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Experimental and theoretical 
evidence of dihydrogen bonds 
in lithium amidoborane
Ewelina Magos‑Palasyuk1, Aleksander Litwiniuk1 & Taras Palasyuk2*

In situ high-pressure synchrotron X-ray diffraction, Raman scattering, and complementary first-
principles calculations have revealed that structural and spectroscopic properties of lithium 
amidoborane compound are largely determined by multiple heteropolar dihydrogen bonds. The 
crystal structure of the compound is stabilized by dimeric complexes, wherein molecular ions bind 
together by intermolecular dihydrogen bonds of unconventional type. This strong intermolecular 
coupling determines stable character of the crystal structure in the pressure range up to ~ 30 GPa and 
is spectroscopically manifested by pronounced changes related to molecular vibrations of the amino 
group: the splitting of stretching modes, the anomalous behavior of wagging modes as well as Fermi 
resonance due to vibrational coupling of bending and stretching modes, significantly enhanced above 
10 GPa. Unconventional nature of dihydrogen bonds is confirmed by the frequency increase, blueshift, 
of NH stretching modes with pressure. A role of certain hydrogen mediated interactions in the process 
of dehydrogenation of ammonia borane and its alkali metal derivatives is speculated. Findings 
presented here call for reconsideration of hydrogen release mechanism from alkali metal ammonia 
borane derivatives. The work makes significant contribution towards establishing the general theory 
of ubiquitous and versatile hydrogen mediated interactions.

Fuel cell technologies currently used in automotive applications impose certain requirements on candidate mate-
rials for hydrogen storage such as high purity of released hydrogen, favorable kinetics, operation temperature 
well below 100 °C and ability of spent material regeneration either via on- or off-board procedures. Lithium 
amidoborane (LiAB), LiNH2BH3, is regarded as one of the most promising materials for the development of a 
lightweight storage medium for hydrogen1. In general, LiAB is a compound out of a large family of hydrogen-rich 
Boron–Nitrogen (B–N–H) materials, which number has been growing fast over the last decade2,3. When com-
pared to neat ammonia borane, LiAB exhibits remarkable improvement in hydrogen release. The reasons behind 
the observed differences between ammonia borane and amidoboranes are far from being well understood. There 
are many indications on direct interaction between different hydrogen species, which facilitates the formation 
of diatomic hydrogen molecules and significantly improves the overall process of hydrogen desorption from 
molecular B–N compounds. An outstanding feature about chemical composition of hydrogen dominant B–N 
compounds is the presence of chemically distinct acidic (Hδ+) and basic (Hδ−) hydrogen species resulting from 
both polar covalent bonds with nitrogen (more electronegative element) and boron, a less electronegative ele-
ment. While mechanism of hydrogen release from AB seems to be well established4,5, possible dehydrogenation 
pathways in LiAB and from other metal amidoboranes, in general, are a matter of intensive research6. The most 
often cited model the hydrogen desorption mechanism deals with gas phase and posits occurrence of certain 
transition states, i.e., complexation of MAB monomer, with subsequent metal-assisted hydrogen transfer lead-
ing to the formation of the first H2 molecule7–10. Despite appealing simplicity of the mentioned scenario, several 
experimental observations raise considerable reservations about its direct implementation to solid phase, namely:

•	 Unreacted hydrides of respective alkali metals are present already at the beginning of thermal decomposition. 
This make elucidation of the role of metal hydride hypothetically formed during thermal decomposition less 
obvious11,12;

•	 Hydrogen release performance of lithium amidoborane–ammonia borane complex LiAB·AB is significantly 
improved if compared to pure lithium amidoborane13,14;
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•	 Liberation of hydrogen from AB is notably enhanced in ionic liquids and in the presence of acids15,16;
•	 Metal-mediated decomposition basically should not depend on the specific crystal structure (no Li diffu-

sion and mass transport of other constituents). In contrast, α and β phases of LiAB show clearly different 
parameters of hydrogen desorption17;

•	 The presence of ammonia is claimed in some studies11,18,19 while there are studies13,20 reporting no emission 
or very little amounts of ammonia during thermal decomposition of lithium amidoborane;

•	 No plausible explanation of the endothermic process occurring in material prior to the rapid emission of 
molecular hydrogen. In the literature it is frequently called a state of melting, however a detailed description 
of the material structure at this state is lacking19.

To the best of our knowledge there is no theoretical study dealing with dehydrogenation mechanism in 
pure lithium amidoborane in its solid phases. None of the proposed theoretical models for gas phase considers 
a direct N–Hδ+–δ−H–B interaction as an initial step towards hydrogen liberation. In contrast, first principles 
calculations revealed the crucial role of direct interactions between hydrogen species belonging to LiAB and 
AB layers of LiAB·AB compound14.

