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Abstract: The tumor microenvironment (TME) is a dynamic system where nontumor and cancer cells
intercommunicate through soluble factors and extracellular vesicles (EVs). The TME in pancreatic
cancer (PC) is critical for its aggressiveness and the annexin A1 (ANXA1) has been identified as one
of the oncogenic elements. Previously, we demonstrated that the autocrine/paracrine activities of
extracellular ANXA1 depend on its presence in EVs. Here, we show that the complex ANXA1/EVs
modulates the macrophage polarization further contributing to cancer progression. The EVs isolated
from wild type (WT) and ANXA1 knock-out MIA PaCa-2 cells have been administrated to THP-1
macrophages finding that ANXA1 is crucial for the acquisition of a protumor M2 phenotype. The M2
macrophages activate endothelial cells and fibroblasts to induce angiogenesis and matrix degradation,
respectively. We have also found a significantly increased presence of M2 macrophage in mice tumor
and liver metastasis sections previously obtained by orthotopic xenografts with WT cells. Taken
together, our data interestingly suggest the relevance of ANXA1 as potential diagnostic/prognostic
and/or therapeutic PC marker.

Keywords: annexin A1; macrophage polarization; pancreatic cancer; extracellular vesicles; tumor
microenvironment

1. Introduction

Pancreatic cancer (PC) correlates to poor prognosis and high mortality due to late
diagnosis, as well as early stages. Resectable PC patients have poor prognosis due to
several factors such as chemoresistance by tumor microenvironment (TME) and by tumor
cells per se [1]. Recent studies show that TME plays a critical role in PC progression [2,3],
highlighting the strong relationship between the microenvironment and metastasis. The
TME includes the extracellular matrix, cellular elements such as cancer cells, activated
fibroblasts (carcinoma-associated fibroblasts, CAFs), endothelial and immune cells and
extracellular components such as vesicles, which together play a predominant role in
cancer development and chemoresistance [3,4].

In TME, macrophages, indicated in this case as tumor-associated macrophages (TAMs),
represent the major immune component and are crucial for cancer progression. Most
macrophages originate from circulating monocytes and form a heterogeneous population.
A network of molecules, factors and post-transcriptional regulators participate in direct-
ing macrophage polarization, discernible in classically activated macrophages M1 and
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alternatively activated macrophages M2 [5]. M1 macrophages are characterized by a proin-
flammatory phenotype, develop in response to lipopolysaccharides (LPS) or interferon-γ
(INFγ) and release interleukin (IL)1β, tumor necrosis factor-α (TNFα), IL-6 or IL-12 to
induce immune responses [4]. Instead, the M2 macrophages present an anti-inflammatory
phenotype with an elevated expression of the mannose (CD206) and scavenger receptor
(CD163) as well as a secretion of transforming growth factor-β1 (TGFβ1) and IL-10 to
promote the remodeling of extracellular matrix and angiogenesis [6]. Macrophages polar-
ize in M2 group in response to IL4 and IL13, and, particularly as TAMs, they acquire an
M2-like protumor phenotype. M2 effects are balanced by the M1 antitumor group [7]. A
marked expression of M2-markers in tumor tissues is correlated with a worse diagnosis
and prognosis of cancer patients [8,9].

Annexin A1 (ANXA1) (37-kDa protein) exhibits calcium-mediated phospholipid-
binding properties and participates in many physiopathological processes. Particularly,
in addition to its well-known anti-inflammatory effects, this protein favors cell migration,
differentiation and death according to its localization and mainly in a tissue-specific
manner [10–14]. In addition, in tumors, ANXA1 levels and activity differ depending on
the distinct tissue, and it is positively involved in cancer progression [14]. This protein
is overexpressed in PC [15–17] and leads to the acquisition of a mesenchymal phenotype
of both tumor and stromal cells, acting as an intra- and extra-cellular element. In this
regard, ANXA1 is known to be externalized through various mechanisms including the
vesicular structures [16–19] such as exosomes [19–24]. These latter (40–100 nm diameter)
are small membranous extracellular vesicles (EVs) released from nonmalignant and
malignant cells in the extracellular space and body fluids [21,25–30]. EVs play a central
role promoting cell-to-cell communication, cell proliferation, migration and invasion
and are involved in organizing premetastatic niches as key modulators of the tumor
microenvironment [24,31–35]. Moreover, previous studies have shown that vesicles
regulate the interactions between tumor and immune cells, such as TAMs [32,33]. There
is limited knowledge about the role of ANXA1-EVs in macrophage polarization in
TAMs-M2, as in PC. Thus, this study aims to demonstrate that the ANXA1 secreted
by EVs expedites macrophage recruitment and promotes M2 macrophage polarization
during PC progression. This subpopulation could have a strong impact on the other’s
cellular components of tumor environment influencing each other and contributing to
the tumor development.

