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ABSTRACT Research and marketing of probiotics demand holistic strain improvement
considering both the biotic and abiotic gut environment. Here, we aim to establish the
continuous in vitro colonic fermentation model PolyFermS as a tool for adaptive evolu-
tionary engineering. Immobilized fecal microbiota from adult donors were steadily culti-
vated up to 72days in PolyFermS reactors, providing a long-term compositional and
functional stable ecosystem akin to the donor’s gut. Inoculation of the gut microbiota
with immobilized or planktonic Lactiplantibacillus plantarum NZ3400, a derivative of the
probiotic model strain WCFS1, led to successful colonization. Whole-genome sequencing
of 45 recovered strains revealed mutations in 16 genes involved in signaling, metabo-
lism, transport, and cell surface. Remarkably, mutations in LP_RS14990, LP_RS15205, and
intergenic region LP_RS05100,LP_RS05095 were found in recovered strains from differ-
ent adaptation experiments. Combined addition of the reference strain NZ3400 and
each of those mutants to the gut microbiota resulted in increased abundance of the
corresponding mutant in PolyFermS microbiota after 10days, showing the beneficial na-
ture of these mutations. Our data show that the PolyFermS system is a suitable technol-
ogy to generate adapted mutants for colonization under colonic conditions. Analysis
thereof will provide knowledge about factors involved in gut microbiota colonization
and persistence.

IMPORTANCE Improvement of bacterial strains in regard to specific abiotic environmen-
tal factors is broadly used to enhance strain characteristics for processing and product
quality. However, there is currently no multidimensional probiotic strain improvement
approach for both abiotic and biotic factors of a colon microbiota. The continuous
PolyFermS fermentation model allows stable and reproducible continuous cultivation of
colonic microbiota and provides conditions akin to the host gut with high control and
easy sampling. This study investigated the suitability of PolyFermS for adaptive evolu-
tionary engineering of a probiotic model organism for lactobacilli, Lactiplantibacillus
plantarum, to an adult human colonic microbiota. The application of PolyFermS con-
trolled gut microbiota environment led to adaptive evolution of L. plantarum strains for
enhanced gut colonization characteristics. This novel tool for strain improvement can be
used to reveal relevant factors involved in gut microbiota colonization and develop
adapted probiotic strains with improved functionality in the gut.

KEYWORDS adaptive evolutionary engineering, colonic microbiota, in vitro gut
modeling, Lactiplantibacillus plantarum

Microorganisms play a pivotal role in pharmaceutical, biotechnological, and food
industries. The last depends heavily on microorganisms for starter cultures, bio-

preservation agents, and flavor producers (1–3). Moreover, since the 1990s, there has
been an increase in the production of probiotics, which are “live microorganisms that,
when administered in adequate amounts, confer a health benefit on the host” (4).
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Strain improvement of probiotic bacteria is of major importance to meet consumer
demands for functional foods and enhance competitiveness of probiotic strains. However,
it demands a multidimensional approach since biotic and abiotic factors are involved.

A promising solution for strain improvement is evolutionary engineering, which
steers microbial evolution by exerting selective pressure (5–7). Desired mutants can be
selected based on, e.g., growth rate, increased survival, or retention time. This method
is feasible with bacteria because short generation times and large population sizes
facilitate rapid emergence and selective sweeps of mutants (8–11). It is a well-estab-
lished approach to improve targeted strain characteristics like the acidification rate of
Lactococcus lactis (12), growth of Escherichia coli (13), or enhanced succinate produc-
tion in Actinobacillus and Mannheimia (10, 14, 15). Nonetheless, the potential of evolu-
tionary engineering as multidimensional engineering within microbial consortia is not
well established yet. Previously, the residence time of Lactiplantibacillus plantarum in
the murine digestive tract was increased after repetitive administration of the longest-
persisting L. plantarum (16). However, in vivo models like mice have societal, ethical,
and monetary restrictions and might therefore be replaced by in vitro models.
Furthermore, gastrointestinal physiology and gut species composition of mice are dif-
ferent from humans, possibly limiting the translation (17, 18).

Continuous fermentation models are best suited for in vitro cultivation of gut micro-
biota in conditions akin to the gut (19, 20). Different PolyFermS models were success-
fully developed for cultivating colonic microbiota of humans of different ages and con-
ditions and swine, murine, and chicken cecum microbiota (21–25). The continuous
PolyFermS model allows testing several treatments in parallel in second-stage treat-
ment reactors (TRs) seeded with the same gut microbiota produced in the inoculum re-
actor (IR) containing immobilized microbiota (21). Gut microbiota immobilization in
polysaccharide gel beads leads to the maintenance of high cell density, long-term sta-
bility due to prevention of cell washout, and diversity of the simulated gut microbiota
(23, 26, 27). It moreover creates a sessile bacterial fraction on the gel beads and a
planktonic fraction resulting from the growth and release of sessile bacteria and fur-
ther growth of planktonic cells in the bulk medium (27, 28). This mimics the gastroin-
testinal environment consisting of free and biofilm- or mucus-associated bacteria (29,
30). The PolyFermS colonic fermentation model enables operation up to several
months in a highly controllable environment with multiple parameters to operate on,
which is needed for evolutionary adaptation (26). We therefore hypothesized that the
PolyFermS model can provide a long-term stable gut microbiota akin to the human
adult colon that allows for adaptive evolution of an exogenous single strain.