It is obvious, the observed physicochemical behavior is a sum of multiple interactions taking place in materials 
subjected to certain thermodynamic conditions. In hydrogen-rich substances interactions involving different 
forms of hydrogen (atom, proton, hydride-ion) play a crucial role in setting up crystal structures and chemical 
reactivity of these materials. These interactions are very often referred as secondary interactions and among 
others include hydrogen bonding, heteropolar and homopolar dihydrogen bonding. Limited data available from 
either experimental or computational research, at this moment, do not allow clear delineation of the fundamental 
parameters of bonding patterns created by secondary interactions in B–N–H systems.

Here we report the comprehensive experimental and theoretical study that clarifies the bonding properties of 
α phase of lithium amidoborane. Based on scrupulous analysis of spectral features of major and subtle changes 
of both geometrical arrangement and dynamics of either lattice or molecular fragments, the study has revealed 
a strong intermolecular dihydrogen bonding which plays a decisive role in the structural stability of lithium 
amidoborane. The apparent discrepancy between ambient pressure studies and previous high-pressure report is 
explained by the unconventional nature of the dihydrogen bonding in this compound.

Previously underestimated or unrecognized dihydrogen bonding should then be taken into consideration 
towards understanding the mechanism of hydrogen release from lithium amidoborane and other alkali metals 
ammonia borane derivatives, in general. In this regard, we propose possible directions hydrogen and dihydrogen 
bonding may affect the process leading to hydrogen desorption.

Results
There are two crystal polymorphs of lithium amidoborane (LiAB) reported in the literature: α-LiAB and β-LiAB21. 
In the following part of the manuscript, each time “lithium amidoborane” or “LiAB” is mentioned it should be 
referred to its α-phase unless stated otherwise.

At ambient conditions lithium amidoborane consists of orthorhombic crystals described within Pbca (61) 
space group with 8 molecules per unit cell21. For measurements of X-ray diffraction, a sample of LiAB in form of 
polycrystalline powder was clamped in a diamond anvil cell at pressure ca. 3.8 GPa, which was an initial pressure 
of our structural study. To note, 1 GPa is approximately equal to 10,000 atm. The angle resolved X-ray diffraction 
pattern was consistent with Pbca phase, Fig. 1a,b. The angular range (2Θ) of collected data was limited by the 
diamond cell aperture to ca. 16°, making the refinement of the crystal structure, e.g. atom positions, unreliable. 
At the same time well resolved diffraction lines (> 12) were clearly indexed within the orthorhombic symmetry 
and the lattice parameters were accurately determined. Further compression of the sample indicated no sign of 
significant change in acquired diffraction patterns up to ca. 27 GPa, the highest pressure attained in the XRD 
measurements. Lattice parameters as well as unit cell volume decreased gradually showing no discontinuity or 
other indication of major change of the crystal structure, Fig. 1c inset. The orthorhombic Pbca structure remained 
stable revealing a remarkable 38% reduction of the unit cell volume in the pressure range applied in the study.

Similar results related to the stability and compressibility of LiAB were provided by a full geometry optimiza-
tion of the crystal structure using density functional theory (DFT). Theoretical model of the crystal structure 
was benchmarked by comparison of computed results to those determined experimentally at ambient pressure21. 
In the range of pressure from 1 atm. to 30 GPa, DFT derived structural models converged to the orthorhombic 
structure of Pbca space group with lattice parameters similar to values determined experimentally. Furthermore, 
the Birch–Murnaghan model of equation of state22 was used to fit experimental as well as theoretically derived 
data, Fig. 1c.

where B0—bulk modulus, B0
/—the first derivative of the bulk modulus with respect to pressure, V0—reference 

volume (corresponding to the ambient pressure).
Resulting values of parameters of equation of state are listed in the Table 1.
Even though slightly underestimating unit cell volume, in general, the calculations accurately reproduced 

structural and compressibility characteristics of lithium amidoborane found in our measurements.
Based on the consistency of results obtained experimentally and derived from DFT calculations, the equi-