2. Results
2.1. The Influence of PC Cell-Derived EVs on the Macrophage Polarization

In this work, we used the THP-1 cells, an immortalized cell line of human leukemic
monocytes which maintains all the characteristics for studying monocyte/macrophage
differentiation process since strongly showing M0/M1/M2 features. Thus, these cells
have been pretreated with the phorbol-12-myristate-13-acetate (PMA), 320 nM for 6 h,
which allowed the M0 polarization mainly confirmed by cell adhesion [35]. Then, the
M0 population has been treated with a normalized amount of EVs derived from WT and
ANXA1 KO MIA PaCa-2 cells [20]. After 24 h of treatment, THP-1 cells were harvested, and
the surface markers were detected by flow cytometry to distinguish the two subpopulations:
CD80/86 for M1 and CD163/206 for M2. Figure 1A displayed a strong polarization of
macrophages treated with PC EVs into M1 or M2 subpopulation. In particular, WT EVs
induced a high expression mainly of M2 markers compared to the treatment with IL-4
and IL-13 used as M2 controls. The administration of N-terminal mimetic peptide of
ANXA1 (Ac2-26) proved that this differentiation is due to ANXA1. On the other hand,
ANXA1 KO EVs were able to induce a phenotype switch in M1 population with high
levels of its markers as seen in presence of LPS and INFγ, as technical M1 controls. The
respective analyses of plots have been highlighted by histograms in Figure 1B. To confirm
that the WT EVs induced the polarization of macrophages to M2 phenotype, we measured
the production of the cytokine IL10 (a well-known M2 cytokine) by ELISA (Figure 1C).
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Actually, a significant increase in IL10 amount was found in PC cell-derived EVs-treated
macrophages with respect of ANXA1 KO EVs and interestingly also more than the stimulus
induced by the controls IL4 and IL13.
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Figure 1. Macrophage polarization. (A) Flow cytometry analysis of M1 cell surface markers (CD80 and CD86) and M2
(CD163 and CD206) cell surface markers on THP-1 macrophages incubated with LPS+INF-γ (M1 induction cytokines),
IL4+IL13 (M2 induction cytokines), Ac2-26 (1 µM) and WT and ANXA1 KO EVs for 24 h. (B) The histograms showed the
expression of these markers on total cells analyzed through flow cytometry. (C) ELISA analysis of IL10 cytokine expression
in THP-1 macrophages treated with LPS+INFγ (M1 induction cytokines), IL4+IL13 (M2 induction cytokines) and WT and
ANXA1 KO EVs for 24 h. Data represent the mean of five independent experiments ± standard deviation with similar
results. * p < 0.05; ** p < 0.01; *** p < 0.001 for treated cells vs. PMA treated controls; §§ p < 0.01; §§§ p < 0.001 for the point
with ANXA1 KO EVs vs. Ac2-26; ¥ p < 0.05, ¥¥ p < 0.01, ¥¥¥ p < 0.001 for ANXA1 KO EVs vs WT EVs; # p < 0.05; ## p < 0.01;
and ### p < 0.001 for each point vs. IL-4+IL-13.
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2.2. Effects of EVs from WT and ANXA1 KO MIA PaCa-2 Cells on Macrophage Migration
and Invasion

Here, we focused on the M0 macrophage motility assessing migration and invasion
processes, particularly based on ANXA1 potential role. As shown in Figure 2A,C, cells
migrated and invaded more rapidly in the presence of WT EVs than with ANXA1 KO EVs,
both compared to PMA treated controls (in Figure 2B,D representative bright field images
of wound healing and invasion assay, respectively, are reported). Ac2-26 confirmed that
the exogenous ANXA1 was able to induce very similar effects of WT EVs. Furthermore, we
have proved that the WT EVs promoted the proliferation of these M0 macrophages through
a colony formation assay. We further distinctly reported as the ANXA1 KO EVs were less
able to support cell growth. These results are described both in the bright field images
(Figure 2E) and in the histogram analysis (Figure 2F) obtained from the SDS dissolution of
cell-adsorbed crystal violet.
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Figure 2. EVs effects on THP-1 macrophages. Analysis of (A) migration and (C) invasion speed of THP-1 macrophages
treated with EVs from WT and ANXA1 KO MIA PaCa-2 cells with relative bright field images in (B,D), for migration and
invasion, respectively. Bar = 50 µm. (E) Representative images of the clonogenic assay performed on THP1-macrophages in
presence of WT and ANXA1 KO EVs for 24 h. (F) Histogram referring to the optical density (OD) obtained from 1% SDS
cell dissolution and read to spectrophotometer. Data represent the mean of three independent experiments ± standard
deviation with similar results. * p < 0.05; ** p < 0.01; and *** p < 0.001 for treated cells vs. PMA treated controls; § p < 0.05 for
the point with ANXA1 KO EVs vs. Ac2-26; ¥ p < 0.05; and ¥¥ p < 0.01 for each point with ANXA1 KO EVs vs. WT EVs.

2.3. The Ability of ANXA1 to Affect the Tumor Microenvironment

In order to investigate the role of extracellular ANXA1, indirect co-culture systems
were established between supernatants of WT and ANXA1 KO MIA PaCa-2 cells and
macrophages and between EVs-treated macrophages and BJ or HUVEC, as described in
Material and Methods section. Thus, we have demonstrated that the conditioned medium
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(CM) harvested from the WT MIA PaCa-2 cells induced the macrophage recruitment in a
more significant manner if compared with the ANXA1 KO MIA PaCa-2 one. The histogram
in Figure 3A refers to the panels a, c and e (Figure 3B), which represent the macrophages
in the bottom of the lower chamber in response to CM from WT and ANXA1 KO cells.
In the same Figure 3B, panels b, d and f are representative of the correspondent cells
stained by crystal violet in the matrigel coating in the upper chamber of generated system.