In this study, we investigated the PolyFermS fermentation model as a novel tool for
strain improvement via adaptive evolutionary engineering, using L. plantarum as a
model strain. L. plantarum originates from fermented foods (31, 32) and is detected at
low levels in approximately half of healthy human gut microbiota (33). L. plantarum
WCFS1 is a well-characterized model strain for transient probiotic lactobacilli (34, 35). A
WCFS1 derivative harboring a chloramphenicol (CM) resistance gene for tracking was
cultivated in PolyFermS reactors inoculated with immobilized adult fecal microbiota
for at least 100 generations. Engineered strains were phenotypically and genotypically
characterized and tested for improved colonization in the PolyFermS model.

RESULTS
The PolyFermS model allows stable cultivation of adult gut microbiota. The

PolyFermS model operated to mimic the adult proximal colon was used to provide a
gut microbiota environment for evolutionary adaptation of L. plantarum NZ3400.
Adaptation of immobilized L. plantarum was performed in IR1, and adaptation of
planktonic L. plantarum was tested in TRs continuously inoculated with IR2 microbiota
(Fig. 1). Metabolic stability of IR1 (see Fig. S2A in the supplemental material) was achieved
after 1 week with main short-chain fatty acids (SCFAs) acetate, propionate, and butyrate at
736 7, 216 4, and 196 3mM over a 2-month fermentation, respectively. IR1 microbiota
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was dominated by Firmicutes and Bacteroidetes accounting for 44%6 5% and 47%6 2%
of the total population during days 44 to 46, respectively; 48%6 7% and 41%6 2% during
days 57 to 59, respectively; and 52%6 4% and 36%6 4% during days 61 to 65, respec-
tively (see Fig. S3A in the supplemental material). This stability was also observed on a fam-
ily level (see Fig. S3B in the supplemental material). IR2 microbiota reached metabolic sta-
bility (see Fig. S2B in the supplemental material) after 1 week with the main SCFAs acetate,
propionate, and butyrate at 846 5, 326 8, and 236 4mM, respectively, during 2 months
of culture. IR2 had a different microbiota composition from IR1 (see Fig. S3C and D in the
supplemental material). Bacteroidetes dominated the gut microbiota compared to
Firmicutes with 63%6 1% and 36%6 1% during days 24 to 26, respectively; 68%6 4%
and 30%6 4% during days 41 to 43, respectively; and 66%6 1% and 30%6 1% during
days 89 to 91, respectively (see Fig. S3C in the supplemental material). Stability was main-
tained up to 90days on a family level (see Fig. S3D in the supplemental material).
Microbiota composition of the IR was successfully transferred to and maintained in the TRs
(see Fig. S3D in the supplemental material). Both metabolic activity (see Fig. S2C to E in
the supplemental material) and composition were reproduced in the TRs.

FIG 1 PolyFermS setup of immobilized and planktonic adaptation and further experiments in in vitro human adult gut microbiota. (A) Immobilized L.
plantarum NZ3400 was added to immobilized fecal gut microbiota in IR1 from donor 1 during a single-stage fermentation. (B) Immobilized fecal microbiota
of donors 2 to 4 were cultivated in the inoculum reactor (IR), which was used to inoculate second-stage reactors (TRs) that were supplemented with L.
plantarum after stabilization. NZ3400, reference strain; NZ3400B, new stock from single-colony isolate of NZ3400; IA10, IA01, PA1.2_01, and PA2_06,
recovered L. plantarum mutants; L. plantarum DLP_RS14990, LP_RS14990 gene deletion strain; FM, inflow MacFarlane medium; FO, reactor outflow; S/W,
sampling/waste.
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Prolonged cultivation of L. plantarum in in vitro human gut microbiota. To investi-
gate the potential of the continuous in vitro gut fermentation model PolyFermS for ev-
olutionary engineering, immobilized L. plantarum NZ3400 was added to the stabilized
microbiota in IR1 at an initial concentration of 108 CFU/ml effluent. NZ3400 decreased
at the rate of the theoretical washout during the first 4 days (Fig. 2A), followed by colo-
nization between 102 CFU/ml and 104 CFU/ml during the 50-day fermentation. L. plan-
tarum was able to maintain a self-sustaining population, an observation which will be
referred to as colonization.

The PolyFermS model was further evaluated for long-term adaptation of planktonic
L. plantarum NZ3400B in TR2, fed by donor 2 gut microbiota. Cell counts decreased
from 109 to 105 CFU/ml during the first 4 days after spiking (Fig. 2B), at the rate of the
washout. Thereafter, colonization steadily increased to 106 CFU/ml during 72 days.
Repeated supplementation of L. plantarum with 106 and 109 CFU/ml in TR1 (period 1)
and TR1 (period 2) resulted in stable colonization at different levels of 1 � 106 and 3 �
104 CFU/ml, respectively. Therefore, L. plantarum colonization at a donor-specific level
was demonstrated for more than 50 days and 150 generations.