librium structures of LiAB computed at pressure range from 1 atm. to 30 GPa were thus taken for simulation 
of Raman spectra.
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The comparison of the Raman spectrum as calculated by DFT for the pressure of 1 atm. and the experi-
mental spectrum measured at ambient pressure is presented in Fig. 2. The simulated spectrum reproduced 
experimentally observed spectral features in the whole range of measured frequencies, i.e. ca. 50–3500 cm−1. 
The Raman spectrum consists of several distinct spectral regions related to specific types of vibrational motion: 
lattice vibrations (< 300 cm−1), Li–N stretching (ca. 457 cm−1), B–N stretching (ca. 902 cm−1), deformations of 
NH2, BH3 fragments (wagging, rocking, bending etc. and their combinations) covering frequency range appr. 
500–1600 cm−1, both symmetrical and asymmetrical stretching of BH3 fragments (ca. 2000–2500 cm−1) and 
stretching of NH2 fragments (both symmetrical and asymmetrical) in the range of 3300–3360 cm−1. It is worth 
noting, in the Raman spectra collected during high-pressure measurements there were also strong signals from 
diamond anvil through which the excitation laser beam passed on the way towards the probed sample (for details 
please see SI). Therefore, for detailed analysis we are addressing primarily spectral regions where signals from 
the probed sample of lithium amidoborane are not overlapped with the signals of diamond.

The spectral region of N–H stretching vibrations is out of the range of Raman signals originating from dia-
mond anvils therefore any registered signal in this region is attributed to lithium amidoborane. The orthorhombic 
Pbca space group of LiAB contains eight molecules on a point of general (8c) symmetry. Hence each fundamental 
vibration of the isolated molecule should give rise to 8 factor group modes of the crystal. In contrast, at ambient 
conditions, spectral region of stretching vibrations of the amino group (–NH2) is represented by only two strong 
signals: a peak of higher intensity centered at about 3307 cm−1 (attributed to symmetrical stretching) and the 
one of lower intensity at about 3365 cm−1 (asymmetrical stretching), Fig. 3a. Both signals are well described by a 
Lorentzian shape. Apparent discrepancy in the number of observed signals and the number of stretching vibra-
tion modes predicted by the group theory is most probably due to close energies of some vibrational transitions 
(degeneracy) resulting in spectral frequencies being distributed in a narrow spectral range.

Figure 1.   Analysis of X-ray diffraction data related to lithium amidoborane collected at high pressure. (a) 
Representative synchrotron X-ray diffraction pattern of lithium amidoborane acquired at pressure ca. 3.8 GPa 
(blue line), XRD pattern calculated for pressure value 3.5 GPa (red bars); (b) “Cake” integration (intensity versus 
azimuth) of experimental 2D XRD image acquired at pressure ca. 3.8 GPa; (c) unit cell volume as a function 
of pressure, blue open star—experimental value from Ref.21, blue solid symbols—experimental data from 
this study, blue solid line—fit of Birch–Murnaghan model to experimental data, red solid line—fit of Birch–
Murnaghan model to calculated data; (inset) experimental lattice parameters (solid blue symbols) as a function 
of pressure in comparison to computed data (red lines).

Table 1.   Fitting parameters of the Birch–Murnaghan model.

Data set V0, Å3 B0, GPa B0
/

Experimental 514.6 20.5 3.9

Theoretical 501.9 18.4 3.9
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In this spectral region, there is also a weak signal at position ca. 3270 cm−1, Fig. 3a inset. The similar signal was 
also found in Raman spectra presented in earlier studies reporting results for two different samples, commercially 
available23 as well as synthesized independently for the reported investigation24. Origin of this spectroscopic 
feature was not discussed in the literature, though.

Upon compression, the N–H signals, both symmetrical and asymmetrical stretching, became broader and of 
asymmetrical shape, which indicated signal splitting into two peaks: of higher and lower intensity, Fig. 3b. That 
intensity relation within the signal doublets was preserved up to ca. 12 GPa. At higher pressure signal intensity 
of symmetrical stretching modes exhibited a remarkable redistribution. The signal located at higher frequency 
showed a steady gain in intensity while initially the most intensive signal, at lower frequency, experienced a 
considerable attenuation, Fig. 3c,d insets.

In the same range of pressure, a substantial change of yet unassigned signal was detected as well. It evolved 
into double broad and strong signals of complex spectroscopic structure Fig. 3a–d.

Simulated Raman spectra in the region of N–H stretching vibrations are shown in Fig. 3e–h. The spectrum 
calculated at ambient pressure is represented by 8 normal modes in agreement with the group theory. Spectral 
lines are divided into two groups consisting of 4 symmetrical and 4 asymmetrical modes. While there is ca. 
70 cm−1 separation between two groups in the spectrum, the distribution of frequency values of spectral lines 
belonging to the particular spectral group falls in a very narrow spectral range: within 3 cm−1 (symmetrical 
modes) and within 0.5 cm−1 (asymmetrical modes). Therefore, considering natural width of signals collected at 
ambient temperature as well as certain instrumental limitations, one should expect strong overlapping of meas-
ured signals. Accordingly, in the measured spectrum at ambient pressure, spectral lines are not resolved giving 
rise only to two signals for particular spectral groups: one signal for symmetrical and the other for asymmetrical 
band. In overall, calculated spectra reproduced peak positions with high accuracy, within 0.4% and 0.7% for 
symmetrical and asymmetrical signals, respectively.