These last panels confirm that THP-1 cells invaded more rapidly in the presence of the WT
cells CM compared to the ANXA1 KO cells one, which is in line with what we reported
above. Furthermore, the white arrows indicate that in the presence of the CM from WT
cells, the activated macrophages produced the typical ejections that are indispensible for
the amoeboid movement capacity (Figure 3A, panel c). By contrast, when stimulated
with ANXA1 KO cells-CM, macrophages remained mostly with a rounded monocyte-like
appearance, such as the untreated condition (Figure 3A, panel e and a, respectively).
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Figure 3. ANXA1 effects on TME. (A) Co-culture system performed by THP-1 macrophage invasion assay to WT and
ANXA1 KO conditioned medium (CM). (B) Bright filed images of THP-1 cells captured in the bottom of the lower chamber
of transwell (panels a, c and e) and representative images of macrophages in the same experimental points stained by crystal
violet in the matrigel coating in the upper chamber of the generated invasion system (panels b, d and f). Results of (C)
HUVEC and (E) BJ cells invasion to polarized M1 or M2 macrophages pretreated for 24 h with WT and ANXA1 KO MIA
PaCa-2 EVs, with Ac2-26 (1 µM) and with the supernatants of THP-1 pretreated for 24 h with WT and ANXA1 KO MIA
PaCa-2 EVs. The relative bright field images were shown in (D) for HUVEC and in (F) for BJ, respectively. Bar = 50 µm. Data
represent the mean of four independent experiments ± standard deviation with similar results. ** p < 0.01; *** p < 0.001 for
treated cells vs. PMA treated controls; §§ p < 0.01; §§§ p < 0.001 for each point with ANXA1 KO EVs vs. Ac2-26; ¥ p < 0.05;
¥¥ p < 0.01; and ¥¥¥ p < 0.001 for each point with ANXA1 KO EVs vs. WT EVs; ◦◦ p < 0.01; ◦◦◦ p < 0.001 for ANXA1 KO EVs
sup. vs. Ac2-26; ¶ p < 0.05; and ¶¶¶ p < 0.001 for ANXA1 KO EVs sup. vs. WT EVs sup; @@@ p < 0.001 for WT EVs sup.
vs. Ac2-26.
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Finally, we have studied that polarized macrophages, obtained by the pretreatment
with WT and ANXA1 KO EVs, were differently able to recruit fibroblasts and endothelial
cells. To confirm the peculiar role of the extracellular ANXA1 in this process, we also used
M0 macrophages treated with Ac2-26 as a positive control. Figure 3B,C shows the invasion
of HUVEC and BJ, respectively. In both cases, as evidenced by histograms and bright
field images, cell enrolment was significantly enhanced by M2 macrophages compared
to M1 ones and mainly to the PMA-treated control. These results were also confirmed
using the supernatant (sup.) of M1 and M2 macrophages polarized by WT and ANXA1
KO EVs. Therefore, we studied the ability of polarized macrophages in M2, following the
pretreatment with WT EVs for 24 h, and M1, thanks to ANXA1 KO ones, to activate BJ and
HUVEC motility.

2.4. The Influence of WT MIA PaCa-2 EVs on Endothelial Cell Activation

Next, we have investigated how polarized M1 or M2 macrophages could influence the
activation of endothelial cells and promote the angiogenesis. Since the vascular endothelial
growth factor-A (VEGF-A) has one of the major mediators of angiogenesis, we measured
its production by ELISA finding a notable increase in the supernatant of macrophages
treated with EVs. In particular, WT EVs acted more efficiently than ANXA1 KO ones with
a significant difference, both when compared to each other and compared to control, both
at baseline (only following treatment with PMA for 6 h) and after 24 h more from the
seeding with growth medium. Interestingly, M2 macrophages with WT EVs have been
shown to be able to secrete more VEGF-A than ANXA1 KO EVs treated. Additionally,
the positive effect of Ac2-26 about the induction of VEGF-A section has been strongly
evaluated (Figure 4A). Later, we focused on cell motility evaluating that HUVEC migrated
more rapidly if treated with supernatant of M2 macrophages (WT sup—obtained from
macrophages after a pretreatment with WT EVs) compared to M1 supernatant (ANXA1 KO
sup—harvested from differentiated THP-1 pretreated with ANXA1 KO EVs) (Figure 4B,C
for representative images). Furthermore, also for the in vitro angiogenesis the capability
of macrophage supernatant to strongly stimulate this process was confirmed. Notably,
the WT EVs sup. promoted a significant number of branching points and the relative
tube length compared to ANXA1 KO EVs sup. and the untreated control (Figure 4D,E
for bright field images). The macrophage supernatant containing Ac2-26 (Ac2-26 sup.)
again confirmed its positive action in a very similar manner to WT EVs sup. stimulus
(Figure 4D,E). Finally, based on the variation of HUVEC migration speed, we studied their
cytoskeletal reorganization through confocal analysis. Thanks to phalloidin staining, we
observed a well-organized cytoskeleton with more evident F-actin fibers in cells treated
with WT EVs sup. when compared to other ones (Figure 4F, panels a–d). At this same
experimental point, we inversely found that vascular endothelial (VE)-cadherin expression
was significantly reduced compared to the control but also in respect to the ANXA1 KO
EVs sup.-treated points (Figure 4F, panels e–h). In addition, in this case, we used as control
the endothelial cells in the presence of their own growth medium (ctrl) and with HUVEC
medium: macrophage growth medium 1:1 (ctrl sup). The experimental point with Ac2-26
was not explained because it was already shown in our previous study [34]. These results
highlighted by the fluorescence images have been also proved by the histograms represent-
ing the densitometry analysis performed has reported in the Material and Methods section
(Figure 4G).