Recovered L. plantarum strains are phenotypically adapted to the gut microbiota
environment. To test for L. plantarum adaptation during gut microbiota cultivation,
recovered strains were grown in SCFA concentrations comparable to those in the gut
fermenter. Average growth of strains from immobilized adaptation measured by opti-
cal density (OD) was impaired in De Man, Rogosa, and Sharpe (MRS) and MRS supple-
mented with 30mM propionate or butyrate compared to the reference strain NZ3400B
(Table 1). Strains from the early stage of long-term planktonic adaptation behaved sim-
ilarly to the reference NZ3400B in all tested media. However, strains from late plank-
tonic adaptation and biofilm grew better in MRS plus acetate (10.11 and 10.07,
respectively), less in standard MRS (20.14 and 20.11, respectively), and similarly in
MRS plus propionate or butyrate (Table 1) compared to NZ3400B. Moreover, strains
from biofilm and late planktonic adaptation grew significantly better in the reactor-
effluent-mimicking effluent-MacFarlane-sugar (EMS) medium than strains from early
adaptation (Table 1).

When clustered according to growth performance in MRS and MRS supplemented
with acetate (50mM), butyrate (30mM), and propionate (30mM), strains from immobi-
lized and planktonic adaptation were clearly separated (Fig. 3). Further, strains recov-
ered from immobilized adaptation exhibited a higher growth variability than strains
isolated from the long-term planktonic adaptation (see Fig. S4 in the supplemental

FIG 2 Colonization levels of L. plantarum during immobilized and planktonic adaptation in adult gut microbiota. (A)
Immobilized L. plantarum NZ3400 (4 g of colonized beads containing 5 � 109 CFU L. plantarum/g) was added to the gut
microbiota (l) and (B) NZ3400B at 109 CFU/ml effluent in planktonic state (�). Dashed line indicates the theoretical
washout of the system. Cell count is depicted on the y axis, and days of cultivation in the microbiota are shown on the x
axis, where 0 corresponds to the day of L. plantarum supplementation.
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material). The reference NZ3400B clustered with strains isolated from early planktonic
adaptation and clearly separate from strains isolated from effluent and biofilm at the
end of adaptation (Fig. 3). Altogether, these results strongly hint toward adaptation of
L. plantarum during prolonged cultivation in the gut microbiota. Furthermore, strains
did not cluster according to the reactor they were isolated from, suggesting that the adap-
tation pattern is not dependent on the reactor but rather the time point of isolation.

Phenotypes of these adaptations were stable for at least 190 generations (see
Fig. S5 in the supplemental material). This strongly suggests that observed phenotypes
are caused by mutations rather than physiological variations.

Mutations in adapted L. plantarum strains hint toward adaptive evolution. Stable
altered phenotypes of recovered L. plantarum strains strongly suggest that these
strains harbor mutations. Therefore, whole-genome sequencing of 45 strains randomly
selected from adaptations experiments was performed. Comparison to the reference
genome NZ3400B revealed 15 strains without any genotypic differences. Out of 18 sin-
gle nucleotide polymorphisms (SNPs) confirmed by Sanger sequencing, two were
detected in noncoding regions. The remaining 16 SNPs were found in genes involved
in signaling, metabolism, transport, and cell surface (Table 2).

The 11 mutated of 12 sequenced strains from the immobilized adaptation belonged to
four different genotypes. Among these 11 strains, a mutation in the cell surface protein
encoded by LP_RS14255 was found seven times. Further, a mutation in LP_RS14990,
encoding a histidine kinase domain, was found three times (Table 2). Eight of 15 L. planta-
rum strains that were recovered at late stage of the long-term planktonic adaptation were
mutated, resulting in five different genotypes (Table 2). Strikingly, an SNP in LP_RS14990
occurred independently during planktonic and immobilized adaptation. Moreover, the
SNPs in LP_RS15205 and in the intergenic region between LP_RS05100 and LP_RS05095
were found in strains isolated from two different reactors.

Immobilized adaptation resulted in a bigger fraction of mutated strains, but they con-
sisted predominantly of two isogenic lineages. Planktonic adaptation resulted in less fre-
quent mutagenesis, yet higher mutant diversity. This suggests a difference in adaptation
pressure, as already observed for the phenotypic screening. Recovery of some identical
mutants from different adaptation experiments suggests that some of the observed muta-
tions are involved in adaptation to the gut microbiota.

Mutations in LP_RS14990 and LP_RS15205 are beneficial for in vitro gut microbiota
colonization. The mutation in the histidine kinase protein gene LP_RS14990 and the
ROK protein gene LP_RS15205 occurred independently more than once in adaptation
experiments. We therefore tested the fitness of each of the mutants L. plantarum
PA2_06 (C837A in LP_RS15205), IA01 (C979T in LP_RS14990), or PA1.2_01 (C979T in
LP_RS14990 and C837A in LP_RS15205) in competition experiments with the reference
strain NZ3400B. Ten days of cultivation resulted in an increased abundance of all
tested mutants in the gut microbiota compared to NZ3400B (Table 3).