At higher pressure calculated spectral lines shift to higher frequencies albeit at different rate. As a consequence 
of different pressure sensitivity, spectral lines regroup into four distinct doublets: two doublets related to sym-
metrical stretching modes and two doublets—asymmetrical ones. This behavior resembles the signal splitting 
of corresponding signals in experimental spectra Fig. 3e–h insets. Separation between symmetrical and asym-
metrical stretching modes is gradually increased with pressure Fig. 4.

Intensity relation of corresponding modes, if compared with those in measured spectra, is well reproduced 
by calculations in the pressure range up to 9 GPa. Instead, the remarkable intensity redistribution detected in 
the experiment was not reproduced in the calculated spectra above 9 GPa, Fig. 3e–h insets.

Our computations yield no spectroscopic feature in the region of the observed unassigned signal either.
The observed splitting of signals related to N–H stretching well reproduced in our computational results 

might be an indication of either structural phase transformation or different characteristics (length, strength 
etc.) of N–H bonds. Considering the continuous reduction of lattice parameters and the unit cell volume we 
rule out a possible phase transition related to significant modification of the crystal structure. We observed no 
major change in the spectral region of lattice vibrations, i.e. approximately below 400 cm−1, which indicated stable 
character of the unit cell either up to approx. 30 GPa. Therefore, reasons behind the observed differentiation of 
N–H stretching vibrations under pressure may stem from changes occurring on a local scale at the molecular 
level. Characteristics of particular N–H bond oscillators might be affected by the pressure-induced changes of 

Figure 2.   Comparison of Raman spectra of lithium amidoborane collected experimentally and theoretically 
modelled. (Upper plot) Experimental spectrum acquired from the sample sealed inside glass capillary at 
ambient pressure. (Lower plot) Raman spectrum lines simulated for pressure 1 atm. Lorents smearing is equal to 
15 cm−1. Spectral regions and peak assignments are shown for better visualization (crude estimation).
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microscopic properties of the compound (e.g., local arrangement of molecular moieties), as well as by specific 
bonding properties (e.g., noncovalent interactions), which may be manifested by the specific behavior of certain 
signals in Raman spectra.

In the ambient-pressure Raman spectrum there is a signal of Raman frequency ca. 820 cm−1 which is assigned 
to a combination of wagging vibrations (inversion motions) of the amino group and deformation vibrations of 
the borane group, Fig. 5 Right panel inset scheme. It shows an anomalously complex behavior under pressure. In 
the pressure range up to 5 GPa its Raman frequency slightly increases to ca. 825 cm−1, whereas upon further com-
pression the signal shows a pronounced shift to lower values of Raman frequency, a redshift, reaching 781 cm−1 
at the pressure of 30.1 GPa, Fig. 5 Left panel. It is important to note, the redshift is accompanied by almost a 
tenfold diminishment of the signal intensity. All the described spectral manifestation related to frequency and 
intensity of the amino wagging vibrations were accurately reproduced by our DFT calculations Fig. 5 Middle 
and Right panels. According to calculations, the contribution of -NH2 wagging motion to the overall vibration 
of molecule in this spectral region becomes dominating above 5 GPa. Moreover, atom displacements reveal a 
significant difference in the amplitude of the motion of particular hydrogen atoms belonging to the amino group, 
which is illustrated by red arrows of different size, Fig. 5 Right panel inset scheme. These changes in the behavior 
may result from an additional interaction between one of hydrogen atoms of -NH2 group and the other of -BH3 
group belonging to the neighbor molecule. This additional interatomic interaction acts as an anchor restraining 

Figure 3.   Analysis of Raman spectroscopy data related to N–H stretching vibrations of lithium amidoborane. 
(Left panel) Representative experimental spectra acquired at ambient pressure, 9.05, 22.5 and 30.4 GPa, plot 
(a), (b), (c) and (d) respectively. Measured signals are presented along with deconvolution analysis. (Inset 
(a)) A signal corresponding to Fermi resonance is shown. (Right panel) Theoretical Raman spectra simulated 
for selected values of pressure, 1 atm., 9.0, 23.0 and 30.0 GPa, plot (e), (f), (g) and (h) respectively. (Insets) 
Assignment of N–H stretching modes.
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the movement of the one of N–H bonds. One should note that hydrogen atoms involved into the interaction 
bear different partial charges (Hδ+ and Hδ− from the side of the amino and the borane group, respectively). Hence 
one may posit the existence of heteropolar dihydrogen bonding between neighboring molecular anions driven 
basically by electrostatic attraction between proton and hydride species. Since the borane group is a donor of 
hydride species, the enhancement of the dihydrogen bond under pressure, should impose some restraints on B–H 
motions as well. This may lead to “freezing out” of certain deformation degrees of freedom which may explain 
the reducing contribution of the borane group to the overall motion above 5 GPa.