2.5. The Support of TAMs on Fibroblast Activation

As shown in Figure 5A,B, the BJ cells migrated more rapidly in the presence of both
Ac2-26 and of WT EVs sup. compared to those with ANXA1 KO EVs sup. and to untreated
control. In order to support this result, we performed a gel zymography assessing the
activity of metalloproteinases (MMPs) secreted by fibroblasts to degrade the extracellular
matrix. Differently from MMP2 whose signal appeared overall unchanged, the MMP9
underwent a very prominent increase, after 24 h of WT-EVs sup. treatment as compared to
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the ANXA1 KO-EVs sup. (Figure 5C). Furthermore, activated fibroblasts are characterized
by cytoskeletal changes, as revealed in this case through the marked increase in well-
organized F-actin stress fibers and the acquisition of more precise and parallel directionally
not only in respect to the control cells but also in respect to the ANXA1 KO EVs sup. treated
cells (Figure 5D, panels a–d). Another important signal of fibroblast differentiation is the
increase in the expression levels of specific protein markers—particularly relevant is the
fibroblast activated protein 1α (FAP1α), a member of the group II integral serine proteases.
BJ cells showed a notable increase in the levels of FAP1α expression when treated with WT
EVs sup, more than ANXA1 KO EVs sup. (Figure 5D, panels e–h). As for HUVEC cells, we
used two technical controls: the first one constituted by the BJ in presence of the growth
medium and the second one by the BJ growth medium: macrophage growth medium
1:1 (ctrl sup). This information appeared evident in fluorescence images and through the
densitometry analysis (Figure 5E). Moreover, the western blotting reported in Figure 5F,
further confirms the different levels of FAP1α expression.
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MIA PaCa-2 EVs and Ac2-26 (1 µM). The relative bright field images are reported in (C) for migration assay (Bar = 50 µm)
and in (E) for angiogenesis one (Bar = 100 µm). (F) Confocal analysis for HUVEC cells: F-actin (panels a–d) and VE-cadherin
(panels e–h) with the related densitometry evaluation in (G). Nuclei were stained with DAPI 1:1000 for 30 min at RT in
the dark. Magnification 63 × 1.4 numerical aperture (NA). Bar = 100 µm. Data represent the mean of three independent
experiments ± standard deviation with similar results. * p < 0.05; ** p < 0.01; and *** p < 0.001 for treated cells vs. untreated
controls; ¥¥ p < 0.01; ¥¥¥ p < 0.001 for each point with ANXA1 KO EVs vs. WT EVs; +++ p < 0.001 for each experimental
point vs. baseline control t0 meaning the treatment exclusively with PMA (320 nM) for 6 h; ◦◦ p < 0.01; ◦◦◦ p < 0.001 for
ANXA1 KO EVs sup. vs. Ac2-26 sup; ¶¶ p < 0.01; ¶¶¶ p < 0.001 for ANXA1 KO EVs sup. vs. WT EVs sup; ~ p < 0.05;
~~~ p < 0.001 for ANXA1 KO EVs sup. and WT EVs sup. vs. ctrl sup.
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Figure 5. Fibroblasts activation induced by M2 macrophages. Results of (A) wound-healing assay and relative bright
field images (B) of BJ cells with THP-1 supernatants obtained after 24 h with WT and ANXA1 KO MIA PaCa-2 EVs,
and Ac2-26 (1 µM). Bar = 50 µm. (C) Gelatin zymography showing gelatinolytic activity of MMP-9 of BJ supernatants.
(D) Immunofluorescence assay on BJ to detect: F-actin (panels a–d) and FAP1α (panels e–h) with the related densitometry
analysis (E). Magnification 63 × 1.4 NA. Bar = 100 µm. (F) Western blot using antibodies against FAP1α on protein content
of fibroblasts. Protein normalization was performed on tubulin levels. Data represent the mean of three independent
experiments ± standard deviation with similar results. * p < 0.05; ** p < 0.01; and *** p < 0.001 for treated cells vs. untreated
controls; ◦◦ p < 0.01 for ANXA1 KO EVs sup. vs. Ac2-26 sup; ¶¶¶ p < 0.001 for ANXA1 KO EVs sup. vs. WT EVs sup;
~ p < 0.05; ~~~ p < 0.001 for ANXA1 KO EVs sup. and WT EVs sup. vs. ctrl sup.

