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ABSTRACT
Chronic or acute stress can induce structural changes and brain alterations 

associated with the neural mechanisms of depression. Aimed to investigate the 
GMV alterations in the drug-naïve depression patients with chronic and acute stress 
experience,we enrolled fifty depression patients with acute stress experience, fifty five 
depression patients with chronic stress experience and forty seven healthy controls(HC) 
to participant in the present study. We used voxel-based morphometry to analyze 
the brain grey matter volume (GMV) alterations. Compared with the HC, the patients 
with acute stress and those with chronic stress exhibited a distinct GMV impairment 
pattern. Widespread, decreased GMV was detected in most of the cerebral cortex in 
all the depression patients. Importantly, the greatest finding in our study is that the 
decreased GMV in the depression patients with chronic stress was more widespread 
than that in the patients with acute stress. All brain regions with decreased GMV 
participated in the regulation of emotions, memory, and executive function processing, 
which is consistent with previous findings. There was no significant difference between 
the major depression disorder patients with acute stressful life events and those with 
chronic stressful life events, and this finding largely weakens the support of our current 
conclusion. Thus, we cannot confirm this postulation. However, our findings probably 
indicate that GMV may be more sensitive to major depression disorder patients when 
compared to healthy controls, it did not sensitive when in the comparison of patient's 
group. Overall, our findings provide important information for the use of appropriate 
treatment methods to address acute stress and alleviate chronic stress in patients 
with depression, and such treatments can delay the deterioration of the affected 
brain regions and improve remission rates. More importantly, all the inexplicable 
findings in the present study encourage us to conduct a follow-up study to describe 
the developmental trajectory of the pathological brain features of depression patients 
and explore therapeutic targets for future personalized treatment.

INTRODUCTION

Before the onset of depression, most patients 
experience a certain degree of chronic mild stress [1]. 
Chronic stress can influence structural abnormalities 

in the brain in animal models of depression [2], and 
stressful life events can induce a decrease in GMV in 
the anterior cingulate, hippocampus, parahippocampal 
gyrus, bilateral caudate nucleus and thalamus [1, 3, 4]. 
These abovementioned brain regions play key roles in the 
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pathological mechanisms of depression [1–5]. Moreover, to 
some extent, the pattern of structural abnormalities found in 
the brains of depressed patients are similar to the aberrant 
patterns in patients diagnosed with post-traumatic stress 
disorder, which is induced by extreme, acute stress [3–7]. 

 Some previous brain imaging studies based on 
magnetic resonance imaging (MRI) found structural 
and functional aberrations between depression patients 
and healthy controls [8–13]. For example, the prefrontal 
area and limbic system demonstrate significant structural 
deficits, and the anterior cingulate cortex; ventromedial 
prefrontal cortex; dorsolateral prefrontal cortex; lateral 
orbital prefrontal cortex; and some subcortical regions, 
such as the amygdala, hippocampus and ventral striatum, 
are also affected in depression patients [14, 15]. In 
addition, except for the GMV alterations observed in 
depression patients, regional blood flow disturbances 
are also observed in brain regions related to depression 
[16–19]. Moreover, depression patients have abnormal 
levels of white matter (WM) [20–22]. Almost all the 
aforementioned reports converge to suggest that the 
brain areas involved in the circuit that participates in the 
processing of emotion regulation, memory and executive 
function regulation are all affected in depression, as 
demonstrated by multiple indices, such as GMV, WM, and 
cerebral blood flow (CBF) [1, 23]. 

Collectively, the previous findings suggest that 
chronic or acute stress can induce structural changes in 
the brain or CBF alterations associated with the neural 
mechanisms of depression. However, few studies have 
compared the differences in brain structural alterations 

between depression patients experiencing chronic stress and 
those experiencing acute stress. Based on previous studies, 
in the present study, we compared GMV differences among 
drug-naïve depression patients with chronic and acute 
stress factors before the onset of depression. We postulated 
that the altered patterns of GMV are distinct between these 
two groups of depression patients.

RESULTS

Comparison of the GMV alterations between 
depression patients with acute stress and healthy 
controls

Compared with the healthy controls, the depression 
patients with acute stress showed significantly decreased 
GMV in brain regions throughout the bilateral frontal 
lobes, such as the bilateral temporal lobes, prefrontal 
lobes, occipital lobe, and parietal lobes (Figure 1). 

Comparison of the GMV alterations between 
depression patients with chronic stress and 
healthy controls

Compared with the healthy controls, unlike the 
depression patients with acute stress, those with chronic 
stress showed significantly decreased GMV in brain regions 
in the bilateral prefrontal lobe, including the temporal 
lobe, parietal lobes and occipital lobe. More importantly, 
the bilateral basal ganglia and thalamus also demonstrated 
significantly decreased patterns of GMV (Figure 2). 

