regulate and fine-tune individual heterologous
target gene expression.

With the objective to provide a means to concomitantly exploit
with one single expression system the advantages of high-level
protein production in baculovirus-infected insect cells and
protein expression in a ‘native’ mammalian environment, we
incorporated dual-host-specific promoters in MultiPrime that are
functional in both insect and mammalian cells.

Our MultiPrime system is not limited to the assembly of RNA
polymerase II-based expression cassettes. It can likewise harbour
U6-driven expression cassettes and homology constructs that are
required for CRISPR/Cas9-mediated genome engineering. We
demonstrate the aptitude of our system by applying MultiPrime-
CRISPR/Cas9 to express a HMGA1-EGFP fusion protein in
primary cells from the native genomic HMGA locus.

Results
MultiPrime system design. We developed MultiPrime specifi-
cally to overcome the limitations of transfecting mammalian cells
for multigene transfer applications. We redesigned our previous
pFL plasmid25, which contains the Tn7R and Tn7L DNA
elements required for Tn7-transposase-mediated integration
into a baculovirus genome containing a Tn7-attachment site26.
Expression cassettes with promoters active in mammalian cells,
or, alternatively, with activity in both mammalian and insect cells,
were inserted into this MultiPrime acceptor plasmid. This
acceptor plasmid is poised to receive further multigene express-
ion cassettes by incorporating donor plasmids (Supplementary
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Figs 1–3). All donors from our previous plasmid-based
MultiLabel system can be used for incorporation into this new
acceptor to generate acceptor-donor fusions by recombineering.
Moreover, expression cassettes can be freely exchanged between
donors and acceptors due to the modular design14.

Acceptors or acceptor–donor fusions containing multigene
expression cassettes are integrated into baculoviral genomes by
means of Tn7 transposition25. We utilized two different
baculoviral genomes in our experiments. In addition to our
EMBacY baculoviral genome25 we generated in this study a new
baculoviral genome, MultiBacMam, which expresses a vesicular
stomatitis virus glycoprotein (VSV-G) and the fluorescent protein
mCherry in insect cells during virus production. Both genomes
were generated from the original MultiBac virus by integrating
genes encoding EYFP (EMBacY) or mCherry and VSV-G
(MultiBacMam) by Cre recombination into the LoxP site
present on the MultiBac virus12,25. The expression of mCherry
results in a characteristic purple colour of MultiBacMam
infected cell cultures (Supplementary Fig. 1), thereby
simplifying the tracking of virus amplification by eye.
Moreover, the MultiBacMam virus gives rise to baculovirions
displaying VSV-G on their surface. The presence of VSV-G in the
baculoviral envelope has been shown to increase the efficacy of
mammalian cell transduction27. All composite baculoviruses
prepared in this study were produced in Sf21 cells. Virus was
obtained with comparable efficiency and resulting in similar viral
titers to what we had observed in previous multigene expressions
in insect cells with recombinant MultiBac or EMBacY viruses25.
Our multigene viruses are characterized by multiple use of
regulatory elements such as the CMV promoter, which in theory
could introduce genomic instability during repeated rounds
of viral amplicfication14,25. We had developed previously
efficient protocols to amplify baculoviral constructs containing
multiple copies of late viral promoters (polh and p10) by
stringently applying a low multiplicity of infection (MOI)
regimen and few, ideally not more than two amplification
rounds thus preventing accumulation of non-productive viruses
containing genomic deletions28. Strictly adhering to this
strategy for amplifying baculoviruses containing multiple copies
of CMV promoter-driven expression cassettes again resulted in
stable virus producing all proteins of choice in each transduced
mammalian cell in homogenous cultures, while failure to adhere
to the protocol resulted in heterogeneous cell populations where
expression of individual heterologous genes had been lost,
presumably due to accumulation of deletion virus species
(Supplementary Fig. 4). Occasionally, we observed cell fusion in
tissue culture plates of insect cells infected with MultiBacMam
viruses, which, however, was found not to be detrimental to
transduction experiments with the viral supernatant. In the
following, we use the EMBacY baculoviral genome to prepare
composite MultiPrime baculoviruses, unless indicated otherwise.

Transduction and viability. As proof-of-concept, we generated a
composite MultiPrime baculovirus expressing five fluorescently-
tagged proteins (EBFP2-nucleus, mTFP1-FYVE (PI-3-P-binding,
early endosomes), EYFP-tubulin, Mito-dsRED (mitochondria)
and Plum-PLCd-PH (PI-4,5-P2-binding, plasma membrane)
localizing to different subcellular compartments. We used this
baculovirus to test a variety of different cell types for their
propensity to be transduced efficiently. We initially transduced
well-established cell lines including HEK293, PAE, COS7, HeLa,
SK-MEL-28, CCL39 and Swiss 3T3. All cell lines that were tested
proved to be highly transduceable by MultiPrime and efficiently
expressed all heterologous proteins (Supplementary Fig. 5 and
data not shown). Typically, transduction efficiencies ranged

between 20 and 100%. Transduction frequencies up to 100% were
observed even in cell lines, such as PAE that are traditionally
considered to be difficult to transfect.