2.6. Characterization of Macrophage Infiltration in WT and ANXA1 KO Tumor and Metastases

TAMs are predominantly anti-inflammatory M2-macrophages. Thus, in order to
assess the main phenotype, we analyzed through H&E staining the pancreas and liver
tissue sections derived from mice in which we had previously performed intrapancreatic
injections of WT and ANXA1 KO MIA PaCa-2 cells [15]. As reported, mice had been
scarified after 5 weeks from the implantation, corresponding to the time when the primary
tumor had become noticeably palpable for a week already. First, pancreas WT sections
generally displayed multiple injuries, infiltrating ductal-like structures and extensive
desmoplastic stromal reactions (Figure 6A, panel a, star), attributable to high macrophage
infiltration (Figure 6A, panel a, white arrows) compared to the ANXA1 KO ones (Figure 6A,
panel b). We also determined whether ANXA1 depletion could affect the stromal infiltration
in metastasis formation. Therefore, we analyzed the liver section because it represents one
of the first affected organs by the PC metastatic process. The H&E staining displayed a
high infiltration of macrophages in WT livers (Figure 6A, panel c, white arrows), which
were particularly notable in the metastatic niche in the section, signed by the lost structural
integrity and reduced compactness. On the other hand, the ANXA1 KO liver sections
retained their red color, integrity and tissue density and showed much less macrophage
infiltration in metastasis lesion (Figure 6A, panel d). These results are in line with what
we have previously found through macroscopic evaluation [15]. Next, in order to confirm
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the phenotype of TAMs in tumor and metastasis tissues, their characterization has been
performed by an immunofluorescence assay. As shown in Figure 6B, a large number of
CD206 and CD163 positive macrophages, more than CD80 and CD86, were observed in the
WT pancreatic tumor and in the corresponding liver metastasis sections, suggesting the
relevant presence of M2 macrophages. By contrast, low levels of CD206 and CD163 positive
macrophages were detected in the ANXA1 KO tumor (panels e–h) and metastasis (panels
m–p) tissues, where the main macrophage phenotype was the M1 one, as revealed by CD80
and CD86 signals (panels a, b and i, j for CD80; b, f and k, l for CD86; e, f and m, n for
CD163; g, h and o, p for CD206). These results have been also confirmed by densitometry
analysis shown in Figure 6C.
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Figure 6. Macrophage infiltration in SCID mice sections derived from primary pancreatic tumors and livers after intrapan-
creatic implantation of WT and ANXA1 KO MIA PaCa-2 cells. In detail, we indicated as WT and ANXA1 KO pancreas
the sections derived from mice in whose pancreas we have previously implanted WT and ANXA1 KO MIA PaCa-2 cells,
respectively, and in which primary tumors have been developed. Additionally, WT and ANXA1 KO livers represented the
hepatic sections in which we had found significantly more metastatic lesions deriving from tumors originating from WT
MIA PaCa-2 cells compared to ANXA1 KO ones. (A) Pancreas (panels a and b) and liver (panels c and d) sections have
been stained by H&E. Infiltrating ductal-like structures were labeled by star; macrophage infiltrations were marked by
white arrows. Bar = 100 µm. (B) Representative images of CD80 (panels a and b; i and j), CD86 (panels c and d; k and l)
(M1 macrophage markers) and CD163 (panels e and f; m and n) and CD206 (panels g and h; o and p) (M2 macrophage
markers) staining by immunofluorescence in WT and ANXA1 KO mice pancreas and liver (livers in which we have found
metastatic lesions derived from intrapancreatic injection of WT MIA PaCa-2 cells) sections. (C) The histograms showed
the densitometry analysis on immunofluorescence images based on the intensity of each signal compared to the total
number of nuclei. Nuclei were stained with DAPI 1:1000 for 30 min at room temperature (RT) in the dark. Magnification
40 × 1.4 NA. Bar = 100 µm. Data represent the mean of three independent experiments ± standard deviation with similar
results. ˆˆ p < 0.01; ˆˆˆ p < 0.001 for ANXA1 KO vs. WT cells xenografts.
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3. Discussion

Cancer-derived EVs, enriched in exosomes, are considered to be key components
promoting cancer and microenvironment communication and play an important role in
the modulation of the immune response [21,35–42]. It is known that EVs are able to
influence stromal cells such as endothelial ones, fibroblasts, immune cells as lymphocytes
and macrophages. In the present paper, we have investigated the effects of ANXA1,
as cargo of EVs secreted by PC cells, on THP-1 highlighting its extracellular paracrine
role in regulating the macrophages polarization in M2 subpopulation rather than in M1.
These activities have been evaluated in terms of acquisition of a higher macrophages
speed of migration, invasion and proliferation, all processes strongly involved in the
formation of a TME particularly favorable for tumor progression [5–9,33,43–45]. The strong
protumor role of ANXA1 has been proved by using its N-terminal peptide Ac2-26, able
to mimic the main biological functions of the protein [19,46,47]. Moreover, this peptide
also allowed us to show the secreted ANXA1 effects independently of the mechanism by
which ANXA1 is externalized, since it is not yet defined if the protein is secreted only
through vesicles. Furthermore, the EVs harvested from the ANXA1 KO MIA PaCa-2
have interestingly shown significant less impact about this action. About the extracellular
activity of ANXA1, we have previously demonstrated that the complex ANXA1/EVs is
able to activate endothelial cells and fibroblasts, as recipient stromal cells, inducing the
acquisition of a more aggressive mesenchymal phenotype [20,35,48–50]. Furthermore, in
PC progression, ANXA1 has been already associated to a strong oncogenic action mainly
interacting with FPR receptor partner family when in the intracellular environment and
also as extracellular counterpart [12,15,20,51–53] acting in an autocrine and paracrine
manner. This contest allowed us to hypothesize that ANXA1 could affect the macrophages
by activating its receptor FPR, as described in the hepatocellular carcinoma where this
protein is able to enhance the differentiation into M2 macrophages via FPR2 and supports
their expression of IL-10 [49].

