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Antimalarial drug resistance has emerged as a major threat to global malaria control
efforts, particularly in the Greater Mekong Subregion (GMS). In this study, we analyzed the
polymorphism and prevalence of molecular markers associated with resistance to first-line
antimalarial drugs, such as artemisinin, chloroquine, and pyrimethamine, using blood
samples collected from malaria patients in the China–Myanmar border region of the GMS
from 2008 to 2017, including 225 cases of Plasmodium falciparum and 194 cases of
Plasmodium vivax. In artemisinin resistance, only the C580Y mutation with low frequency
was detected in pfk13, and no highly frequent stable mutation was found in pvk12. In
chloroquine resistance, the frequency of K76T mutation in pfcrt was always high, and the
frequency of double mutations in pvmdr1 of P. vivax has been steadily increasing every
year. In pyrimidine resistance, pfdhfr and pvdhfr had relatively more complex mutant types
associated with drug resistance sites, and the overall mutation rate was still high.
Therefore, artemisinin-based combination therapies are still suitable for use as the first
choice of antimalarial strategy in the China–Myanmar border region in the future.

Keywords: anti-malaria, drug-resistance, artemisinin, SNP mutation, China–Myanmar border
INTRODUCTION

Malaria is one of the major life-threatening infectious diseases in humans and is particularly
prevalent in tropical and subtropical regions worldwide. Humans can be infected by five species of
Plasmodium, including Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale,
Plasmodium malariae, and P. knowlesi (Singh and Daneshvar, 2013). P. falciparum and P. vivax
have the highest incidences, followed by P. ovale and P. malariae, while some patients are also
infected by P. knowlesi. Almost all malaria deaths occurring in Southeast Asia have been caused by
P. falciparum. Globally, approximately 1.5 billion people were infected and 7.6 million patients died
from malaria between 2000 and 2019. The majority of infections (82%) and deaths (94%) occurred
gy | www.frontiersin.org September 2021 | Volume 11 | Article 7337881
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in the WHO African Region, followed by the WHO South-East
Asia Region (10% of infections, 3% of deaths) (WHO, 2020).

The effectiveness and longevity of antimalarial drugs in
malaria control are largely dependent on in-depth studies of
the determined markers in vitro and monitoring programs in
vivo. In addition, it is critical to identify molecular markers that
can predict resistance or reduce susceptibility to malaria to
actively monitor the temporal trend of parasite susceptibility
(Haldar et al., 2018). However, the emergence and spread of
multidrug resistance have caused a permanent obstacle to the
extinction of malaria. Malaria therapeutics have been plagued by
recurring problems for more than 60 years. As first-line therapy,
artemisinin-based combination therapies (ACTs) have been used
for uncomplicated malaria infections in the Greater Mekong
Subregion (GMS). However, the confirmed occurrence of
artemisinin resistance in western Cambodia is a major threat
to malaria control and elimination (Dondorp et al., 2009; Ashley
et al., 2014). Both chloroquine (CQ) and sulfadoxine-
pyrimethamine (SP) resistance have emerged in other areas of
mainland Southeast Asia (Wellems and Plowe, 2001; Roper
et al., 2004).

Mutations in the pfk13 (artemisinin resistance-related gene)
propeller domain are recommended for conducting molecular
surveillance as an assistant tool for monitoring local resistance to
artemisinin. At present, the mutations P441L, F446I, S449A,
N458Y, P553L, V568G, P574L, and L675V in pfk13 have been
associated with delayed parasite clearance. In addition, the five
mutations Y493H, I543T, R539T, R561H, and C580Y have been
validated as artemisinin resistance mutations in vitro and in vivo
(WHO, 2015) Pvk12 was identified as a homolog of pfk13 in P.
vivax (Deng et al., 2016). Currently, there is no molecular
evidence of high frequency mutations in pvk12, even in
Southeast Asia (Deng et al., 2016; Deida et al., 2018;
Tantiamornkul et al., 2018). The mutation V552I (Hassett
et al., 2017) was subsequently observed in a P. vivax isolate
from Cambodia and examined in this study.

The CQ resistance transporter gene of P. falciparum (pfcrt) is
located on chromosome 7; it encodes a structural protein of the
food vesicular membrane of P. falciparum, which functions as a
CQ transporter. When the wild-type K76 of the carrier protein
was mutated to threonine (T), the efficiency of CQ diffusion into
the food vesicles of Plasmodium was decreased, and the
Plasmodium showed resistance to CQ. Therefore, K76T can be
used for clinical drug resistance monitoring of CQ (Nair et al.,
2008; Dondorp et al., 2010; Lubell et al., 2011). The insertion of a
lysine residue behind the tenth amino acid was observed in the
homologous gene pvcrt of P. vivax, which may be related to CQ
resistance (Basco and Ringwald, 1998); therefore, this site was
also identified.