Figure 1: GMV decreased in the depression patients with acute stress compared with that in the healthy controls (false 
discovery rate (FDR) correction, P < 0.05, cluster size = 100).
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DISCUSSION

In the present study, we first compared GMV 
impairment in drug-naïve depression patients with acute 
stress and those with chronic stress. Compared with the 
healthy controls, the patients with acute stress and those 
with chronic stress exhibited distinct GMV impairment 
patterns. Most of the cerebral cortex showed widespread, 
decreased GMV. All the brain regions with decreased 
GMV participated in the regulation of emotions, memory, 
and executive function processing [1, 23], and this result 
is consistent with previous findings. However, the greatest 
finding in our study is that the decreased GMV in the 
depression patients with chronic stress is more widespread 
than that in the patients with acute stress, demonstrating 
that long-term chronic stress affects brain structures more 
than does acute stress and supporting the hypothesis that 
anxiety damages the brain [24]. Therefore, we should 
adopt optimal treatments to control the influence of acute 
stress when treating depression patients and adopt multiple 
methods, such as social support and psychological therapy, 
to prevent the perpetuation of acute stress and to protect 
the brain from further deterioration [25–27]. Additionally, 
our findings support the use of multiple treatment methods 
to alleviate the influence of chronic stress in depression 

patients, which can also delay the deterioration of affected 
brain regions [25, 28]. 

A strength of this study is that we enrolled drug-
naïve depression patients, thereby lessening the influence 
of previous therapy and allowing the results to objectively 
reflect the pathological characteristics of depression 
patients. The overall GMV decreased in the two patient 
groups in the prefrontal lobe and temporal, parietal and 
occipital lobe areas. Specific GMV alterations in the 
patients with chronic stress were observed in the bilateral 
basal ganglia and thalamus. Functional or structural 
alterations in the frontal-limbic network influence the 
regulation of affect and memory processing and impair 
executive function to some extent[1, 23, 29]. Our 
present findings and previous findings support the GMV 
impairment hypothesis of depression. 

 Some inexplicable findings were observed in our 
present study. There was no significant difference between 
the depression patients with acute stress and those with 
chronic stress after FDR correction, but compared with the 
patients with acute stress, the patients with chronic stress 
showed decreased GMV in the right insular lobe, right 
inferior frontal gyrus, right inferior temporal gyrus, and 
left anterior cingulate cortex without FDR correction. To 
the best of our knowledge, we postulated that there are two 

Figure 2: GMV decreased in the depression patients with chronic stress compared with that in the healthy controls 
(FDR correction, P < 0.05, cluster size = 100).
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potential reasons maybe explain this phenomenon. First, 
the GMV impairment maybe the common brain feature of 
MDD, it is unrelated to the stressful life events experience 
or not. Second, we missed the best time point for brain 
imaging scanning in the MDD patients with acute stressful 
life events experience. The time delay maybe caused the 
specific GMV alterations disappeared in the MDD patients 
with acute stress. Frankly, the above two postulated 
reasons are untenable. This unique phenomenon cannot 
be explained in the current study and warrants further 
investigation.

Since the abovementioned quandary still needs to 
be resolved, we need to conduct a high-quality, long-term, 
follow-up study to explore the dynamic structural and 
functional aberrations in different categories of depression 
patients from the first episode of depressive symptoms 
to determine the appropriate treatment and remission 
parameters. Then, we could describe the pathological 
brain characteristics in the developmental trajectory of 
depressive disorder and explore therapeutic targets for 
personalized treatment.

MATERIALS AND METHODS

Subjects 

All patients were diagnosed by a psychiatrist using 
the Structured Clinical Interview (SCID) according to 
the criteria for major depressive disorder in the Fourth 
Edition of the Diagnostic and Statistical Manual of 
Mental Disorders, Text Revision (DSM-IV, TR Version). 
The criteria for acute and chronic stress were also used 
by a psychiatrist according to relative reports and medical 
reports. An acute stress experience was defined as the 
experience of negative stressful events in the last six 
months before depression onset that currently remain 
active. Chronic stress was defined as the experience of 
negative stressful events in the last 24 months before 
depression onset that currently remain active. Both acute 
stress and chronic stress patients all attribute depression 
onset to stressful life events. Simultaneously, we adopted 
the life stressful events scale (LSE) to qualitatively and 
qualitatively assess the negative effects of acute and 
chronic stressful life events on the patients [30]. All the 
healthy controls were excluded by a psychiatrist using the 
SCID-I/Non-patient (NP Version). The 17-item version 
Hamilton Rating Scale for Depression (HAMD) [31] was 
used to evaluate the severity of depressive symptoms. A 
total of 105 patients were enrolled in the present study 
from January 2012 to December 2016. The mean age 
of the patients with acute stress was 43.6 ± 4.5 years, 
and the mean illness duration was 7.8 ± 2.8 (months). 
The mean age of the patients with chronic stress was 
44.5 ± 6.1 years, and the mean illness duration was 
36.2 ± 5.3 (months). Forty-seven healthy controls were 
recruited from the hospital staff of Huzhou 3rd Hospital 

(Huzhou, Zhejiang) and Wenzhou Seventh People’s 
Hospital (Wenzhou, Zhejiang), with a mean age of 43.7 
± 3.6 years. The psychiatrists also ruled out a diagnosis 
of potential mental disorder, and the healthy controls 
were enrolled only if they did not have a positive family 
history of mental disorder. The exclusion criteria were 
as follows: a history of unconsciousness for ≥ 5 min, 
neurological disease, other severe mental disorders, drug 
abuse, serious physical disease, pregnancy or lactation, 
participation in any other research study, and endocrine 
disease or any other contraindication for MRI scanning. 
The Ethics Committee of Hu Zhou 3rd Hospital and 
Wenzhou Seventh people’s Hospital all approved the 
current study. All participants fully understood the current 
study purposes and provided written informed consent. All 
the patients experienced a two-week inpatient admission 
to washout any previous therapeutic effects. Table 1 shows 
the demographic information of all the participants. The 
illness duration and severity of the depressive symptoms 
of the patients with chronic stress are all significantly 
different from those of the healthy controls.