In consideration of the crucial role of each single-cellular TME component, we studied
a three-ways crosstalk among PC cells and TAMs and endothelial cells/fibroblasts. This
triple kind of interactions appeared to be notably mediated by ANXA1 which first induces
macrophages polarization into M2, and then, this subpopulation in turn supports the
other stromal cellular components also by secreting a series of factors. Among them,
one important factor is just VEGF-A whose secretion by TAMs interestingly correlates to
ANXA1 stimulus [53]. We have also associated this finding to the activation of endothelial
cells within the TME, revealed through the induction of migration/invasion processes
and mainly the in vitro formation of capillary-like structures. The significant effects of M2
supernatants, obtained in turn by the effects of Ac2-26 and WT EVs, rather than ANXA1
KO ones, suggests the strong action of this protein in the promotion of protumor action by
the endothelial cells in TME.

Additionally, we have found that fibroblasts are importantly influenced by M2
macrophages effects as found through the evaluation of MMP-9 secretion, FAP1α ex-
pression, F-actin structures and migration/invasion processes suggesting, once again,
and indirect role of ANXA1 [54]. These acquired features are mostly associated to the
cancer-associated fibroblasts, (CAFs) which arise in the TME where they promote cancer
progression in terms of chemoresistance and by the formation of fibrotic barrier against
therapeutic agents [55–65].

Furthermore, ex vivo analysis on previously obtained tissue sections, specifically
pancreatic tumors and liver metastasis, were warranted to confirm the predominant M2
macrophage infiltration in both cases. In this way, we have confirmed how the pres-
ence of ANXA1 can markedly influence the differentiation and/or the recruitment of M2
macrophages into both primary tumor and metastasis.

Thus, this work amplifies the knowledge about the role of ANXA1 as a member of
PC EVs by which the protein induces an autocrine and paracrine action. Here, we proved
that the paracrine effect is further mediated by the macrophage TME subpopulation. Thus,
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ANXA1 has been revealed to directly induce M2, as protumor, phenotype and, through
these cells, indirectly promotes the activation of PC stroma.

Taken together, these data make ANXA1 as a key mediator of PC bad behavior suggest-
ing as this protein could become an interesting target to consider in diagnosis/prognosis
phases and/or therapy ones.

4. Materials and Methods
4.1. Cell Culture

MIA PaCa-2 cells (ATCC® CRL-1420; Manassas, VA, USA) were grown as reported
in [34]. ANXA1 knockout (KO) MIA PaCa-2 cells were generated as described in [15] and
kept in selection by 700 µg/mL neomycin (Euroclone; Milan, Italy). BJ cell line (human
immortalized skin fibroblasts, ATCC® CRL-2522TM; Manassas, VA, USA) was cultured as
in [15]. HUVEC cell line (human umbilical vein endothelial cell) (ATCC® PCS-100-010™;
Manassas, VA, USA) was kept in culture until passage 10, as reported in [29]. THP-1
(ATCC® TIB-202; Manassas, VA, USA) cells were maintained in Roswell Park Memorial
Institute (RPMI; Euroclone; Milan, Italy) 1640 medium with 1% L-Glutamine, 10% fetal
bovine serum (FBS) (Euroclone; Milan, Italy), 1% penicillin and streptomycin and β-
mercaptoethanol (0.05 mM; Sigma Aldrich, St. Louis, MO, USA). Cells were grown at 37 ◦C
in air-humidified 5% CO2.

4.2. Exosomes Isolation

The extracellular vesicles (EVs) enriched in exosomes were obtained from cell culture
supernatants as reported in [59]. Previous abundant washing with PBS, the WT and ANXA1
KO MIA PaCa-2 cells (confluence of about 8 × 107 cells in 1.5 × 105 cm−2) were cultured
for 24 h in DMEM-conditioned medium (without FBS). This medium was collected and
processed according to the protocol used in [19,34]. Obtained as reported by Théry and
colleagues [59], the supernatant was discarded, and the exosomes pellet was resuspended
according to the experimental use.

In total, 20 µg of WT and ANXA1 KO MIA PaCa-2 EVs, previously normalized through
the Bradford assay [20,34], were administered to the cells. The normalization was needed
to deliver to the cells the same amount of PC EVs, both from WT and ANXA1 KO MIA
PaCa-2 cells, in all experiments. Every analysis was performed on fresh isolated fractions.

4.3. Macrophages Generation

THP-1 monocytes differentiated into macrophages (M0) via PMA (Sigma Aldrich, St.
Louis, MO, USA), 320 nM for 6 h, were allowed to recover for an additional 24 h. One
dose of 20 µg of EVs was added for macrophage polarization experiments. After 24 h, the
medium was collected, centrifuged to remove cellular component or debris and subjected to
the ELISA test for IL10, according to the manufacturer’s guidelines (Elabscience, Houston,
TX, USA).

4.4. Flow Cytometry

THP-1 monocytes were harvested at a number of 5 × 105/mL, differentiated in
macrophages M0, treated with PC EVs and then analyzed for CD80, CD86, CD206 and
CD163 expressions as reported in [32]. The pellets were incubated for 1 h at room tempera-
ture (RT) in PBS 1x containing FBS (2% v/v) and antihuman antibody against CD80, CD86,
CD206, CD163 (1:100, Santa Cruz Biotechnologies, Dallas, TX, USA) and then for another
hour with conjugated secondary antibody (1:100, antimouse). Finally, the cellular markers
expression was analyzed by flow cytometer (Becton Dickinson FACScan, Franklin Lakes,
NJ, USA) using the Cells Quest program.