Field studies have shown that point mutations in pfmdr1 in
different geographical regions have different predictive values for
CQ resistance and amino acid changes (Foote et al., 1990;
Duraisingh et al., 1997). Five mutation sites in Pfmdr1 (N86Y,
Y184F, S1034C, N1042D, and D1246Y) have been reported to be
associated with susceptibility to CQ (Antony and Parija, 2016). A
polymorphism of P. vivax pvmdr1, which is homologous to that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
in P. falciparum, has been associated with CQ resistance in many
studies (Brega et al., 2005; Villena et al., 2020). Whole-genome
sequencing and microarray analysis of a single isolate of P. vivax
from Pu’er revealed a selective pressure on putative drug resistance
genes and found the previously reported T958M mutation to be
associated with drug resistance (Orjuela-Sanchez et al., 2009;
Dharia et al., 2010). The Y976F and F1076L mutations of
pvmdr1 are present in all malaria endemic areas where CQ is
used as a first-line antimalarial drug (Suwanarusk et al., 2007; Kim
et al., 2011; Lu et al., 2011; Rungsihirunrat et al., 2015). Isolates
carrying only the F1076L mutation are not associated with CQ
resistance (Barnadas et al., 2008; Orjuela-Sanchez et al., 2010).
This observation supports the fact that resistance of P. vivax to CQ
requires the presence of two mutations. F1076L is a prerequisite
for the secondary product of Y976F, which is responsible for the
reduction in CQ sensitivity (Barnadas et al., 2008). However, no
other studies have found an association between Y976F mutations
and resistance phenotypes (Fernandez-Becerra et al., 2009; Gama
et al., 2009). Some studies have found an increase in the copy
number of pvmdr1, which seems to be associated with increased
susceptibility to CQ (Suwanarusk et al., 2007; Imwong et al., 2008;
Lu et al., 2011; Melo et al., 2014). Recently, it has been shown that
CQ resistance and clinical severity of P. vivax are associated with
increased expression of pvmdr1 and pvcrt-o (Sa et al., 2019), and
the CQ resistance ortholog gene in P. vivax (also called pvcrt or
pvcg10) (Sa et al., 2006).

The role of dihydrofolate reductase (pfdhfr) mutations in the
mechanism of SP resistance has been well described
(Wernsdorfer and Noedl, 2003). Pyrimidine resistance can be
produced by a single point mutation (S108N) in pfdhfr, but the
reductase reactivity to cyclochloroguanidine is only slightly
reduced. A previous in vitro assay showed that the IC50 values
of the single mutant (I164L) isolates were 6-fold higher than
those of the wild-type and close to those usually reported for
simple mutants S108N (roughly10-fold higher than wild type)
(Andriantsoanirina et al., 2011). High resistance to pyrimidine
requires coexisting mutations at other sites, including N51I or
C59R. The mutation associated with cyclochloroguanidine
resistance was S108N with A16V in pfdhfr. At the same time,
the susceptibility of the resistant strain to pyrimidine did not
vary significantly. Similarly, polymorphisms in pvdhfr and
pvdhps are associated with antifolate drug resistance in P.
vivax. The S58R and S117N polymorphisms in pvdhfr were
highly correlated with pyrimidine resistance. Additional
mutations, including P33L, N50I, F57L, T61M, V64L, and
I173L, increased the degree of drug resistance and showed
significantly high IC50 values for pyrimethamine (de Pecoulas
et al., 1998; Hastings et al., 2004; Sinclair et al., 2011).

In this study, the polymorphism and prevalence of molecular
markers associated with resistance to first-line antimalarial
drugs, such as artemisinin, CQ, and pyrimethamine, were
analyzed using blood samples collected from malaria patients
in the China–Myanmar border region of the GMS over a 10-year
duration. The results of this study will help develop novel
treatment strategies for malaria patients with antimalarial
drug resistance.
September 2021 | Volume 11 | Article 733788
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MATERIALS AND METHODS

Ethics Statement
These studies were approved by the Yunnan Institute of Parasitic
Diseases (No.: 202009) and performed according to the Ethical
Committee guidelines. Genetic testing was performed on stored
blood samples obtained as part of routine diagnostic work-up for
patients with symptoms of malaria. Although there is an absence
of risk and anonymous data processing, informed consent was
obtained for the collection of samples from persons suspected
of malaria.