Our earlier studies on potassium and sodium amidoborane (KNH2BH3, NaNH2BH3)25,26 revealed a sig-
nificant role of hydrogen bonding determining structural and spectroscopic properties of those monometallic 
amidoboranes. Data available in the literature on possible hydrogen bonding in lithium amidoborane are rather 
controversial. On one hand, an investigation performed at ambient pressure27 identified plethora of secondary 
H–H interactions, both heteropolar and homopolar dihydrogen bonds. On the other hand, the high-pressure 
study23 suggested the absence of dihydrogen bonding in lithium amidoborane, which would be also in apparent 
contrast to pure ammonia borane.

In search of possible hydrogen bonds, we analyzed geometrical arrangement of molecular fragments, pay-
ing particular attention to intermolecular contacts between proton and hydride hydrogen species (Hδ+–Hδ−). 
Geometry criteria described in guidelines of IUPAC community28,29 were taken for identifying potential hydrogen 
bonds, namely, H–H interatomic distances close to 2.4 Å, a threshold value of distance between proton (Hδ+) and 
proton acceptor (Hδ−) as well as hydrogen bond angle above 90°, defined as an angle within donor–proton–accep-
tor arrangement, i.e. intermolecular angle N–H–H. Into consideration were taken crystal structures fully relaxed 
using semiempirical correction for van der Waals (vdW) interactions as well. Comparison of results derived 
from two theoretical approaches, namely, with and without dispersion correction, is presented in Fig. 6a,b. Four 
H–H contacts meeting geometry requirements for hydrogen bonds were found in the crystal structure. Out of 
them the one featuring the shortest H–H distance and the N–H–H arrangement close to a linear configuration 
satisfies the geometry criteria of strong hydrogen bond. Note the opposite tendency in the change of intermo-
lecular hydrogen bond values below 10 GPa and at higher pressure which would suggest the strengthening of the 
dihydrogen bonding with pressure. Furthermore, this H–H contact links molecules in pairs, dimeric moieties, 

Figure 4.   Analysis of Raman spectroscopy data related to N–H stretching vibrations of lithium amidoborane. 
Frequency of Raman modes as a function of pressure: representative experimental data sets collected during 
compression and decompression runs are shown by solid blue and empty blue symbols, respectively. Results 
of DFT calculation are shown by solid red and pink lines. Enlarged fragments of the plot along with mode 
assignment are shown as insets. Mode assignment corresponding to symmetrical and asymmetrical Raman 
modes is the same as presented in Fig. 3 (right panel).



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:17431  | https://doi.org/10.1038/s41598-020-74654-0

www.nature.com/scientificreports/

whereas the others play role of interdimeric linkage. The shortest H–H contact reveals also a remarkable com-
pression behavior, namely, pressure-induced shortening which follows a linear trend. The observed behavior is 
in apparent contrast to the rest of heteropolar dihydrogen bonds analyzed here.

Discussion
According to widely recognized and accepted view, the hydrogen bonding is based on a combination of two 
principal models of interaction: electrostatic and charge-transfer approaches. In case of strong hydrogen accep-
tors, e.g. N or O atoms possessing electron lone pairs, the latter approach dominates causing charge transfer from 
the lone pairs to the antibonding orbital of the proton donor. An increased electron density in the antibonding 
orbitals leads to a weakening of the donor covalent bond which is manifested by bond elongation and a con-
comitant shift to lower vibration frequency (redshift). This model is not applicable for hydridic species (Hδ−), 
which owing to its simpler electronic structure is a weak proton acceptor. Hence stable character of dihydrogen 
bonding is mainly conditioned by the electrostatic interaction between oppositely charged hydrogen atoms. At 
the same time, the attraction to Hδ− is counterweighted by the attraction from the side of nitrogen donor and 
by the electrostatic repulsion between nitrogen donor and Hδ− acceptor as well. Beside electrostatic interac-
tions, contribution of induction and dispersion energy terms are important to overall stabilization of dihydro-
gen bonding. It is also worth mentioning, that the presence of electron donating lithium, which considerable 
increases net charge on nitrogen, and dimerization of NH2BH3 molecular ions through dihydrogen bonds, may 
cause significant redistribution of electron density leading to rehybridization of the respective atomic orbitals. 
An outcome of such a set of forces may be also the contraction of donor bond and associated blueshift of the 
respective stretching vibration30,31.