We then asked whether we can use MultiPrime to transfect
primary cells. Primary cells are an intense focus of contemporary
research efforts for many reasons, and it is well documented
that they are typically extremely difficult to transfect. For this
experiment, we utilized human umbilical vein endothelial cells
(HUVEC), rat embryo fibroblasts (REF), rat cortical neurons and
human-induced pluripotent stem cells (iPS). With our
MultiPrime virus, all of these primary cell types could be
transduced efficiently and again expressed all heterologous genes
of interest, compellingly underscoring the utility of our approach
(Fig. 1 and Supplementary Fig. 5).

To analyze viability and functionality, we proceeded to express
multiple intracellular sensors simultaneously from a MultiPrime
baculovirus. COS7 cells expressing epidermal growth factor
receptor (EGFR) endogenously were used to monitor trafficking
of EGFR. Genes encoding fluorescently-tagged markers for early
(RAB5A), recycling (RAB11A) and late (RAB7A) endosomes
were expressed from a single MultiPrime virus and the cells were
stimulated 40 h post-transduction with Cy5-labelled epidermal
growth factor (EGF). As expected, EGF was found in early
(RAB5Aþ ) and late (RAB7Aþ ) endosomes, but not in recycling
(RAB11Aþ ) endosomes after 30 min (Fig. 2a). A time-resolved
quantitative analysis confirmed that EGF was transferred to late
endosomes but not to RAB11-positive, recycling vesicles
(Supplementary Movie 1). Next, we used PAE cells stably
expressing VEGFR2 and neuropilin-1 (NRP1). A composite
MultiPrime baculovirus was used to express fluorescently-tagged
Rab4, Rab5 and Rab7 in these cells. Cells were then stimulated
with Nt647-labelled VEGF-A165a for 3 h. VEGF was found in
Rab5 and Rab7 vesicles clearly indicating that it was properly
internalized, in accordance with previous reports3. Using the
same cell line transduced with the RAB5A-RAB11A-RAB7A virus
in a time-resolved study, we could show that VEGFR2 behaves
differently from EGFR. VEGFR2 is, in contrast to EGFR, partly
recycled through the RAB11 compartment (Supplementary
Movie 2).

Next, we tested the functionality of baculovirus-transduced
HUVEC in migration and angiogenesis assays. HUVEC trans-
duced with a MultiPrime baculovirus encoding mTFP1-actin,
EYFP-tubulin and Mito-DsRed were plated on matrigel and
incubated for 14 h. HUVEC are known to establish a character-
istic vascular network within this time frame. Transduced cells
efficiently integrated in this network, clearly demonstrating that
MultiPrime-transduced HUVEC show identical behaviour com-
pared to untransduced cells (Fig. 2c). Moreover, in a migration
assay, we could show that transduced cells migrate with similar
efficiency as untransduced cells (Fig. 2d).

We quantitatively compared baculovirus-mediated trans-
duction with the classical plasmid transfection approach. In
addition to EMBacY, we used our MultiBacMam baculovirus
displaying VSV-G on its surface in this experiment. As expected,
we observed increased transduction rates with MultiBacMam
compared to EMBacY, albeit the gain in efficacy in our hands
turned out to be modest in many cases. Clearly, transduction with
both EMBacY and MultiBacMam outperformed the classical
transfection approach (Fig. 3a). We routinely obtained transduc-
tion efficiencies higher than 50% when using the MultiPrime
baculovirus compared to transfection efficiencies well below 20%
with the corresponding plasmid (13,305 bp) that had been used to
generate the composite baculovirus.

Baculovirus displaying VSV-G on its surface was superior to
virus lacking VSV-G at all tested MOI. Saturation was usually
obtained at a MOI of 500 (Fig. 3b). The relative expression levels
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between cells appear to be similar (Fig. 3c). This is in contrast to
transfected cells that typically show a wide variety of expression
levels (data not shown). Since we use relatively high MOI, the
toxicity of the virus could conceivably be an issue. We tested
baculovirus toxicity at MOI 500 compared to plasmid transfec-
tion with Fugene HD, which is considered to be a mild
transfection reagent. Both EMBacY- and MultiBacMam-derived
viruses exhibit negligible toxicity similar to plasmid-based
transfection (Fig. 3d).

Baculovirus transduction of mammalian cells is transient in
nature as the foreign DNA does not integrate into the host
genome. We therefore tested the persistence of recombinant
expression following transduction with a MultiPrime baculovirus
by immunofluorescence and western blotting. In our experi-
ments, the percentage of positive cells decreased to B20% after
20 days and 5% after 30 days (Fig. 3e).