Subjects and Malarial Blood
Sample Collection
From 2008 to 2017, a total of 419 venous blood samples on filter
paper, including 225 cases of P. falciparummalaria and 194 cases
of P. vivax malaria, were smeared and observed under an optical
microscope to confirm the presence of the corresponding type of
pathogen. No other clinical symptom was recorded. The samples
were collected from malaria parasite-infected patients in the
China–Myanmar border region of the GMS. Subjects who
agreed to participate in the study took blood from their
fingertips and dropped it on a filter paper with a diameter of
approximately 5 mm. After drying in air, the samples were
placed in a sealed plastic bag and stored at 4°C for a long time.
All the samples were provided by the Yunnan Institute of
Parasitic Diseases.

Preparation of DNA Template
From Blood Samples
Blood membranes with a diameter of 5 mm were taken from
each sample, and the Blood DNA Kit (Omega D3392-02) was
used for Plasmodium genome extraction. The procedure was
modified slightly based on the manufacturer’s instructions:
samples were heated with proteinase K at 56°C for 1 h to
improve the extraction rate. Finally, 30 µl of polymerase chain
reaction (PCR)-grade H2O was used to elute the DNA into the
QSP EP tube. The DNA template was then concentrated to 10 µl
at 45°C using a Thermo concentrator. The concentrated DNA
sample (3 µl) was used as the PCR template, and the remaining
DNA samples were stored in a refrigerator at −20°C.

Amplification of Drug-Resistance Gene
Nested PCR amplification using 2×Taq PCR Mix (Tiangen,
KT201) was performed to amplify the resistance genes in each
DNA sample from patients infected with P. falciparum (the kelch
domain of pfk13, pfcrt, pfmdr1, and pfdhfr) or P. vivax (pvk12,
pvcrt-o, pvmdr1, and pvdhfr). The primer sequences and reaction
product fragment sizes for the two rounds of PCR are listed in
Supplementary Table S1. The total volume for the first round of
the nested PCR reaction was 10 µl containing 3 ml DNA
template, 5 ml 2×Taq PCR mix, and 1 ml each of Primer-PF
and Primer-PR (10 mmol/L). The first round PCR conditions
were as follows: denaturation at 94°C for 3 min; 35 cycles of
denaturation at 94°C for 30 s, annealing at 50°C for 30 s, and
extension at 62°C 3 min; and final extension at 62°C for 7 min.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
The total volume of the second round PCR was 50 µl containing
2 ml amplified product from the first round as the DNA template
for the second round of PCR, 25 ml 2×Taq mix, 2 ml each of
Primer-NF and Primer-NR (10 mmol/L), and then sterile ddH2O
to make up the reaction system to 50 ml. The conditions of the
second round of PCR were denaturation at 94°C for 3 min;
35 cycles of denaturation at 94°C for 30 s, annealing at 50°C for
30 s, and extension at 62°C for 60 s; and final extension at 62°C for
7 min. One microliter of the second-round amplification products
and positive amplification products was used for electrophoresis
detection using 1% and 2% agarose gels, respectively. Positive
bands were selected, and DNA was extracted using a Gel
Extraction Kit (Omega D2500-02). DNA marker was purchased
from Sangon Biotech (Shanghai, China). DNA fragments were
sequenced by Parsons Biotech (Shanghai, China).

SNP Statistics and Sequence Analysis
Sequencing results, together with resistance-related gene
sequences of the P. falciparum wild-type standard strain 3D7
(ID No. for pfk13: PF3D7_1343700, pfcrt: PF3D7_0709000,
pfmdr1: PF3D7_0523000, pfdhfr: PF3D7_0417200), P. vivax
strain P01 (ID no. for pvk12: PVP01_1211100), and P. vivax
standard strain (pvcrt:PVX_087980, pvmdr1: PVX_080100
pvdhfr: PVX_089950) were aligned on the PlasmoDB website,
using MEGA5.04 software to translate the DNA sequences into
corresponding amino acid sequences, count SNPs, and analyze
correlations with their drug resistance sites (Matlani et al., 2021).
RESULTS

The Geographical Origin of the
Study Samples
Blood samples were collected from Gambati and Laiza in Kachin
State of Myanmar and Tengchong, Yingjiang, Ruili, and Mengla
in the Yunnan Province of China (Figure 1A). A total of 419
blood samples, including 225 cases of P. falciparum and 194
cases of P. vivax (Figure 1B), were collected during the 10-year
period from 2008 to 2017. The blood sample was taken from the
fingertips, placed on a 5-mm filter paper, dried in air, and stored
in a sealed plastic bag at −20°C for a prolonged duration.