4.5. Wound-Healing Assay

The confluent monolayer of M0 THP-1, BJ and HUVEC was scraped with a pipette
tip to produce a wound. Next, the cells were treated according to the experimental points
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previously administration of mitomycin C (10 µg/mL, Sigma-Aldrich; Saint Louis, MO,
USA) to ensure the block of mitosis. The wounds were photographed and analyzed as
reported in [34,60].

4.6. Invasion Assay

The invasion capability of cells was performed through the transwell systems (12 mm
diameter, 8.0 fim pore size, Corning Incorporated, New York, NY, USA), as previously
described [29,30]. The established treatment was added in the lower chambers of each well
in experimental points, previously addition of mitomycin C (10 µg/mL, Sigma-Aldrich;
Saint Louis, MO, USA) to the arrest of mitosis. Staining and analysis procedures were
reported in [18,22].

4.7. Clonogenic Assay

The macrophages were seeded 5 × 105 cells/mL in 6-well plates and then were treated
with WT and ANXA1 KO EVs and cultured for 8 days in fresh medium. They were
subsequently fixed with 4% p-formaldehyde, for 10 min, and then with 100% methanol,
for 20 min (both from Sigma-Aldrich; St. Louis, MO, USA). The cellular staining was
performed with crystal violet at 0.5% w/v in a v/v solution of 20% methanol/distilled
water (Merck Chemicals, Darmstadt, Germany) for 30 min at RT. After washing with
deionized water, the colonies were photographed, and then, the dye was dissolved in 1%
SDS and measured at 570 nm by spectrophotometer [61] (Titertek Multiskan MCC/340;
Labsystems, Midland, ON, Canada), as confirmation of the result.

4.8. Co-Culture System

Transwell chambers (12 mm diameter, 8.0 fim pore size, Corning Incorporated, New
York, NJ, USA) with matrigel coating (BD Biosciences, Franklin Lakes, NJ, USA) were used
following the schematic representation reported in Figure 7, to detect macrophage invasion
to WT and ANXA1 KO conditioned medium (CM) obtained as the growth medium in
contact with WT and ANXA1 KO MIA PaCa-2 cells for 48 h. These CMs were collected and
centrifuged at 900× g or 10 min to remove the cellular debris. Then, the macrophages were
plated in the upper chamber and in the lower chamber the CMs were put. Therefore, this
co-culture system was also used to detect the BJ and HUVEC cells invasion to polarized
M1 or M2 macrophages, from the upper chamber where cells were seeded at 3 × 104 and
4 × 104/insert, for BJ and HUVEC, respectively. In this case, in the lower chamber, M0
THP-1 pretreated for 24 h with Ac2-26 (1 µM, Tocris Bioscience, Bristol, UK), WT and
ANXA1 KO MIA PaCa-2 EVs were plated. After 24 h, all cells were fixed and stained and
analyzed as reported in [34].
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4.9. Confocal Microscopy

HUVEC and BJ cells seeded on glass bottom in multiwell plate were fixed in p-
formaldehyde at 4% v/v in PBS, (Lonza; Basilea, Swiss), permeabilized with Triton X-100
at 0.5% v/v in PBS (Lonza; Basilea, Swiss) and then blocked with goat serum at 20% v/v
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in PBS (Lonza; Basilea, Swiss). Incubation with the respective antibodies against VE-
cadherin (mouse monoclonal, 1:100; Santa Cruz Biotechnologies, Dallas, TX, USA), FAP1α
(rabbit polyclonal, 1:100; Santa Cruz Biotechnologies, Dallas, TX, USA) were performed
for O/N at 4 ◦C. F-actin detection was evaluated by Phalloidin-FITC (5 µg/mL, Sigma-
Aldrich; Saint Louis, MO, USA) for 30 min, at RT in the dark. The staining with conjugated
secondary antibodies (1:500, antimouse and antirabbit), the nuclei with DAPI (1:1000)
and the subsequent confocal microscope analysis and quantifications were performed as
described in [62,63]. In particular, the final images were generated using Adobe Photoshop
CS4, version 11.0. Quantifications were performed from multichannel images obtained
using a 63× objective using ImageJ, marking either the cell perimeter or the nucleus as
the region of interest and calculating integrated densities per area from the appropriate
channel. A minimum of 50 cells were analyzed for each data set; the obtained mean value
has been used to compare experimental groups.

4.10. Gelatin Gel Zymography

The gelatinolytic activity of metalloproteinases was detected by SDS-PAGE zymogra-
phy as reported in [64]. The serum-free supernatants, mixed with a standard nonreducing
loading buffer for SDS-PAGE, were loaded for electrophoretic run, at 125 V, in a gel 10%
polyacrylamide and 0.1% gelatin (for protease detection; Sigma Aldrich, St. Louis, MO,
USA). After the electrophoresis, the gel was washed in renaturing solution (2.5% Triton
X-100) for 1 h to remove SDS, following by incubation in a buffer of digestion (50 mM of
Tris-HCl, pH 7.8, 200 mM of NaCl, 5 mM of CaCl2 and 5 mM of ZnCl2) for degradation
of the substrate for 18 h, at 37 ◦C. The gels staining was with Coomassie Brilliant Blue
R-250 (Sigma Aldrich, St. Louis, MO, USA) and then washed with destaining solution (10%
methanol and 5% acetic acid) to reveal the areas of digestion such as a light band.