Modulation of expression levels in mammalian cells. The
hCMV-IE1 promoter we used in our experiments is considered to
be the strongest promoter available for heterologous expression in
most mammalian cells. It may be desirable to have alternative
promoters that are characterized by lower levels of expression. We

expanded our tool-box by incorporating the SV40, PGK and UBC
promoters in alternative expression cassettes in our MultiPrime
system (Supplementary Fig. 6). We determined expression levels
from these alternative promoters by expressing EYFP-tubulin, and
simultaneously expressing citrine from a CMV promoter as a
bench-mark to normalize expression levels. All three alternative
promoters show distinctly lower expression levels in HEK293 and
PAE cells as well as in primary REF compared to CMV promoter-
driven expression (Fig. 4a,b). Furthermore, we included a tetra-
cycline-inducible promoter in our system (Supplementary Fig. 6).
Tetracycline-inducible promoters are dependent on a transacti-
vator, for example tTA, to initiate expression29. We observed
approximately four times higher expression levels in the absence of
doxycycline in HeLa cells stably producing tTA, which were
transduced with a MultiPrime baculovirus containing a
tetracycline-inducible expression cassette, in good agreement with
reports involving tetracycline-inducible promoters on plasmids
(Fig. 4c,d).

Bifunctional dual-host promoters. Expression plasmids that
could be used for heterologous protein production in insect as
well as in mammalian cells have not found wide-spread
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Figure 1 | Multigene expression in primary cells by MultiPrime. HUVEC, REF cells and rat cortical neurons were infected with a MultiPrime baculovirus

encoding EBFP2-Nuc (labelling the nucleus), mTFP1-FYVE (PI-3-P containing endosomes), tubulin-EYFP (cytoskeleton), Mito-dsRed (mitochondria) and
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application so far, possibly because comprehensive comparative
data which would have encouraged their use is currently lacking.
We addressed this issue by creating, validating and incorporating
dual-host promoters as a choice in our MultiPrime system. Our
objective was to provide a single expression reagent, which is the
composite MultiPrime baculovirus containing the genes of choice
controlled by this validated dual-host promoter, for example to
produce a protein or protein complex of choice efficiently in
insect cells for structural studies and in mammalian cell lines for
functional validation. We used two promoters, the first one
(denoted CMVP10) is a fusion of the CMV promoter and the
baculoviral very late promoter p10, the second (denoted
CMVintP10) contains the p10 promoter in an intron of the CMV
transcription unit (Fig. 5a and Supplementary Fig. 7). These two
dual-host promoters were validated in mammalian cells by
expressing EYFP-tubulin from a MultiPrime baculovirus,

which also expressed citrine driven by a CMV promoter
for normalization purposes. In HEK293 and PAE cells, the
dual function promoters expressed at comparable levels to the
original mammalian-only CMV promoter. In REF cells, the
intron-less CMVP10 promoter resulted in lower expression
(Fig. 5b,c). We quantified expression from these MultiPrime
baculoviruses in insect cells and found them entirely satisfactory
(Fig. 5d,e). Furthermore, we tested MultiPrime constructs
expressing human transcription factors, which we had produced
before for structural studies in insect cells with our MultiBac
insect-cell expression system (Supplementary Fig. 8)30,31.
We observed virtually indistinguishable levels of expression
for complexes formed by these human TATA-box associated
factors (TAFs) from dual function promoters as compared
to the MultiBac expressed complexes. Transduction of HeLa cells
with the TAF producing MultiPrime baculoviruses resulted

mTFP1-RAB7A

C
O

S
7

Citrine-RAB5A Cherry-RAB11A EGF-Cy5

P
A

E

mTFP1-Rab4 Citrine-Rab5 Cherry-Rab7 VEGF-A

a

b

Cherry DAPI Phase Overlay

c

H
U

V
E

C

1 h 26 h

d

H
U

V
E

C

100

80

60

20

0

40

%
 C

ov
er

ag
e

Infected cells
Uninfected cells

0 2 4 6 108 26 h

Figure 2 | Infected cells retain functionality. (a) COS7 cells were infected with MultiPrime baculoviruses expressing the indicated fluorescently-tagged

RAB GTPases. Cells were stimulated for 3 h with Cy5-labelled EGF. As expected, EGF was found in RAB7A vesicles (arrows) and RAB5A vesicles
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in close to complete transduction rates (Supplementary
Fig. 8).

Genome engineering by CRISPR/Cas9. CRISPR/Cas9-mediated
genome engineering requires the expression of Cas9, the
concomitant expression of a U6-driven guide RNA (gRNA) and
the provision of a DNA construct for homologous recombination.
Currently used viral systems can harbour Cas9 and the gRNA but
are unable to include a homology construct due to limited
cargo capacity32. We assembled DNAs for the expression of a
HMGA1-EGFP fusion protein from its endogenous locus
in a MultiPrime virus33 (see Supplementary Fig. 9 for details).
Transduction of HEK293 and HUVEC led to expression of
HMGA1-EGFP in the nucleus in B1% of the cells. Successful
homologous integration of the DNA construct was verified by
PCR (Fig. 6a and Supplementary Fig. 9).

Reprogramming by MultiPrime. We next investigated whether
MultiPrime viruses are suitable for reprogramming of cells.

Currently, this is mainly carried out with lentivirus, which is a
retrovirus that stably integrates into the genome of cells. We
assembled a MultiPrime virus expressing the transcription factors
Asc1, Brn2 and Myt1L, which were shown to convert MEFs into
neurons7. Transduction of MEFs with this MultiPrime
virus resulted in cells with neuron-like morphology, which
expressed the neuronal markers MAP2 and b-tubulin III 20 days
after transduction, indistinguishable from co-infection with
three lentiviruses each expressing one of the transcription
factors (Fig. 6b). Our results provide compelling evidence that
reprogramming can be successfully achieved with a transient
expression system such as MultiPrime.