Artemisinin Resistance-Related Genes,
Pfk13 and Pvk12
The P. vivax K12 gene, which is homologous to pfk13 in P.
falciparum, was studied based on the mutation sites of molecular
markers of artemisinin-associated resistance genes. As shown in
Table 1, one mutant C580Y was identified in P. falciparum in
2014 and 2015. In 2016 and 2017, this point mutation did not
appear and it was speculated to have disappeared; however, there
were still chances of unknown vulnerabilities. Mutation P574L
was reported in 2011 and 2013. This study also included some
mutations at a higher frequency, such as R528K, E556K, R575K,
and E620K, whose mutant frequencies were greater than 5%, and
it can be intuitively observed that there was an increasing trend
from 2013 to 2016 (Figure 2A). It is reasonable to assume that
September 2021 | Volume 11 | Article 733788
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these point mutants were associated with the development of
artemisinin resistance, but they should be specifically validated in
insect strains in vitro. There was no locus of V552I as reported in
P. vivax, but the presence of mutation codons S452R, K465K,
R501K, and E553K was observed, which then disappeared in
2010 and 2011. Until 2017, V541A, C566G, and N57I showed
slightly higher mutation frequencies of 5%, 10%, and 10%,
respectively, in the collected samples. Further studies are
needed to verify whether these point mutations lead to
artemisinin resistance. In general, there were no stable high-
frequency mutant loci in P. vivax samples (Figure 2B).

CQ Resistance-Related Genes, Pfcrt,
Pvcrt-o, Pfmdr1, and Pvmdr1
K76T is the CQ-resistant marker of pfcrt in P. falciparum, and
K10 insertion is the CQ-resistant marker of pvcrt-o in P. vivax.
These markers showed a general decreasing trend in mutant
frequency over the 10-year period (Figures 3A, B). However,
K76T in pfcrt still had a high mutation frequency (>40%) in 2017
(Figure 3A), which may have led to the poor therapeutic effect of
CQ against P. falciparum malaria. As the frequency of K10
insertion in pvcrt-o decreased to 10% in 2017 (Figure 3B),
reusing CQ may be considered for P. vivax malaria treatment
in this region.

Another factor affecting CQ resistance is the polymorphism
of Pfmdr1. Only N86Y and Y184F of pfmdr1 were detected in P.
falciparum samples, of which only one N86Y mutant locus was
found in 2014. The frequency of Y184F locus dropped to 4% in
2014, but subsequently reached 52% in 2017 (Figure 3C).
Overall, the main factor for CQ resistance in this region was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the widespread prevalence of K76T in pfcrt. In the samples of P.
vivax, three mutations were detected in pvmdr1, including
Y976F, F1067L, and T958M; there may be simultaneous
mutations in each mutant strain, possibly yielding multiple
combinations. T958M is a secondary product of mutation
formation and was observed in all mutant strains. The
combination type of M958F976L1067 showed the highest
resistance rate to CQ. Fortunately, its frequency remained low.
However, the double mutant frequency of M958F976F1067 and
M958Y976L1067 showed a steady increasing trend with each
passing year, reaching 60% in 2017 (Figure 3D).

Pyrimidine Resistance-Related Genes,
Pfdhfr and Pvdhfr
N51I, C59R, S108N, and I164L were detected in pfdhfr of P.
falciparum, and there were several combinations in the same
mutant strain (Figures 4A, B). The four-fold mutant form
I51R59N108I164 was highly resistant to pyrimethamine,
followed by the triple mutant form containing S108N. Quadruple
mutations were dominant and maintained a high mutant frequency
until 2012, which began to decrease sharply from 77.3% in 2012 and
remained at approximately 20% in the next few years (Figure 4A).
The frequency of triple mutations increased to 56.5% in 2017, which
may indicate that resistance to pyrimethamine was reduced. F57I/L,
S58R, T61M, and S117N/T were detected in pvdhfr of P. vivax,
along with multiple mutant types (Figures 4C, D), in which
multiple mutant forms containing S58R or S117N were highly
resistant to pyrimethamine. pvdhfr has always been dominated by
quadruple mutations, but the polymorphism F57I/L may have
changed from F57L to F57I in 2011, which may be related to the
control of medication.
DISCUSSION