Methods

MRI image acquisition
A Philips Achieva 3.0T MRI system (Philips Medical 

Systems Nederland B.V., the Netherlands) was used to 
perform the scans. All the subjects were in a comfortable 
position and were provided special earplugs to reduce the 
impact of scanner noise. A soft foam pad was placed around 
each subject’s head to reduce head movement. The MRI 
canning parameters were as follows. Three-dimensional 
T1-weighted magnetic resonance images were acquired 
in the sagittal plane using a 3D spoiled gradient recalled 
acquisition in steady state (SPGR) sequence (TR = 8.3 
ms; TE = 3.2 ms; flip angle = 11°; TI = 500 ms; number 
of excitations (NEX) = 1; array coil spatial sensitivity 
encoding (ASSET) = 1.5; and frequency direction: S/I). A 
total of 180 contiguous 1-mm slices were acquired with a 
256 × 256 matrix, with an in-plane resolution of 1 mm × 1 
mm resulting in isotropic voxels.

Magnetic resonance imaging data analysis

All images were corrected for image distortion 
due to gradient non-linearity using “GradWarp” [32] 
and for intensity inhomogeneity using “N3” [32]. Image 
processing for voxel-based morphometry (VBM) [33, 34], 
a fully automatic technique used for the computational 
analysis of differences in regional brain volumes 
throughout the entire brain, was performed with Statistical 
Parametric Mapping 8 (SPM8; Institute of Neurology, 
London, UK). The 3D-FSPGR images in native space 
were spatially normalized and segmented into grey matter 
(GM), WM, and cerebrospinal fluid (CSF) images and 
intensity modulated using the Diffeomorphic Anatomical 
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Registration Through Exponential Lie Algebra (DARTEL) 
toolbox in a high-dimensional normalization protocol. 
The DARTEL toolbox has been proposed by Ashburner 
[35] as an alternative method for normalization in SPM. 
In an intensity-modulation step, the voxel values of the 
segmented images were multiplied by the measure of 
the warped and unwarped structures derived from the 
nonlinear step of the spatial normalization. This step 
converted the relative regional GM density into the 
absolute GM density expressed as the amount of GM per 
unit volume of brain tissue before spatial normalization. 
The resulting modulated GM and WM images were 
smoothed with an 8-mm Gaussian kernel.

Statistical analysis

SPSS 19.0 statistical analysis software (SPSS, Inc., 
Chicago, IL, USA) was used for the statistical analyses. 
Continuous variables are presented as the mean±standard 
deviation (SD). Continuous and categorical variables 
were compared between the groups using independent 
samples t-tests and Chi-square analysis, respectively. A 
P-value of < 0.05 was considered statistically significant. 
Age, gender, illness duration and depression severity were 
used as covariates in the statistical analyses to control for 
the influence of differences in illness duration. Total GM 
volume was also compared between the groups using 
unpaired two-tailed t-test.

CONCLUSIONS

In the present study, we used voxel-based 
morphometry (VBM) to investigate the differences in brain 
grey matter volume (GMV) changes between first-episode, 
drug-naïve, depression patients with and without chronic 
and acute stress. Compared with the healthy controls, the 
patients with acute stress and those with chronic stress 
exhibited a distinct GMV impairment pattern. Widespread, 
decreased GMV was detected in most of the cerebral cortex 
in all the depression patients. Importantly, the greatest 
finding in our study is that the decreased GMV in the 
depression patients with chronic stress is more widespread 
than that in the patients with acute stress. All brain regions 
with decreased GMV participated in the regulation of 

emotions, memory, and executive function processing, 
and this result is consistent with previous findings. There 
was no significant difference between the major depression 
disorder (MDD) patients with acute stressful life events 
and those with chronic stressful life events, and this finding 
largely weakens the support of our current conclusion. 
Thus, we cannot confirm this postulation. However, our 
findings probably indicate that GMV may be more sensitive 
to MDD patients when compared to healthy controls, it did 
not sensitive when in the comparison of patient’s group. 
Overall, our findings provide important information 
for the use of appropriate treatment methods to address 
acute stress and alleviate chronic stress in patients with 
depression, and such treatments can delay the deterioration 
of the affected brain regions and improve remission rates. 
More importantly, all the inexplicable findings in the 
present study encourage us to conduct a follow-up study to 
describe the developmental trajectory of the pathological 
brain features of depression patients and explore therapeutic 
targets for future personalized treatment.
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