Functional antibody production. Our MultiPrime approach
can not only induce morphological changes in cells but also
potentially interfere with it. We addressed this by using
MultiPrime to express functional antibodies in primary cells.
Our previously described single-chain antibodies targeting
VEGF (SZH9) and VEGFR2 (ADH9), and a control single-chain
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antibody (A1) were converted into a full length IgG consisting
of light and heavy chains34,35. The dual-host promoter CMV-
CMVintP10 was utilized to drive recombinant IgG expression.
The resulting MultiPrime baculovirus was successfully tested for
expression in HEK293 and insect cells (Fig. 6c). All IgG
antibodies tested were expressed at comparable levels. The same
virus was then used to transduce HUVEC that were then placed
into a tube formation assay. Only the function-blocking
anti-VEGF antibody SZH9 was able to interfere with tube
formation. All other antibodies, including the VEGFR2-binding
but not function-blocking antibody ADH9, did not interfere with
tube formation (Fig. 6c).

Zebrafish transduction. It was previously shown that mammalian
promoters can be used for heterologous expression in zebrafish
embryos36. We set out to establish whether MultiPrime viruses are
restricted to mammalian and insect cells, or whether they can also
be used to transduce zebrafish. A MultiPrime virus encoding
mTFP1-actin, EYFP-tubulin and Mito-dsRed under control of
mammalian CMV promoters was injected into intercellular spaces
in the brain region of zebrafish embryos at 24 h post fertilization.
Injection of this virus showed heterologous expression of all genes
in zebrafish embryos. Expression was restricted to the site of
injection and could be detected for at least 5 days (Fig. 6d).

Discussion
In the three decades since their inception, baculovirus-based
expression systems have become well-established and widely used

for recombinant protein production in insect cells. Later, it was
discovered that baculoviruses not only infect insect cells but can
also drive heterologous protein expression in mammalian cells if
appropriate mammalian regulatory elements are provided in the
recombinant baculovirus genome22,23,37. This so-called ‘BacMam’
method has been applied to produce heterologous proteins in
academic and industrial research and development, notably for
pharmacological screening37. Today, it is becoming increasingly
evident that most physiological activities are mediated by multiple
proteins forming complex assemblies. Therefore, a powerful tool
that exploits recombinant baculovirus to deliver multiple genes
simultaneously and reproducibly into a range of mammalian cell
types and notably primary cells is highly desirable to study health
and disease states, and to analyze molecular mechanisms of cell
fate. Notwithstanding, such a tool has been lacking so far.
Therefore, we developed MultiPrime, a versatile, flexible and fully
modular system for efficient multigene delivery and expression in
any mammalian cell type, primary and established. MultiPrime
relies on a set of customized DNA plasmid modules, called
acceptors and donors that provide the means to combine a
theoretically unlimited number of genes of interest with different
promoters, terminators and other control elements in multiple
expression cassettes to generate multigene-delivery constructs,
which are then inserted into engineered baculoviral genomes.
Moreover, they can comprise all the elements necessary for
genome engineering including editing functions and the
sequences required for homologous recombination. We provide
and validate a range of mammalian promoters that can be
introduced into our MultiPrime system in this way. In addition,
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we provide dual-host promoters to drive heterologous
multiprotein production in both insect and mammalian cells.
This highly versatile and flexible tool-box allows users to
conveniently introduce many different proteins simultaneously
into mammalian and insect cells. Corroborating previous
observations, we found negligible toxicity and sustained
viability when infecting a range of mammalian cells with
recombinant MultiPrime reagents. Importantly, we demonstrate
here that MultiPrime infected cells are competent to divide and
migrate normally and are capable of adequately responding to
external stimuli as, for example, growth factors.

In this study, we utilized two baculovirus types, EMBacY and
MultiBacMam. These engineered baculoviral genomes are
characterized by reduced proteolysis and delayed cell lysis
during virus amplification in insect cells, resulting in high
quality, high titre virus25. The EMBacY and MultiBacMam
viruses express either EYFP or mCherry fluorescent marker
genes, to signal late replication cycle entry. Expression of
fluorescent marker proteins during virus production is a
convenient tool to simplify and standardize monitoring the
production of baculovirus, in particular for non-specialist users.
MultiBacMam virus generated in this study expresses also VSV-G

during virus production in insect cells. Decorating baculovirus
with VSV-G has been shown to improve mammalian
transduction efficiencies. Consequently, we observed superior
transduction efficiencies with our MultiBacMam-derived viruses
that display VSV-G on their capsids. We note here that, at least in
Switzerland where these experiments were performed,
MultiBacMam-derived reagents expressing VSV-G have to be
handled at biosafety level 2, which requires specific laboratory
infrastructure. To circumvent this complication the EMBacY
virus variant can be utilized, which is devoid of VSV-G but still
resulted in satisfactory transduction rates in our experiments.
Nonetheless, for experiments which may rely on maximum
transduction efficiencies, the VSV-G containing MultiBacMam
virus is recommended.