In this study, we successfully performed a molecular surveillance
of the mutation loci of the genes responsible for resistance to
several first-line antimalarial drugs, such as artemisinin, CQ, and
pyrimethamine, by analyzing their resistance-related gene
polymorphisms in samples collected from the China–Myanmar
border region from 2008 to 2017. Overall, for both P. falciparum
and P. vivax, mutations of artemisinin resistance genes are
becoming more and more complex and diverse, but the CQ
and pyrimethamine drug resistance marker gene mutation rate
has declined. For artemisinin resistance, only C580Y at low
frequency was detected in pfk13, and no stable mutation with
high frequency was found in pvk12. For CQ resistance, K76T in
pfcrt has shown an overall declining trend since 2008, while
keeping a high mutation frequency. The frequency of K10
insertion in pvcrt-o of P. vivax was almost 100% in 2008 and
2009, and decreased gradually each year, to about 10% in recent
years. These indicated the unreliability of this marker for CQ
resistance in P. vivax. As the CQ resistance in P. vivax has been
linked to pvcrt (pvcrt-o) transcription level, a genetic-cross study
supported an upregulated pvcrt expression as a mechanism of
CQ resistance (Sa et al., 2019); this was also supported by a recent
A

B

FIGURE 1 | Information about blood samples. (A) Geographic locations of
blood samples. The red star represents the region of Yunnan, China, and the
blue triangles represent the region of Myanmar. The map was produced using
Photoshop. (B) The number of P. falciparum- and P. vivax-infected malaria
patient samples in 10 years from 2008 to 2017.
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field study (Rovira-Vallbona et al., 2021). Herein, we observed
that the frequency of double mutants in pvmdr1 has been steadily
increasing each year. In general, CQ may not be suitable as a
first-line treatment for a long time in this region. For pyrimidine
resistance, there were complex types of genotypes in drug
resistance-related loci in both pfdhfr and pvdhfr, and the
overall mutation frequency was high. In summary, artemisinin
is still available as a first-line drug in this region.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
In terms of artemisinin resistance, our study not only clarified
the mutation history of pfk13 in the China–Myanmar border
region over the past ten years, but also detected some PfK13
amino acid non-synonymous mutation trends. In pfk13, in
addition to the locus C580Y, which has been confirmed to be
related to drug resistance in previous reports, four other loci
were detected: the non-validated mutation locus R575K,
which has been reported with a high mutation rate along the
TABLE 1 | Statistical analysis of the mutation sites and their frequency in pfk13 and pvk12.

P. falciparum (Pfk13) P. vivax (Pfk12)

Years Amino acid and genetic changesa Proportion (%) Amino acid and genetic changesa Proportion (%)
(Mutants/n) (Mutants/n)

2008 ND (0/22) ND (0/22) ND (0/18) ND (0/18)
2009 ND (0/20) ND (0/20) ND (0/21) ND (0/21)
2010 R575K(AGA!AAA) 5.6 (1/18) S452Rc(AGC!CGC) 5.6 (1/18)

E620Kb(GAA!AAA) 11.1 (2/18)
2011 P574L (CCT!CTT) 4.8 (1/21) K465Kb (AAG!AAA) 6.25 (1/16)

E620Kb(GAA!AAA) 9.5 (2/21) R501Kb (AGA!AAA) 6.25 (1/16)
E553Kb (GAA!AAA) 6.25 (1/16)

2012 ND (0/23) ND (0/23) ND (0/18) ND (0/18)
2013 P574L(CCT!CTT) 3.7 (1/27) ND (0/18) ND (0/18)

R528Kb (AGA!AAA) 11.1 (3/27)
E620Kb (GAA!AAA) 22.2 (6/27)

2014 C580Y (TGT!TAT) 3.6 (1/28) ND (0/17) ND (0/17)
R528Kb (AGA!AAA) 7.1 (2/28)
E556Kb (GAA!AAA) 7.1 (2/28)
E620Kb (GAA!AAA) 7.1 (2/28)
R575K (AGA!AAA) 7.1 (2/28)

2015 C580Y (TGT!TAT) 4.3 (1/23) ND (0/19) ND (0/19)
R528Kb (AGA!AAA) 17.4 (4/23)
E556Kb (GAA!AAA) 8.7 (2/23)
R575K (AGA!AAA) 17.4 (4/23)
E620Kb(GAA!AAA) 39.1 (9/23)