4.11. ELISA for VEGF-A

After treatments with WT and ANXA1 KO EVs, THP-1 supernatants were collected,
and the secreted VEGF-A amount was detected through the human VEGF-A ELISA kit,
following the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA).

4.12. Tube Formation Assay

The in vitro angiogenesis has been performed as reported in [65]. After 12 h, the
10× images were acquired by EVOS® optical microscope (Life Technologies Corporation,
Carlsbad, CA, USA) and analyzed both for length and the number of branches by the
ImageJ software (NIH, Bethesda, MD, USA) (Angiogenesis Analyzer tool for ImageJ).

4.13. Western Blotting

Proteins extracted from cells were examined by SDS-PAGE. Protein content was
estimated according to Biorad protein assay (BIO-RAD, Hercules, CA, USA), as previously
described [34]. We have analyzed primary antibodies against FAP1α (rabbit polyclonal
(1:500; Santa Cruz Biotechnologies, Dallas, TX, USA) and tubulin (mouse monoclonal
1:1000; Sigma-Aldrich; St. Louis, MO, USA). The blots were exposed to Las4000 (GE
Healthcare Life Sciences; Little Chalfont, UK).

4.14. H&E Tissue Staining and Tissue Immunofluorescence

Frozen samples of tumor and metastasis tissues were obtained from our previous
in vivo study on mice [15]. In brief, SCID mice (6–8 week-old females) were obtained from
Charles River (Italy) and bred under pathogen-free conditions in the Animal Facility of the
University of Salerno. The orthotopic implantations were performed in the pancreas by
using WT and ANXA1 KO MIA PaCa-2 cells. After 5 weeks from the implantation, mice
were sacrificed, and organs (pancreas and livers) were excised, weighed and analyzed.
Metastases lesions on the liver surface were observed and quantified by gross anatomy
using a dissecting microscope. The slice sections of 6 µm, laying on superfrost slides
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(Thermo Scientific, Thermo Fisher Scientific; Waltham, MA, USA), were processed for
hematoxylin and eosin (H&E) staining, as reported in [13]. The images were taken through
the Axio Observer microscope (20×) (Carl Zeiss MicroImaging GmbH; Jena, Germany)
and analyzed using ImageJ software (NIH, Bethesda, MD, USA).

Next, the sections were fixed in a solution of p-formaldehyde (4% v/v in PBS; Lonza),
were permeabilized or not with Triton X-100 (0.5% v/v in PBS; Lonza), blocked with fetal
bovine serum (FBS) (20% v/v in PBS, 0.5% Triton X-100; Lonza, Basilea, Swiss) and then
incubated with anti-CD80 (mouse monoclonal, 1:100; Santa Cruz Biotechnologies, Dallas,
TX, USA), anti-CD86 (mouse monoclonal, 1:100; Santa Cruz Biotechnologies, Dallas, TX,
USA), anti-CD163 (mouse monoclonal, 1:100; Santa Cruz Biotechnologies, Dallas, TX,
USA), anti-CD206 (mouse monoclonal, 1:100; Santa Cruz Biotechnologies, Dallas, TX,
USA) in determined solution 0.2% Triton X-100, 3% FBS, 0.02% NaN3, overnight at 4 ◦C.
Then, they were incubated with antimouse AlexaFluor (488 and/or 555; 1:500; Molecular
Probes; Waltham, MA, USA) for 2 h at RT. After two washing steps, the slice sections were
mounted, and the images were acquired using a Leica SP8 confocal microscope (Leica
Microsystems, Wetzlar, Germany). The densitometry analysis was performed as reported
above; in this case, a 40× objective was used, and the whole slide was evaluated to count
nuclei and the related protein signal for each data set. The obtained mean value was used
to compare experimental groups. Fifteen sections from six animals (three for each condition
of implantation) were selected.

4.15. Statistical Analysis

All the data and statistical analysis were made with Microsoft Excel. We reported
the number of independent repetitions and p values in the legends of the figures for each
experiment. All results are the mean ± standard deviation of at least three experiments
performed in triplicate. The statistical data analysis were performed thanks to the two-
tailed t test comparing two variables, and the differences were considered significant if
p < 0.05, p < 0.01 and p < 0.001.

5. Conclusions

In recent years, it has become clear the fundamental role of TME in tumor progression
and metastasis. In this setting, one of the important of cell-to-cell communication is
represented by extracellular vesicles by which cancer cells can activate stroma elements.
In parallel, our previous works demonstrated that ANXA1 promotes PC progression
via EVs inducing a mesenchymal phenotype on fibroblasts and endothelial cells. In this
study, we have shown that ANXA1/EVs complex regulates macrophage polarization
into the M2 subpopulation, by which they could promote metastasis. Thus, the complex
ANXA1/EVs is involved in modulating the interaction between TAMs and CAFs, that
regulate tumor-associated inflammation and between TAMs and endothelial cells that
improve the angiogenesis. Moreover, since M2 cells are also involved in drug resistance [4],
targeting the interaction between ANXA1/EVs and macrophages might be a potential
therapeutic strategy for PC. Further investigations are necessary to confirm these issues
mainly focused on EVs deriving from PC on other cell populations surrounding the primary
tumor. Particularly, it would be interesting to perform in vivo studies to explore the effects
of this complex by directly implanting WT and ANXA1 KO EVs in mice pancreas. These
future analyses could also contribute to specifying the mechanism by which these effects
are triggered, mainly focusing on FPRs evaluation as ANXA1 peculiar receptor partners.
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