All viral genomes we utilized contain a site-specific integration
site in the backbone distal from the Tn7-attachment site.
This LoxP site allows introduction of additional genes by
Cre-LoxP mediated fusion in vivo12. This enables a range of
options to modify and tailor the baculovirus genomes for specific
applications. For example, a baculovirus called SweetBac was
developed to achieve mammalian-type glycosylation of
recombinant secreted proteins such as antibodies38,39.
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Currently, these functionalizations are limited to applications
in insect cells. We anticipate that a wide range of functions
to modify, enhance and regulate multiprotein production in
mammalian cells will be exploited by modifying the
baculoviral genome accordingly, providing appropriate
expression cassettes active in mammalian cells in the LoxP
locus of these vectors.

Multigene expression systems are rapidly gaining prominence
for producing protein complexes for structural and functional
studies. Often, several expression systems must be tested to
obtain functional complexes in sufficient quantity and quality.
This typically requires recloning of genes into different sets of
expression plasmids given that the regulatory elements in each
system, here mammalian and insect cells, are optimized for a
particular host, and are typically not compatible between the
different species. The incorporation of dual-host promoters into
MultiPrime allows simultaneous testing of expression constructs
in insect and mammalian cells by using the same reagent. This
feature can be conveniently exploited if high-level production of a
complex protein of interest is carried out in insect cells, while
functional analysis of the same complex is performed in
mammalian cells, which is increasingly the case in current
structural biology. The possibility to use the same reagent for
both host systems will also benefit analysis of structure–function
correlations requiring multiple mutational analysis. MultiPrime
affords the means to carry out such elaborate studies, notably also
of complexes controlling cell fate, which can be mechanistically
dissected by infecting primary cells.

Baculovirus constitutes an attractive tool for gene therapy for a
number of reasons. Due to its flexible envelope structure,
very large heterologous DNA cargo can be incorporated into the
baculoviral genome. Moreover, baculovirus is replication incom-
petent in mammalian cells, and virtually no viral protein
expression occurs on transfection in a mammalian host. Initial
in vivo experiments had limited success since injected
baculoviruses are rapidly inactivated and cleared by the immune
complement system. Strategies were developed to overcome this
impediment and many successful in vivo applications were
published since then (reviewed in ref. 24). For example,
expression of VEGF-D-induced vascularization in rabbit skeletal
muscle suggesting that baculovirus-driven VEGF-D expression
might be an option to cure lymphatic disorders40. Nevertheless as a
non-integrative virus it is a priori limited to transient expression,
which can be an advantage or a disadvantage depending on the
application. Transient expression may be desirable, for example,
for vaccination or to promote changes in cell fate. Of note, altering
cell fate is a particularly interesting application for multigene
expression systems, as it relies on the simultaneous
and temporally restricted expression of several transcription
factors. Induced-pluripotent stem cells have been generated
before with a BacMam virus in vitro using a fusion protein
construct41. Four transcription factors were expressed as a fusion
protein from a single open reading frame (ORF) via self-cleaving
2A peptides. Here, we converted MEFs into neurons using
independent expression cassettes, which offer advantages
especially when different protein combinations need to be tested
in a combinatorial fashion.

MultiPrime is not restricted to the delivery of expression
constructs. We anticipate that genome engineering will be an
important future application, owed to the very large cargo
capacity of baculoviruses. Other viruses such as lentiviruses or
adeno-associated viruses cannot accommodate all DNA elements
needed to produce Cas9, a gRNA and a construct for homologous
recombination. With MultiPrime, we were able to modify the
HMGA1 locus of HUVEC, which are human primary cells that
show restricted replication potential.

Our results compellingly validate MultiPrime as a powerful
vehicle for multigene delivery, protein expression and genome
engineering, relevant for a large number of applications, in vitro
and in vivo, and underscore the enormous potential of our
baculoviral system to deliver large multigene DNA constructs into
a wide range of mammalian cells, notably including primary cells.
A multitude of genes and regulatory elements can be delivered due
to the very large heterologous DNA cargo capacity of the system,
offering novel exciting possibilities for biological research. Entire
signalling cascades, gene regulatory systems or metabolic pathways
and multiple mutants thereof, can be efficiently engineered with
MultiPrime. We anticipate that many applications will benefit
from MultiPrime, notably when efficient transfer of multiple genes
or efficient engineering of genomes is required.

Methods
Molecular biology. DNA construction in MultiPrime follows the high-throughput
compatible logic of our ACEMBL concept to prepare multicomponent DNA
constructs from acceptor and donor plasmid DNA modules that are conjoined by
the Cre-LoxP fusion reaction13,14. Plasmid pSI-AGR10 is the common acceptor in
MultiPrime, and has been developed from our previous pFL plasmid25. The
ampicillin resistance gene and an internal SapI site were removed and the
expression cassettes for insect-cell expression replaced by the CMV-based
expression cassette from plasmid pSI-AKR1 by standard cloning methods
(Supplementary Fig. 2a)14. In addition, pSI-AGR10 contains a gentamycin
resistance marker, a LoxP site, and the DNA elements (Tn7R, Tn7L) required for
transposition into the baculovirus genome by Tn7 transposase.