2016 Y493F (TAC!AAC) 6.25 (1/16) ND (0/18) ND (0/18)
R528Kb (AGA!AAA) 25 (4/16)
E556Kb (GAA!AAA) 25 (4/16)
R575K (AGA!AAA) 25 (4/16)
E620Kb(GAA!AAA) 31.25 (5/16)

2017 E620Kb(GAA!AAA) 8 (2/25) V541Ab(GTG!GCG) 5 (1/20)
C566Gb(TGT!GGT) 10 (2/20)
N571Fb(AAC!TTC) 10 (2/20)
September 2021 | Volume 11
aMutation sites detected, the mutant amino acid in bold.
bNone reported mutation spots detected in China–Myanmar border before 2020; n, the total number of samples under year; ND no mutations were detected in this study.
A B

FIGURE 2 | Mutant locus frequency and distribution of pfk13 and pvk12. (A, B) Histogram analysis for pfk13 and pvk12 in Table 1, respectively. The star indicates
the loci associated with artemisinin resistance.
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Thai-Myanmar border as early as 2007 and with low mutation
frequency in other GMS regions (Nyunt et al., 2015; Talundzic
et al., 2015), and the three mutant loci, R528K (Laminou et al.,
2018), E556K (Guerra et al., 2017), and E620K (de Laurent et al.,
2018), which have been reported with a low mutant frequency in
the Africa regions recently, but with a high steady mutant
frequency in the China–Myanmar border in this study. Some
mutation sites (P574L and C580Y) detected in this study were
similar to those reported by other studies conducted in Myanmar
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
or the China–Myanmar border region using parasites collected
from the China–Myanmar border region from 2007 to 2012
(Wang et al., 2015) and to those detected in Myanmar and
relevant border regions of Thailand and Bangladesh between
2013 and 2014 (Tun et al., 2015). The F446I mutation is the most
prevalent mutation at the China–Myanmar border and north of
Myanmar, and introduction of F446I mutation into PfK13 leads
to increased ring survival rates in P. falciparum isolates in vitro,
but no mutation was detected in our study (Wang et al., 2018).
A

B D

C

FIGURE 4 | Genotype frequency variation of pfdhfr and pvdhfr. (A, C) Popular tendency of all genotypes from 2008 to 2017 in pfdhfr and pvdhfr according to the
list as given in (B, D), respectively.
A B

DC

FIGURE 3 | Genotype frequency variation of pfcrt, pvcrt-o, pfmdr1, and pvmdr1. (A, B) Mutant locus frequency of K76T in pfcrt and K10 insertion in pvcrt-o.
(C) Mutant locus frequency of N86Y in pfmdr1 is given in blue and red, respectively. (D) Mutant locus frequency of triple mutant and double mutant in pvmdr1 is
given in blue and red, respectively.
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These results indicated that the artemisinin resistance marker
Pfk13 mutations are very complex and exhibited an increasing
trend. Our study provides a strong theoretical basis for
subsequent ACTs, but new mutant loci that are directly related
to developing resistance by in vitro parasites require to be studied
further using allelic exchange genetic modification methods,
such as CRISPR/Cas9 genomic editing, combined with in vitro
drug screening tests (Xiao et al., 2019; Huang et al., 2020). The
mechanism of action of artemisinin remains controversial, and
our study provides some evidence of artemisinin drug resistance.
In vivo artemisinin resistance has been proposed (Noedl, 2005)
and identified by the presence of significantly decreased parasite
reduction rates, manifested clinically by markedly longer parasite
clearance times from the body (Noedl et al., 2008; Noedl et al.,
2010). A recent study suggested that interconnected mechanisms
might poise K13 mutant parasites to survive dihydroartemisinin
treatment and increase the proteostatic capacity of the parasite.
These mechanisms include an enhanced ability to eliminate
damaged proteins through the unfolded protein response and
ubiquitin–proteasomal machinery, and remodeling of secretory
and vesicular transport processes that impact hemoglobin
endocytosis and protein and lipid trafficking (Mok et al., 2021).

However, there are still some limitations in this study. We
only collected about 20 samples of P. falciparum and P. vivax
from 2007 to 2018 in the China–Myanmar border, and thus, the
expansion of the sample size to make a more representative
conclusion and further experimental validations to the new
mutation pattern of the artemisinin resistance gene PfK13 are
urgently needed. Overall, the new mutations reported in our
study may provide a basis for further research on novel
molecular mechanisms of antimalarial drugs as well as on
malaria patient treatment.
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