Pyrosequencing indicated that donor 2 gut microbiota had an L. plantarum back-
ground. Remarkably, the pyrogram of this background at the position LP_RS15205

TABLE 1 Growth of recovered L. plantarum strains in different mediaa

L. plantarum origin MRS
MRS+ acetate
(50 mM)

MRS+ propionate
(30 mM)

MRS+ butyrate
(30 mM) EMS

Immobilized adaptation 1.256 0.11 c# 1.026 0.15 cb 1.006 0.24 b# 0.846 0.24 c# ND
Early planktonic adaptation 1.466 0.05 b 1.066 0.05 b 1.226 0.03 a 1.226 0.02 a# 0.696 0.05 a#
Late planktonic adaptation 1.346 0.05 a# 1.176 0.06 a# 1.256 0.07 a 1.216 0.07 a 0.746 0.04 b#
Biofilm of planktonic adaptation 1.376 0.07 a# 1.136 0.09 a# 1.226 0.07 a 1.156 0.06 b# 0.776 0.05 c#
NZ3400B 1.486 0.04 1.066 0.04 1.236 0.03 1.206 0.03 0.636 0.07
aThe values reported are OD600nm after 24 h. Values obtained for NZ3400B represent mean6 standard deviation from biological triplicates. All other values represent mean
6 standard deviation for all strains recovered from one adaption period, whereas each recovered strain was measured in biological triplicates. Immobilized adaptation, n =
11 strains; early planktonic adaptation, n = 14 strains; late planktonic adaptation, n = 19 strains; biofilm of planktonic adaptation, n = 25 strains. Statistical significance is
indicated as follows: a,b,c, significantly different from each other (P. 0.05 in a paired-sample t test, adjusted for unequal variance or normal distribution when needed); #,
significant differences between NZ3400B and L. plantarum groups (one-sample t test, P# 0.05). Abbreviations: ND, not determined; EMS, effluent-MacFarlane-sugar
medium.
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C837A was identical to the Pyrogram of a sample containing NZ3400B and PA2_06.
This shows that the nucleotide variation of both NZ3400B and PA2_06 also occurs nat-
urally (see Fig. S6 in the supplemental material).

Mutation C979T in LP_RS14990 is stable under standard culturing conditions.
After observing increased fitness of mutants compared to the reference strain, it was
investigated whether the mutations of L. plantarum IA01 in LP_RS14990 and L. planta-
rum PA2_06 in LP_RS15205 are stable during daily repeated batch cultures without the
adaptation pressure of the gut microbiota. Stability of the LP_RS14990 mutation in the
IA01 strain was observed during 12 batch cultures. However, the mutation C837A in
strain PA2_06 was not stable since the reference strain nucleotide reoccurred at
3.5%6 0.15% after 12 days (see Table S3 in the supplemental material). Investigation
of NZ3400B in repeated MRS batch cultures revealed no occurrence of the SNPs of the
mutants.

LP_RS14990 gene replacement in L. plantarum NZ3400B results in delay of gut
microbiota colonization. To investigate the role of the LP_RS14990 gene in gut micro-
biota colonization, a DLP_RS14990 gene replacement strain was constructed and its
colonization was compared to NZ3400B. NZ3400B started to colonize the gut micro-
biota of donor 3 on day 1 and donor 4 at day 3 since levels were above the washout
curve (Fig. 4). Levels of DLP_RS14990 in both gut microbiota decreased more rapidly
than the washout curve until day 3, suggesting cell death (Fig. 4). Strain DLP_RS14990
started to colonize the gut microbiota of both donors only after 4 days, later than the
reference strain.

In silico analysis of LP_RS15205 in L. plantarum. Occurrence of the SNP C837A
(L279F) in LP_RS15205 in L. plantarum strains from different reactors and in the back-
ground of the gut microbiota suggests an important function of this SNP in survival of
L. plantarum in the gut microbiota. In silico analysis of LP_RS15205 revealed that
C837A lies in a conserved domain with an ANLxGA motif that is found in Firmicutes
and Gammaproteobacteria (data not shown). The function of this domain is unknown,
but its conservation throughout two phyla strongly suggests that it might be impor-
tant for protein function, and the mutation ANLxGA to ANFxGA might have an impact
on protein functionality.

DISCUSSION

Strain improvement is of major importance for food industries and probiotic cultures.
Classical evolutionary adaptation approaches focus on specific strain characteristics in abiotic
environments like improved performance of starter cultures or lactic acid bacteria (36, 37).

FIG 3 Heatmap visualization of growth behavior of potential mutant L. plantarum strains versus their reference strain NZ3400B in modified MRS medium (single
combination of MRS with acetate [50mM], butyrate [30mM], or propionate [30mM]). Symbols are as follows: (i) “Adaptation” indicates strain origin from
immobilized or planktonic adaptation trials; (ii) “Reactor” describes the general experiment type for long-term planktonic adaptation (TR2) and the repetition of
planktonic adaptation in TR1 (period 1) and TR1 (period 2); (iii) “Isolation” indicates biofilm/time point of isolation (early or late) of a strain during the adaptation
cycles. Heatmap colors stand for measured DOD600nm values after 24 h. The black triangle represents growth of L. plantarum NZ3400B. Ac, acetate; P, propionate;
B, butyrate.
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However, for probiotics, improvement of gut colonization needs to consider abiotic and bi-
otic factors. Here, we examined the suitability of the in vitro gut fermentation model
PolyFermS to provide a gut microbiota environment for evolutionary engineering of L. plan-
tarum NZ3400 toward a human adult gut microbiota. Immobilization of the donor gut
microbiota and cultivation in the PolyFermS allowed reproduction of distinct gut microbiota
representative for human adults (38, 39). The achieved long-term metabolic and composi-
tional stability allowed the generation of adapted mutants, and the use of several donors
increased the external validity of results on observed adaptations. The L. plantarum supple-
mentation method and donor microbiota seem to influence phenotypic and genotypic
adaptations.