All donor plasmids of the original MultiLabel system are compatible with this
acceptor14. Donors are fused to pSI-AGR10 by Cre-LoxP recombination
concomitantly or in a sequential manner. Acceptor–donor assembly was performed
as described and electrocompetent DH10b or CaCl2 competent XL1-blue cells were
used for transformation42. Sequences were assembled in silico using the ‘Multi-Cre
Recombination Tool’ in the plasmid editor software Ape (http://
biologylabs.utah.edu/jorgensen/wayned/ape/) or, alternatively, with software
Cre-ACEMBLER43. Integrity of all fusion plasmids was confirmed by restriction
mapping. Alternative mammalian promoters and dual-host promoters active in
both mammalian and insect cells were synthesized by Genewiz (South Plainfield,
USA) on the basis of sequences provided in the Supplementary Materials and
inserted as AscI–HindIII fragments into parent Acceptor plasmid pSI-AGR10.

Recombinant baculoviral genomes. Two baculoviral genomes were used in this
study, our previously described EMBacY genome and the novel MultiBacMam
genome, which we constructed in this study. Both baculoviral genomes are present
as bacterial artificial chromosomes (BAC) in E. coli cells (DH10EMBacY and
DH10MultiBacMam, respectively). EMBacY produces yellow fluorescent protein
(YFP) as a marker in infected insect cells as a means to track virus amplification
and performance by monitoring the fluorescence signal25.

Display of a VSV-G on the baculovirion was reported to enhance mammalian
transduction efficiency by baculovirus27. We therefore constructed a novel
MultiBacMam baculovirus by modifying our original MultiBac baculoviral genome,
retaining its advantageous features including reduced proteolysis and delayed cell
lysis12. A synthetic gene (Genscript, Psicataway, NJ) encoding for VSV-G was
inserted into a modified pUCDM donor plasmid25 by using BamHI and XbaI
restriction sites to yield plasmid pLox-VSV-G. Subsequently, a second cassette
containing a synthetic gene for mCherry (Genscript) was inserted by using the
multiplication module as described13. The resulting pLox-VSV-G-mCherry
Donor plasmid was incorporated into the MultiBac virus by transforming
DH10MultiBacCre cells harbouring the MultiBac baculoviral genome as a BAC and
Cre recombinase expressed from a pBADZHisCre helper plasmid on arabinose
induction12. Positive integrands were selected by antibiotic screening. Successful
Cre-mediated integration was further verified by PCR analysis as described44.
Competent DH10MultiBacMam cells were prepared following standard protocols
and contain in addition to the MultiBacMam baculovirus also a helper plasmid
expressing Tn7 transposase on induction with isopropyl b-D-1-
thiogalactopyranoside. Expression of mCherry from this baculovirus in infected
insect cells during virion production results in the cell culture adopting a
characteristic purple color, allowing tracking of successful viral infection and
production easily by eye.

Generation of composite MultiPrime baculovirus. MultiPrime acceptors or
acceptor–donor fusions were transformed into electrocompetent DH10EMBacY or
DH10MultiBacMam cells, respectively. Composite baculovirus generation occurred
by Tn7 tranposition mediated by Tn7 transposase expressed from a helper plasmid.
Transformants were selected and composite baculoviral genomes prepared as
described44 Sf21 insect cells were transfected with Cellfectin II (Life Technologies)
at a density of 0.5� 106 cells ml� 1 according to manufacturer’s recommendations.
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We took particular care during virus amplification to prevent accumulation of
defective virus, which would not express all heterologous genes. We applied a
protocol we had developed previously for successful amplification of composite
baculovirus containing multiple copies of viral late promoters (polh, p10),
preserving the integrity of the viral genome28. Briefly, primary baculovirus stock
(V0, 2 ml) was harvested 50–60 h after transfection and 0.5 ml was used to infect
4 ml new Sf21 cells for 75 h yielding V1 stock. Overall 3 ml of this V1 baculovirus
stock was then used for a further round of virus amplification for 60 h (V2, 100 ml).
The amplification of the virus was followed in this phase by monitoring EYFP
(EMBacY) or mCherry (MultibacMam) expression from the viral backbone
(Supplementary Fig. 1). Less than 1% of cells were positive when harvesting V0.
When harvesting V1, 20–30% of cells were positive and after V2, 80–90% of cells
were positive. Incubation times must not be extended during amplification,
otherwise over-amplification of the virus can occur, resulting in loss of
heterologous insert (Supplementary Fig. 4). The V2 virus stocks were stored either
at 4 �C or after addition of 5% FBS at � 80 �C. For sensitive cells (for example, iPS)
or zebrafish, virus was concentrated by ultracentrifugation. For this purpose, virus
supernatant was placed on a sucrose cushion (25% sucrose/ 5 mM NaCl/ 10 mM
EDTA) and then centrifuged for 90 min at 80,000g. The pellet containing the virus
was resuspended in PBS pH 6.2 (ref. 45). The titre of baculovirus stocks was
determined using end-point dilution assay46. Viruses displaying VSV-G were
handled as biosafety level 2 agents in Switzerland.