Experimental results obtained in this study being to a great extent accurately reproduced by relevant DFT 
calculations provide a firm basis for the conclusion that N–H bonds in lithium amidoborane are not equivalent 
on account of dihydrogen bonding.

Progressive separation of N–H stretching signals observed in this study is likely a consequence of the strong 
dihydrogen interaction which involves only one of two hydrogen atoms belonging to the same amino group, 
Fig. 6 Upper right scheme. The assumption finds confirmation in the analysis of N–H bond lengths. As follows 

Figure 5.   Analysis of Raman spectroscopy data related to N–H wagging vibrations of lithium amidoborane. 
(Left panel) Representative experimental spectra acquired at selected values pressure of 5.2, 9.1, 14.8, 20.4, 
25.1 and 30.1 GPa. Spectra are offset vertically for clarity. A signal at ca. 823 cm−1 (at 5.20 GPa) showing 
a redshift, i.e. frequency decrease, with increasing pressure, is highlighted in blue. (Middle panel) Raman 
modes theoretically simulated for selected values of pressure 5, 10, 15, 25 and 30 GPa are shown along with 
mode symmetry assignment. (Right panel) Comparison of frequency data measured experimentally with 
those calculated. Solid blue symbols depict data collected on compression course while open symbols—on 
decompression course. (Inset scheme) A schematic illustration of wagging vibration of representative molecular 
ion; red arrows indicate directions of atom displacements; arrow size is proportional to the amplitude of 
vibrational motion.
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from our computed data, N–H bonds are not equal with respect to interatomic distance between nitrogen and 
hydrogen. The difference is as high as 0.1% at ambient pressure and increases under pressure, reaching 0.23% at 
30 GPa, Fig. 6c. More importantly, N–H bond which is directly involved into dihydrogen bonding is the one with 
longer interatomic distance which might resemble the weakening of the bond due to the suggested additional 
interaction. Difference in the length of N–H bonds, increasing with pressure, might be a reason for the enhanced 

Figure 6.   Analysis of geometry optimized crystal structures of lithium amidoborane with particular emphasis 
on heteropolar H–H (dihydrogen) contacts and N–H bonds. (Upper panel) On the left side and in the middle 
schematic presentations of the crystal structure at ambient pressure with H–H contacts highlighted in blue 1, 
green 2, red 3 and orange 4 are shown. On the right side a scheme of dimeric complex computed at 1 atm. is 
presented. (a) Evolution of H–H intermolecular distances and intermolecular angles with pressure is presented. 
Numbering and color coding correspond to those of the upper panel. Data sets for H–H contact derived from 
models with (DFT + vdW) and without (DFT) dispersion correction are shown by solid lines, solid symbols and 
empty symbols, respectively. (b) Effect of pressure on N–H–H intermolecular angles corresponding to particular 
dihydrogen contacts are presented. Plotted data sets (solid symbols and lines) are for the model considering 
dispersion correction. Solid red line presented along with data set highlighted in blue is an eye-guide only. (c) 
Compression behavior of N–H bonds according to the model DFT + vdW. Data set highlighted in blue solid 
symbols is linearly fit in the pressure range 10–30 GPa.
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lifting of the degeneracy (energy discrimination) of particular stretching vibrations of amino group in the crystal 
field leading to the recorded signal splitting.

Dihydrogen bonding should influence the compression behavior of the respective N–H bond. There are many 
instances of the linear contraction of the covalent bond playing the role of proton donor25,32 upon complexation. 
According to our calculations one of N–H bonds (denoted as N–H1, Fig. 6c), which is involved into dihydrogen 
bonding, shows a linear relationship of bond length shortening above approx. 10 GPa. This correlates with the 
remarkable linear trend of length contraction of dihydrogen bond identified as a strong one in this study. The 
other N–H bond, which is not directly involved into the dihydrogen bonding, shows typical behavior under 
compression. Note that the linear behavior results from calculations taking into account long-range electron 
correlations that are responsible for van der Waals (dispersive) forces. Different compression behavior means 
different sensitivity to pressure change, which should also lead to the increasing discrimination of stretching 
vibration signals.