Even though observed phenotypic differences of recovered L. plantarum were
small, L. plantarum strains recovered from the immobilized adaptation showed very
limited adaptation in contrast to recovered strains from planktonic adaptation trials,
although abiotic conditions were highly similar. It thus is assumed that differences in
adaptation patterns are caused by the supplementation method. Immobilization pro-
tects against stress and entraps cells physically in the system, leading to decreased ad-
aptation pressure (40–42), which is in accordance with our phenotypic screening
where strains from immobilized adaptation showed less adaptation. Polymer beads
create mucosa-like attachment sites (43), and growth in beads results in a gradual
release of sessile cells from the surface that then grow as planktonic cells in the bulk
medium (44). The result is a mixed population consisting of cell lineages undergoing
various numbers of growth cycles in the planktonic state. This might explain the more
diverse phenotypic adaptation pattern among strains from the immobilized adapta-
tion. It was further shown that immobilized cells are genetically more stable than
planktonic cells (45–48), which was observed in our study where recovered strains from
the immobilized adaptation mainly consisted of two isogenic lineages.

Two observations suggest that the observed genotypic changes in isolated strains
were involved in adaptive evolution. The first is the known function of several of the
genes affected by SNPs. Activated genes of L. plantarum in the murine digestive tract
were involved in carbohydrate transport, metabolism and cell surface, sugar-related
functions, molecule biosynthesis, and stress response (49, 50). Further, exposure of L.
plantarum to the murine intestinal tract predominantly resulted in mutations in genes
encoding cell wall-associated proteins (16). The SNPs identified in our study belong to
the categories mentioned above. Remarkably, the latter study identified an SNP in a
glycerophosphodiester phosphodiesterase-encoding gene, a gene also affected by an
SNP in a recovered strain in our study. In summary, the function of mutated genes is in
agreement with previously observed responses of L. plantarum to the in vivo intestinal
environment. This shows similar selection pressures in the PolyFermS system as in in
vivo settings.

TABLE 3 Increase in relative abundance (in %) of L. plantarummutants during 10 days of
competition against NZ3400B in in vitro human gut microbiotaa

L. plantarummutant strains

IA01 PA2_06 PA1.2_01
Donor 2 Replicate 1 386 5

Replicate 2 256 1

Donor 3 Replicate 1 666 1 266 3 116 2
Replicate 2 516 1 316 3 396 2

Donor 4 Replicate 1 206 2
Replicate 2 66 2

aPresented values show the increase of the ratio of L. plantarummutant to the reference strain NZ3400B after
10 days of cultivation compared to the time point of inoculation. Values represent mean6 standard deviation
for three DNA samples isolated at the same time point from the same reactor.
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The second observation indicating adaptive evolution in our experiment is that
three mutations were found independently in multiple experiments. Since mutations
occur continuously, 280°C stock cultures are rarely isogenic, and the mutants found in
our study could have been already present as subculture in the NZ3400 stock (16). To
counteract this bias, two different stock cultures, NZ3400 and NZ3400B were used
for the immobilized and planktonic adaptation, respectively. Occurrence of identical
mutants recovered from immobilized and planktonic adaptation with the SNP in
LP_RS14990 seems therefore unlikely to originate from a stock subculture, as con-
firmed by Sanger sequencing (data not shown). Furthermore, the mutation was not
detected by pyrosequencing of NZ3400B before inoculation (data not shown), mini-
mizing a role for subcultures in our experiments. Moreover, the increased fitness of
mutants shows the beneficial effect of detected mutations. This strongly supports
that observed mutations are caused by adaptive evolution and demonstrates the
suitability of the PolyFermS model to select relevant mutations related to the human
gut microbiota. The exact nature of the evolutionary pressure in our system is not
known and remains to be elucidated. It is likely the result of a combination of factors
such as the competition for nutrients, metabolic cross-feeding, physiochemical fac-
tors, or presence of antimicrobial metabolites.

In conclusion, we demonstrated successful application of the continuous PolyFermS
gut fermentation model to provide a long-term stable gut microbiota to generate adapted
mutants to this environment. Immobilization of strains not only allows adaptive evolution
of noncolonizers but also creates a culture consisting of sessile and planktonic cells mim-
icking the human gastrointestinal tract. The conditions of the model can be easily changed
to other needs and selective pressures, including the source of microbiota and abiotic con-
ditions. This novel technology enables identification of genes involved in gut microbiota
colonization, persistence, and metabolism. The PolyFermS system could further be
designed and applied for different fermentations, to trace and identify evolutionary and
ecological processes between an exogenous single strain and a complex ecosystem.

MATERIALS ANDMETHODS
Bacterial strains and growth conditions. Bacterial strains used during this study are listed in

Table S1 in the supplemental material. L. plantarum NZ3400 (51) was used as reference strain. NZ3400 is
a derivative of WCFS1, harboring a CM resistance cassette (P32-cat) in a neutral locus on the chromo-
some. L. plantarum was grown in De Man, Rogosa, and Sharpe (MRS; Labo-Life Sàrl, Pully, Switzerland)
broth at 37°C, overnight. L. plantarum viable cells were enumerated by plating on MRS agar supple-
mented with CM (10mg/ml), with aerobic incubation at 37°C, overnight.