Cell culture. Insect cells (Sf21, Sf9; Life Technologies) were cultured in SF-4
BaculoExpress ICM medium (Amimed) containing 1% FBS at 27 �C. Mammalian
cells were incubated at 37 �C in a humidified atmosphere containing 5% CO2.
HEK293, COS7, REF, Swiss 3T3 and HeLa cells were cultured in DMEM
(Amimed) containing 10% FBS (Life Technologies) and 100 units ml–1 penicillin
and 100mg ml� 1 Streptomycin (Life Technologies). PAE and HUVEC (Life
Technologies) cells were maintained in Ham-F12 media supplemented with 10%
FBS and penicillin/ streptomycin and M-200 medium (Life Technologies),
respectively. Primary rat cortex neurons (Life Technologies) were cultured in
Neurobasal medium supplemented with 1% B27 and 1% Glutamax (Life
Technologies). Human iPS cells (NAS2) were obtained from Tilo Kunth (Uni-
versity of Edinburgh) and cultured in feeder-free maintenance medium for human
ES/ iPS cells (mTESR1 medium; Stem Cell Technology)47. iPS cells were
immunostained with an Oct4 antibody (Santa Cruz Biotechnology, sc-5279, 1:500
in 10% NDS/ 0.2% Triton X100/ 1% BST/ PBS), transfections were performed with
FusionHD (Promega) according to manufacturer’s recommendations and cells
were analyzed 42 h after transfection. For endothelial tube formation assays,
MultiPrime-transduced HUVEC cells were seeded on a ibiTreat m-slide
angiogenesis plate (ibidi GmbH, Germany) at a density of 5,000 cells/slide in
EGM-2 medium (Life Technologies) and analyzed 16 h later. Migration assays were
performed by seeding 21000 MultiPrime-transduced HUVEC cells in ibidi
Culture-Insert plate (ibidi GmbH, Germany). The culture-insert was removed after
14 h and migration into the gap was monitored every 2 h for 24 h.

Transduction of mammalian cells. Mammalian cells were plated at a density of
2.5� 105 cells per well in six-well plates 1 day before transduction. Baculovirus was
added at a MOI between 100 and 500 in 80% insect medium/ 20% DMEM without
any FBS or antibiotics. Transduced cells were incubated at 37 �C for 8 h, and the
medium was then replaced with fresh mammalian cell culture medium. Plates were
cultured for one or two additional days. Cytotoxicity of baculovirus transduction was
monitored by MTT assay in various mammalian cells lines. Overall 104 cells were
plated in a 96-well plate and transduced with baculovirus at a MOI 500. After 24 h,
the medium was replaced with culture medium containing 20mM resazurin and the
cells were incubated for 2–4 h. The number of viable cells was obtained by mon-
itoring resazurin fluorescence with a microplate spectrofluorometer (Tecan Ltd).

For CRISPR/Cas9-mediated genome engineering, HEK293 cells and HUVEC
were transduced with a Multiprime virus that expresses CMV-driven Cas9,
U6-driven gRNAs and a homology construct as described in Supplementary Fig. 9.
Immunostaining for Cas9 after 40 h revealed 80% transduction. Cells were fixed
after 4 or 6 days and analyzed for nuclear EGFP expression by microscopy or DNA
was extracted with QIAamp DNA mini kit (Qiagen). Correct integration was
verified by PCR using primers described in Supplementary Fig. 9.

MEF cells used for reprogramming to neurons were obtained from Amsbio, and
were used at passage 3. Cells were transduced with concentrated bacuolovirus
expressing Ascl1, Brn2 and Myt1L in MEF medium for 8 h. In parallel, MEFs were
infected with lentiviruses containing expression constructs Tet-o-FUW-Ascl1, Tet-o-
FUW-Brn2 and Tet-o-FUW-Myt1L (all from Addgene) in presence of polybrene
(8mg ml� 1). Cells were cultured in N3 medium (DMEM/F12, B27, N2 (all (Life
Technologies), 25mg ml� 1 Insulin (Sigma-Aldrich)). Doxycycline (2mg ml� 1) was
added to lentivirus-transduced cells7,48. Cells were fixed after 6, 12 and 20 days.
Immunostaining was performed with chicken anti MAP2 (Neuromics, CH22103,
1:5,000 in 10% NDS/ 0.2% Triton X100/ 1% BST/ PBS) and mouse anti b-tubulin III
(Sigma, T8578, 1:600 in 10% NDS/ 0.2% Triton X100/ 1% BST/ PBS) antibodies.

Microscopy. Cells for microscopic analysis were plated on glass coverslips.
Untreated coverslips were used for COS7, REF, Swiss 3T3 and PAE cells.