Because of hydrogen bonding, a partial positive charge on the proton should increase making the respective 
covalent N–H bond more polar (dipole moment increase) and less polarizable (electron density more localized). 
As a result, the intensity of corresponding Raman active stretching vibration should decrease. Thus, a significant 
reduction of the intensity related to the signal of stretching vibration signal acquired at lower frequency may be 
ascribed to increasing polar character of the N–H1 bond, Fig. 3a–d. At the same time the N–H bond not involved 
into the dihydrogen bonding undergoes undisturbed shortening which means the dipole moment should be 
reducing (if partial charges on nitrogen and hydrogen remain unaltered) and thus the electron density less local-
ized. Once this N–H bond contributes to intensity of Raman active mode the corresponding signal should exhibit 
steady increase. In fact, the intensity of the high-frequency signal slightly increases its intensity in the pressure 
ranges up to ca. 10 GPa. At higher pressure, a unexpectedly much stronger buildup of the intensity takes place. 
We tentatively assume that this may be due to the redistribution of electron density occurred in molecular moiety 
on a larger scale as an effect of rehybridization of molecular orbitals of the amino group during pressure-induced 
strengthening of the dihydrogen bonding. This might lead to increasing contribution of sp2 configuration and 
thus additional bond shortening.

The experimentally observed and theoretically reproduced anomalous behavior of the amino wagging vibra-
tion modes points to possible enhancement of the dihydrogen bonding above 5 GPa either.

An enhanced mechanical coupling of neighboring molecular ions due to intermolecular dihydrogen bond-
ing should also exhibit certain spectral manifestations. The appearance of the unassigned signal close to N–H 
stretching modes (ca. 3270 cm−1 at ambient pressure spectrum, Fig. 3a inset) we ascribe to the band originating 
from vibrational mode coupling—Fermi resonance. In the pressure range below 10 GPa, an assumed Fermi reso-
nance should involve symmetrical stretching and overtones of multiple angle bending (scissoring) modes of the 
amino group, which vibration frequencies lay in spectral region ca. 1540–1650 cm−1. Our theoretical calculations 
deal with harmonic approximation, so characteristics related to overtone band (two photon excitations due to 
a partial anharmonic character of real vibration) are not reproduced in simulated Raman spectra. Nonetheless, 
it is possible to correlate changes of fundamental bending modes of amino and borane groups predicted by 
the theory with the experimentally observed changes of spectral bands in vicinity of signals from symmetrical 
stretching modes of the amino group. Above 10 GPa multiple bending (rocking) vibrations of borane group may 
contribute to the resonance excitation as well. Our calculations reveal that with respect to position in Raman 
spectrum, signals related to bending modes of the borane group are very sensitive to pressure. Above 10 GPa there 
is an increasing presence of the bending modes of borane group in the region of bending modes of the amino 
group. This makes plausible a suggestion of additional combination bands resulting from vibrational coupling 
of borane and amino groups through hydrogen bonding. In solid state, a case of pressure-tuned hydrogen bond 
mediated resonance interaction of chemically different molecular species was reported for ammonium azide33. 
Intermolecular interaction, like hydrogen bonding, affects the Fermi resonance in condensed phases and leads to 
a splitting of the optical bands into heavily overlapped broad components. This corresponds to the broad shape 
of unassigned spectral feature detected in the region of N–H symmetric stretching. In case of hydrogen bonding 
the frequency might shift somewhat towards higher energy region34. The strength of the Fermi resonance depends 
on the strength of the hydrogen bonds35. Pressure-induced increased population of bending modes at relevant 
spectral region as well as the enhancement of intermolecular hydrogen bonding might be main factors account-
ing for substantial intensity buildup of the initially very weak signal in the measured spectra under pressure.

Concluding remarks
Thermodynamic stability and properties of materials depend basically on interatomic interactions. Applica-
tion of uniform external pressure induces contraction of molecular volume through shortening of interatomic 
distances and thus significantly altering bond length, bond energies and bond characteristics in general. More 
importantly, the response of individual type of bonds to compression is different. Therefore, probing materials 
under variable pressure conditions is potentially of great use in identifying and disentangling complex patterns 
of chemical bonding.

Results presented in this study explicitly indicate that patterns of chemical bonding of ammonia borane and 
its derivative, lithium amidoborane, are much alike. Despite introduction of ionic bonding through the replace-
ment of hydrogen atom by lithium element, the resulting material retains an intricate network of heteropolar 
dihydrogen bonds—secondary interactions mediated mainly by hydrogen species.