Immobilization of adult fecal microbiota. Fecal samples were obtained from four healthy adult
individuals (27 to 31 years old) who did not take antibiotics and probiotics for at least 3 months and did
not show detectable microbial growth on MRS1CM plates to avoid interference with L. plantarum
NZ3400 recovery. Out of 15 tested fecal samples, four samples that did not show microbial growth on
MRS1CM were chosen for fermentation (donors 1 to 4). The Ethics Committee of ETH Zürich exempted

FIG 4 Colonization of DLP_RS14990 compared to the reference strain NZ3400B. L. plantarum strains were added to a level of 109 CFU/ml reactor effluent. (A) L.
plantarum DLP_RS14990 and NZ3400B were added into each of the two reactors (rep.1, rep.2) in donor 3 gut microbiota. (B) L. plantarum DLP_RS14990 and
NZ3400B were added into each of the two reactors (rep.1, rep.2) in donor 4 gut microbiota. Dotted lines indicate the theoretical washout curve of the system.
Cell count is depicted on the y axis, and days of cultivation in the microbiota are shown on the x axis, where 0 corresponds to the day of L. plantarum
supplementation. *, significantly different colonization levels between NZ3400B and DLP_RS14990 (P# 0.05, paired-sample t test).
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this study from review because the sample collection procedure has not been performed under condi-
tions of intervention. Informed written consent was obtained from fecal donors. Fecal samples were im-
mediately transferred to an anaerobic chamber within 2 h after defecation and suspended at 20% (wt/
vol) in reduced peptone water (0.1%, pH 7; Thermo Fisher Diagnostics AG, Pratteln, Switzerland).
Immobilization of 10ml fecal slurry in polymer gel beads (gellan gum [2.5%, wt/vol], xanthan [0.25%, wt/
vol], and sodium citrate [0.2%, wt/vol]) was performed as previously described (21, 44). The inoculum
bioreactor (IR) (Sixfors; Infors, Bottmingen, Switzerland) was filled with 140ml of vitamin-supplemented
MacFarlane medium (Text S1), formulated to mimic the chyme entering the colon (20, 52), and inocu-
lated with 60ml of fecal gel beads. Beads were colonized in two fed-batch fermentations carried out at
37°C, pH 5.8, by controlled addition of NaOH (2.5 M), stirring at 180 rpm, and replacing 100ml of spent
medium with fresh medium after 16 h (21). Anaerobiosis was set by purging the bioreactor headspace
with CO2 and monitored by redox potential probes.

Proximal colon fermentation in the PolyFermS model using immobilized human gut microbiota.
Continuous proximal colonic in vitro fermentations with immobilized human adult gut microbiota were
performed in bioreactors as reported previously (26, 53). All fermentations were operated to mimic the
adult proximal colon as described above for batch fermentation. Fresh medium was continuously added
to the IR (25ml/h), and fermented medium was removed to maintain a working volume of 200ml.
Because short-chain fatty acids (SCFAs) are the main fermentation end products of the gut microbiota,
their stable production is a convenient, easily measurable marker for stability of continuous intestinal
fermentation models (21, 54). The IR was run in continuous mode for at least 10 days to reach metabolic
stability indicated by lower than 10% day-to-day variation (25, 54) in SCFA concentration, before con-
necting second-stage TRs. TRs were inoculated by the IR at 1.25ml/h and fed at 23.75ml/h. TRs were
operated continuously for 4 days prior to L. plantarum supplementation in order to establish a gut
microbiota activity akin to the IR. Addition of planktonic or immobilized L. plantarum was tested in IR
and TRs with different donor microbiota (Fig. 1). In the case of two successive treatment periods in the
same reactor, the reactor was disconnected after the first treatment period, sterilized, reconnected, and
stabilized for 4 days before starting a second treatment.

Reactor effluent samples were taken daily to monitor the fermentation process, centrifuged for
10min at 14,000 � g, 4°C, and stored at 220°C. Pellets were used for DNA extraction, and supernatants
were used for metabolite analysis.

Adaptive evolutionary engineering of L. plantarum. (i) Adaptive evolution using immobilized L.
plantarum NZ3400. Adaptive evolution of immobilized L. plantarum NZ3400 was tested in a continu-
ously run single-stage IR (IR1) inoculated with donor 1 fecal beads (Fig. 1A). An L. plantarum overnight
culture was harvested at 4°C, 4,000 � g, for 10min and washed twice in phosphate-buffered saline
(PBS), pH 6.2. Immobilization of L. plantarum was done as described for fecal samples under aerobic con-
ditions. Beads were colonized during two pH-controlled batch cultures at 37°C for 16 h with stirring at
150 rpm. Colonized beads were washed in PBS, supplemented with cryoprotective buffer (55), and
stored at280°C. Before use, L. plantarum beads were reactivated during two batch cultures as described
for colonization and washed twice in PBS. L. plantarum viable cell counts were determined by crushing 1
g of beads in PBS with a spatula and plating serial dilutions. Four grams of beads (5 � 109 CFU L. planta-
rum/g) was added to the single-stage IR1 and cultivated for 53 days.