Poly-L-lysine (Sigma P4707) treated coverslips were used for HEK293 cells and
0.1% gelatin (Sigma G1393) treated coverslips for HUVEC. Poly-D-lysine
hydrobromide coated coverslips (Sigma P7280) were used for primary rat cortex
neurons and iPS were plated on hESC qualified Matrigel (BD Bioscence). Analysis
of cells was performed 27, 42 and 48 h after transduction. Cells were fixed with 4%
formaldehyde in PBS and mounted with Gelvatol. Imaging was performed on a
Leica SP5 laser scanning confocal microscope or on an Olympus IX81 equipped
with an Andor iXonEM camera. On Leica SP5, EBFP2 was excited with the 405 nm
laser line and the emission was collected from 430 to 450 nm (405/ 430-450).
The other fluorescent proteins were analyzed as follows: mTFP1 (458/ 485-510),
mCitrine (514/ 525-545), mCherry (543/ 585-620) and mPLUM (633/ 640-800).
In addition, the spectral mode (xyl) of the microscope was used to verify the
presence of all fluorescent proteins (data not shown). Standard excitation and
emission filters were used on the Olympus IX81. Quantification was performed
with Squassh49.

Western blotting. Mammalian cells were lysed 42 h after transduction with lysis
buffer (0.5% Triton X100, 50 mM Tris–HCl, 100 mM NaCl, pH 7.5). The
supernatant was used for western blotting after sonification and centrifugation.
Rabbit anti-GFP (Abcam ab137827; diluted 1:2500 in 3% BSA/TBST) and mouse
anti-tubulin (Sigma T5168; diluted 1:2,500 in 3% BSA/TBST) were used as primary
antibodies. As secondary antibodies, alkaline phosphatase-coupled goat anti-rabbit
and anti-mouse as well as donkey anti-human IgGs (Southern Biotech, diluted
1:10,000 in TBST) were used, followed by chemiluminescence detection.
Quantification was performed with ImageJ. Original western blots are shown in
Supplementary Fig. 10.

Transduction of zebrafish embryos. All experiments were performed in
accordance with the animal welfare guidelines of the Federal Veterinary Office of
Switzerland. Zebrafish (Danio rerio) were maintained as described50. Embryos
of the wild-type strain WIK were raised at 28�C in E3 medium (5 mM NaCl,
0.17 mM KCl, 0.33 mM CaCl2 and 0.33 mM MgSO4), and pigment development
was inhibited by phenylthiourea (1-phenyl-2-thiourea; Sigma-Aldrich) as described
in Westerfield50. For injections, individual dechorionated embryos at 24 h post
fertilization were anesthetized in 200 mg ml� 1 3-aminobenzoic acid methyl
ester (MESAB, Sigma-Aldrich) and 4.6 mM NaHCO3 and embedded in 1% low
melting agarose (Lonza). Concentrated viruses were injected in intercellular spaces
using borosilicate glass microcapillary injection needles (1 mm outside
diameter� 0.78 mm inside diameter, Science Products GmbH, Hofheim,
Germany) and a PV820 Pneumatic PicoPump (World Precision Instruments,
Sarasota, Florida, USA). After injection, the infected embryos were returned to E3
medium. For in vivo imaging, the larvae were anesthetized and embedded in 1%
low melting agarose in a 35 mm imaging dish with a glass bottom (Ibidi) and
imaged using a CLSM SP5 Mid UV–vis Leica inverted microscope.

Bifunctional CMV/ P10 dual-host promoters. Subcomplexes of human general
transcription factor TFIID were produced in insect cells from the CMV-
CMVintP10 promoter (Supplementary Fig. 7). A complex formed by human TBP
associated factor (TAF) 8 and TAF10, and a complex formed by TAF5, TAF6 and
TAF9, were expressed. Production levels of these complexes on the basis of the
dual-host promoter was compared to previously established production levels on
the basis of the baculoviral polyhedrin (polh) promoter. A polyprotein strategy was
utilized51, which we had developed for high-level expression of complexes30,31.
Briefly, the genes encoding for the TAFs were placed in a single ORF flanked by
genes encoding for tobacco etch virus NIa (TEV) protease at 50 and a cyan
fluorescent protein at the 30-end51. The ORFs give rise to self-processing
polyproteins, which are cleaved by TEV protease at high specific TEV protease
cleavage sites in between the constituent proteins. The polyproteins are shown
schematically in Supplementary Fig. 8.

Polyproteins were expressed from the CMVintP10 and the polh promoter,
respectively, by using EMBacY, and purified as described30,31. Production levels of
the polyproteins in insect cells were indistinguishable notwithstanding the promoter
used (Supplementary Fig. 8). Next, the MultiBacMam virus (see above) was used in
conjunction with the CMVintP10 promoter, again leading to indistinguishable
expression levels (Supplementary Fig. 8). HeLa cell cultures were transfected with
MultiBacMam-derived baculoviruses that had been used to express the proteins in
insect cells. Complete DMEM containing 10% foetal calf serum and 8 mM
L-glutamine was utilized. Best results were achieved by supplementing the media
with 3 mM sodium butyrate for cell recovery after aspirating the virus. Nearly all
HeLa cells were transduced as revealed by measuring the specific fluorescence of the
cyan fluorescent protein marker encoded by the polyprotein (Supplementary Fig. 8).
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