Based on observations of bonding schemes of sodium and potassium compounds, NaAB26 and KAB25, 
revealed under high-pressure conditions, an alternative hypothesis about the role of hydrogen mediated second-
ary interactions in the process of thermal decomposition of alkali metal amidoboranes might be tentatively pro-
posed. We now know that in the solid state alkali metal amidoboranes form extended hydrogen-bonded networks 
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presenting either conventional (redshift) or unconventional (blueshift) types of hydrogen bonding. This means 
hydrogen species under certain thermodynamic conditions may exhibit an increased mobility along hydrogen 
bonds. It pertains, in particular, to species possessing a proton-like electronic configuration for which quantum 
nature, e.g. quantum tunneling, contributes significantly. Upon heating, an increased rotation of molecular frag-
ments may promote changes of hydrogen bond networks locally due to either temporary proton hopping or on a 
global scale as a result of coherent and concerted motions of hydrogen species along hydrogen bonds. In general, 
as a sequence of proton transfer events taking place in material an increased number of ionic moieties may form 
which, in turn, due to higher mobility of ions, may induce a plastic-like states as well as the melting of the crystal 
lattice in whole or in a part (sublattice melting) at certain temperature range. Such hypothetic scenarios may 
rationalize the existence of the endothermic process prior the decomposition with intensive hydrogen liberation 
observed during DSC measurements. In the case of potassium amidoborane36, which feature redshift hydrogen 
bonds, the temperature of the endothermic process is clearly lower than that found for sodium compound37 
featuring blueshift hydrogen bonds. For lithium amidoborane the temperature of the “melting” process is the 
highest one which could be a result of a different mechanism of proton transfer involving dihydrogen interac-
tions stabilizing the crystal structure.

Therefore, profound knowledge about all possible bonding schemes involving various hydrogen species is 
essential for understanding dehydrogenation of ammonia borane and its numerous derivatives.

Considering the above-mentioned speculations, molecular dynamics simulations replicating temperature 
conditions during the thermolysis of lithium amidoborane, performed with particular attention to radial and 
pair distribution function analysis, could provide key details on evolution of thermally excited states and their 
effect on the crystal structure at different stages of the dehydrogenation process. Such an approach might provide 
a valuable insight into dynamics of hydrogen species and changes pertaining to hydrogen bond networks during 
the endothermic process.

Materials and methods
Materials.  Sample materials of lithium amidoborane used in this investigation were acquired from two dif-
ferent sources. One of the samples was synthesized from lithium amide, LiNH2, and ammonia borane, NH3BH3, 
according to a dry mechanochemical procedure using tungsten carbide disk milling vessel with a high energy 
mill as described in the literature38.

Another sample of lithium amidoborane of technical grade was purchased from Sigma-Aldrich and used in 
an as-received form without further purification.

X‑ray diffraction study.  Angle dispersive diffraction patterns of polycrystalline sample were collected at 
the previous High Pressure Beamline ID 09 of European Synchrotron Radiation Facility (ESRF). X-ray beam 
of wavelength λ = 0.414552 Å was collimated to a spot 30 × 30 μm2 of probed area on the sample. Diffracted 
radiation was collected by a large area MAR555 flat panel detector. Diamond anvil cell was oscillated during 
data acquisition in order to get better statistics from randomly oriented grains of the sample. Pressure was deter-
mined according to the ruby fluorescence method39 using a laser spectrometer setup available at the beamline. 
Acquired 2D diffraction images were processed using Fit2D software.

Raman spectroscopy study.  Raman scattering measurements were conducted using a confocal layout 
of a custom designed experimental setup equipped with a Jobin Yvon THR1000 monochromator (focal length 
1000 mm, single grating (1200 grooves mm−1) providing a resolution of ca. 1 cm−1) and a Horiba Synapse CCD 
detector (thermoelectrically cooled − 75 °C (Peltier effect)). For sample excitation a Melles-Griot He–Ne laser 
line 632.8 nm was used. Laser beam was focused on the sample to a spot size of less than 3 μm. Measurements 
were performed in a backscattering geometry. Rayleigh scattering of the laser line was eliminated using a Keiser 
Optical Systems notch filter.

DFT calculations.  Density functional theory (DFT) calculations were performed using gradient corrected 
(GGA) exchange correlation Perdew-Burke-Ernzerhof (PBE) functional40 and norm-conserving pseudopoten-
tials as implemented in the CASTEP first principles modelling code41.

All calculations were carried out at absolute T = 0 K, however Zero Point Energy (ZPE) contributions were 
not considered in simulations.

Computed results were benchmarked by comparison to data obtained experimentally at ambient condi-
tions: crystal structure solved by Wu et al.21, Raman spectrum presented by Ryan et al.24 and experimental data 
obtained in our measurements.
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