(ii) Adaptive evolution using planktonic L. plantarum NZ3400B. Due to microbial growth on
MRS1CM plates of donor 1 fecal sample at this time, a new donor was chosen for the planktonic adapta-
tion. To prevent carryover of possible mutants present in the initial NZ3400 stock culture, a new stock
from a single NZ3400 colony isolate, designated NZ3400B was produced. NZ3400B was subjected to PacBio
sequencing and used for all subsequent planktonic supplementation trials. NZ3400 and NZ3400B differed in
eight SNPs but none thereof in SNP-affected genes of recovered L. plantarum. Adaptation of planktonic L.
plantarum NZ3400B was tested in TRs continuously inoculated by the effluent from IR2 containing beads
with immobilized fecal microbiota of donor 2 (Fig. 1B). Because the PolyFermS model was built with six TRs,
two consecutive treatment periods were performed to test all treatments. L. plantarum strains were grown
overnight, harvested, washed twice in PBS, resuspended in MacFarlane medium, and added to the TRs to a
final level of 109 CFU L. plantarum/ml effluent. Long-term planktonic adaptation was tested in TR2 operated
for 72days and repeated in TR1 (period 1) and TR1 (period 2) for 44 and 23days, respectively (Fig. 1B).

Furthermore, the strain IA10, recovered from the immobilized adaptation, was added in planktonic
state to TR3 (period 1) and TR3 (period 2) containing donor 2 gut microbiota to investigate effects of
adaptations that occurred during the immobilized adaptation (Fig. 1B).

Metabolite analysis of the continuous colon fermentation. Reactors were sampled daily for analy-
sis of the SCFAs acetate, butyrate, and propionate; branched-chain fatty acids isobutyrate, isovalerate,
and valerate; and intermediate metabolites lactate and formate (56). Concentrations were determined
by high-performance liquid chromatography (HPLC) as described previously (23).

Microbial profiling by 16S rRNA gene amplicon sequencing. Genomic DNA of fecal and effluent
samples was extracted using the FastDNA Spin kit for soil (MP Biomedicals, Illkirch, France) according to
the manufacturer’s instructions. The V4 region of the 16S rRNA gene was amplified with the primers
806R (59-GGACTACHVGGGTWTCTAAT-39) and 515F (59-GTGCCAGCMGCCGCGGTAA-39). Amplicons were
barcoded PCR based. Library preparation and sequencing (Illumina, CA, USA) using an Illumina MiSeq
flow cell with a V2 reagent kit for 2� 250-bp paired-end Nextera chemistry supplemented with 10%
PhiX were performed in collaboration with the Genetic Diversity Center (GDC; ETH Zürich, Switzerland).

Raw data obtained from 16S rRNA sequencing were processed using Cutadapt (57) and DADA2 pipe-
line (58) to obtain amplicon sequence variants. Taxonomy was assigned using the SILVA database
(v.132) (59) (full method described in Text S1).
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Recovery of L. plantarum from the gut microbiota. L. plantarum colonization was determined by
plating on MRS1CM agar. The combination of the MRS selectivity for lactobacilli and enterococci to-
gether with aerobe incubation and presence of antibiotics allowed growth repression of all other bacte-
ria. Data were compared to the theoretical washout curve determined for absence of growth, from the
following equation: ct = c0 � e(t/RT) (53), where c0 and ct represent cell concentration at time point zero
and t, respectively, and RT corresponds to the retention time. Colonies were randomly picked, incubated
in MRS1CM overnight, mixed 1:1 with 60% (vol/vol) glycerol (Sigma-Aldrich Chemie GmbH, Buchs,
Switzerland), and stored at 280°C.

Natural biofilm formed in TR2, used for long-term planktonic adaptation, and the repetition experiment
in TR1 (period 1). To recover L. plantarum from biofilms, the vessels were emptied and washed twice with
PBS. Remaining biofilm was removed and homogenized with glass beads (5mm; VWR International AG,
Dietikon, Switzerland) in dilution solution containing 0.85% (wt/vol) NaCl and 0.1% (wt/vol) peptone from
casein (VWR International AG, Dietikon, Switzerland). Dilutions were plated with subsequent strain recovery
and storage performed as described above.

Phenotypic characterization of recovered L. plantarum strains. Growth behavior of recovered L.
plantarum strains was analyzed in MRS supplemented with each of the main SCFAs of the human gut
microbiota, acetate (50, 75, and 100mM), butyrate (15, 30, and 45mM), and propionate (15, 30, and
45mM) in similar concentrations as measured during colonic fermentations (see Fig. S2 in the supple-
mental material). The abiotic gut fermentation environment was simulated in effluent-MacFarlane-sugar
(EMS) medium consisting of filter-sterilized PolyFermS effluent, MacFarlane medium in a 9:1 ratio, and
0.75% (wt/vol) glucose (see Fig. S1 in the supplemental material). Glucose was added since L. plantarum
was unable to grow in MacFarlane medium. For comparison of the effect on adaption in immobilized
and long-term planktonic adaptation trials performed in TR2 (Fig. 1B), recovered strains were divided
into four groups based on their origin of isolation: (i) 11 strains from the effluent at the late stage of im-
mobilized adaptation after 53 days, (ii) 14 strains from the effluent during day 7 and day 23 (early plank-
tonic adaptation), (iii) 19 strains from the effluent during day 60 and day 72 (late planktonic adaptation),
and (iv) 25 strains from the biofilm of planktonic adaptation after 72 days. Strains were isolated at an
early stage after seven (stable L. plantarum colonization) and 23 days and a late stage of 60 and 72 days
to increase the chance to observe adaptation. Biofilm was sampled on the last day of fermentation
because the reactor had to be emptied for biofilm sampling. Growth analysis was done in 96-well tissue
culture test plates (Bioswisstec AG, Schaffhausen, Switzerland). Wells were filled with 200ml of medium
and inoculated with the potentially adapted L. plantarum at 37°C. Growth was monitored by optical den-
sity (OD) measurement at 600 nm in a plate reader after 24 h (PowerWaveTMXS; Bio-Tek Instrument Inc.,
Winooski, VT, USA) in biological triplicates.

Phenotype stability was assessed by repeated daily culturing of strains in MRS for 28 days, approxi-
mately 190 generations, as presented above. Stability was measured after 1, 7, 14, 21, and 28 days, which
corresponds to the time of transcriptome homogenization among L. plantarum strains isolated from dif-
ferent habitats (60).

Complete genome sequencing and data analysis. L. plantarum genomic DNA was isolated via ly-
sozyme-based cell lysis (61) followed by purification using the Wizard Genomic DNA purification kit
according to the manufacturer's instructions (Promega, Dübendorf, Switzerland). The genome of the ref-
erence strain NZ3400B was sequenced at the Functional Genomics Center Zurich (Zürich, Switzerland)
on PacBio RS II (Pacific Biosciences, Menlo Park, CA, USA) using one SMRT cell. Reads were assembled
using Hierarchical Genome Assembly Process (HGAP) assembly as described previously (62). All other L.
plantarum strains were sequenced using Illumina MiniSeq (Illumina, CA, USA) with 250-bp paired-end
reads at the Institute for Food Safety and Hygiene, University of Zurich (62). Reads were merged and
mapped to the reference genome L. plantarum NZ3400B using CLC Genomic Workbench 11.0 (Qiagen
CLC bio, Aarhus, Denmark) using default parameters. Single nucleotide polymorphisms (SNPs) were
extracted using Parsnp (63). SNPs were confirmed by Sanger Sequencing (Eurofins GATC, Biotech GmbH,
Constance, Germany). SNP-related changes in amino acid sequence were determined in CLC Genomic
Workbench.

Competition experiments in the human gutmicrobiota. Competition experiments between NZ3400B
and the mutant strains L. plantarum IA01, PA1.2_01, and PA2_06 were performed to determine the effect
of the mutations on gut microbiota colonization (Fig. 1B). NZ3400B was paired with each of the three
mutant strains in a 1:1 ratio to reach 109 CFU/ml reactor effluent in the gut microbiota and cultivated for
10 days. Ten days was sufficient to obtain stable L. plantarum colonization for at least 4 days but also as
briefly as possible to minimize the chance of proliferation of new mutants. Relative abundance of the
strains in the complex community was determined by measuring allele frequency of the genes
LP_RS14990 and LP_RS15205, respectively, via Pyrosequencing (full method described in Text S1).

Stability of mutations under standard cultivation conditions. Stability of the mutations in L. plan-
tarum IA01 and PA2_06 was investigated during repeated daily cultures in MRS for 12 days, approxi-
mately 81 generations, performed in triplicates. Cultivation of NZ3400B served as control. Allele fre-
quency was determined via pyrosequencing as described above.

Plasmid construction and LP_RS14990 gene replacement of L. plantarum NZ3400B. Six mutants
carrying the mutation in LP_RS14990 were recovered from independent adaptation experiments. To
investigate the involvement of this gene in gut microbiota colonization, an L. plantarum DLP_RS14990
knockout was constructed by double-crossover gene replacement in L. plantarum NZ3400B (full method
in Text S1). The knockout strain was subsequently added to the gut microbiota, and colonization levels
were compared to the reference strain NZ3400B (Fig. 1B).
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In silico analysis of LP_RS15205 in L. plantarum. LP_RS15205 was affected by an identical mutation
in four strains recovered from two independent adaptation experiments. Since this mutation was also found
in the background gut microbiota, in silico analysis of this locus was performed. Complete genome sequen-
ces of Firmicutes (n=557), Bacteroidetes (n=218), Actinomycetes (n=457), and Gammaproteobacteria
(n=638) from the NCBI genome database were downloaded in May 2020. The amino acid sequence of
LP_RS15205 was subjected to a BLAST search against these genomes using standard settings, and significant
hits were aligned using MUSCLE (64).

Data analysis. Statistics for growth experiments were calculated in R (version 3.6.2) using a one-
sample t test for comparison to L. plantarum NZ3400B and a paired-sample t test for comparison within
recovered L. plantarum groups. Values represent mean values 6 standard deviations. The heatmap was
generated using the R pheatmap package and Euclidean distance measure. Allele frequency determina-
tion by pyrosequencing was calculated based on three extracted DNA samples of the same time point.
Graphs were created using GraphPad Prism version 8 (GraphPad Software Inc., San Diego, CA, USA).
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