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Joint estimation of preferential 
attachment and node fitness in 
growing complex networks
Thong Pham1, Paul Sheridan2 & Hidetoshi Shimodaira1

Complex network growth across diverse fields of science is hypothesized to be driven in the main by 
a combination of preferential attachment and node fitness processes. For measuring the respective 
influences of these processes, previous approaches make strong and untested assumptions on the 
functional forms of either the preferential attachment function or fitness function or both. We introduce 
a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without 
imposing such functional constraints that works by maximizing a log-likelihood function with suitably 
added regularization terms. We use PAFit to investigate the interplay between preferential attachment 
and node fitness processes in a Facebook wall-post network. While we uncover evidence for both 
preferential attachment and node fitness, thus validating the hypothesis that these processes together 
drive complex network evolution, we also find that node fitness plays the bigger role in determining the 
degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the 
rate of preferential attachment is found to deviate from the conventional log-linear form when node 
fitness is taken into account. The proposed method is implemented in the R package PAFit.

The study of complex network evolution is a hallmark of network science. Research in this discipline is inspired by 
empirical observations underscoring the widespread nature of certain structural features, such as the small-world 
property1, a high clustering coefficient2, a heavy tail in the degree distribution3, assortative mixing patterns among 
nodes4, and community structure5 in a multitude of biological, societal, and technological networks6–11. Network 
scientists actively seek to explain these sorts of structural features held in common among complex networks 
across diverse domains of learning in terms of the ordinary operation of simple mechanistic processes.

An extensive body of literature on the mechanisms of complex network evolution has been amassed in the 
time since the subject first began to flourish around the turn of the century12–14. Various mechanisms have been 
advanced, including preferential attachment15, node fitness16, node duplication combined with edge duplication 
and divergence17, homophily18, topological distance19, and node birth/death processes20. Among them, preferen-
tial attachment and node fitness have garnered special attention, not only because they are the first mechanisms 
that were proposed to explain structural features observed in real-world complex networks, but also for their easy 
and attractive interpretations. Preferential attachment (PA) is a “rich-get-richer” mechanism21,22 according to 
which the amount of some quantity distributed among the members of a population increases with the amount of 
the quantity they already possess. This is in contrast to fitness, which is a “fit-get-richer” effect, whereby the ability 
of individuals in a population to acquire a given quantity is determined by intrinsic qualities. In this process, the 
larger the fitness an individual has, the more likely it will be that the individual prospers. Individual node fitness 
may differ, and thus represent heterogeneity in a population.

Network scientists rely on a class of network models, known as generative network models, or sometimes 
evolving or growing network models, to investigate possible mechanisms underlying complex network formation. 
In this modelling paradigm, complex networks are generated by means of the incremental addition and deletion 
of nodes and edges to a seed network over a long sequence of time-steps. This sequence is denoted by =G{ }t t

T
0 with 

G0 the seed, and GT the final network. Figure 1 shows an example of a growing network, which is a special kind of 
generative network model that is defined by a sequence of additions of nodes and edges. The mechanisms accord-
ing to which a complex network evolves are captured by transition rules governing how Gt−1 transits to Gt at 
time-step t for t ≥  1. The rationale behind the study of these models is that if the mechanisms governing node/
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edge dynamics in a given model produce networks with structural features similar on average to those observed 
in real networks, then it is within the bounds of possibility that the same mechanisms are also operative in their 
real-world counterparts.

The Barabási-Albert (BA) model15, which is closely related to the older Price’s model23, is the most widely 
known PA based growing network model. It is defined by a simple form of PA in which the probability 
that a node vi of degree ki(t) =  k acquires an edge at time-step t is defined to be proportional to Ak =  k. The 
time-independent function Ak is known as the PA function. Historically, the term PA was often used to refer 
to this special case. But any Ak that increases with k on average is in keeping with the spirit of “preferential 
attachment”. Thus in this paper, we will use the term rich-get-richer and PA interchangeably to describe the 
situation when Ak is a function that increases with k on average. The functional form of Ak has been shown to 
affect network structure, in particular degree distribution. In a generalisation of the BA model where Ak takes 
the popular log-linear form kα for attachment exponent α >  0, it has been shown that each of the linear (α =  1), 
sub-linear (α <  1) and super-linear (α >  1) sub-cases result in networks with different asymptotic degree distri-
butions11,15,24. In particular, the case α =  1 generates scale-free networks, which is a class of networks whose fre-
quency of a node with degree k takes the power-law functional form k−γ with some positive scaling exponent 
γ. Although there are some arguments whether real-world networks really are scale-free3,25–27, the scale-free 
property nevertheless serves as an important and founding notion when discussing structural properties of 
complex networks.

Generative network models based on the fitness mechanism have also been shown to give rise to scale-free 
networks16,28–30. The model of Caldarelli et al.28 is the most basic model of this kind. In mathematical terms, each 
node vi acquires new connections with probability proportional to ηi. The time-independent fitness ηi is conven-
tionally interpreted as the intrinsic excellence of node vi. It is important to note that ηi is assumed to be independ-
ent of any graph theoretic properties, such as node degree. In this paper, we will use the terms fit-get-richer and 
fitness mechanism interchangeably.

Attempts have been made to unify PA and node fitness in a single model. Bianconi and Barabási (BB)16 
model both PA and node fitness, however, the definition of PA is restricted to that of the original BA model. 
The General Temporal (GT) model31 stochastically models both rich-get-richer and fit-get-richer processes by 
defining the probability that a node vi with degree ki(t) =  k receives new links at time-step t to be proportional 
to the product:

η∝ ×Pr v A( receives new links) ,i k i

where Ak is a function of degree k and ηi the fitness of node vi, respectively. Note that while Ak and ηi are assumed 
to be time-invariant, that is, Ak(t) =  Ak and ηi(t) =  ηi for every degree k, node i and time-step t, the number of 
new edges m(t) and number of new nodes n(t) at each time-step are free to vary. The GT model includes all of 
the models mentioned above and more as special cases15,16,24,28,32,33. The landscape of these models is surveyed in 
Table 1. Holme34 provides a recent review of some other temporal network models.

It is generally assumed that a mixture of PA and fitness drive complex network evolution16,35–37. But any such 
mechanism, or combination thereof, no matter how plausible, must be empirically validated using specially 
designed statistical techniques in order to meet the burdens of science. However, the current crop of statistical 
estimation methods assumes one of these special cases of the GT model, but never the full model itself. As a result 
they either ignore the effect of PA or node fitness completely19,31,38–45, or otherwise assume the existence of one 
in a highly constrained form, and work to estimate the other29,35,46. For the problem of estimating fitness in the 
time-invariant case, which is the closest to our setting here, Kong et al.’s growth method29 is the only existing 
method we know that estimates ηi, albeit under the assumption that Ak =  k. More details on related works are 
provided in the Supplementary Information Section S2.1.

Figure 1. An example of a growing network. At each time-step, new nodes and edges are added to the 
network. The number of new nodes and edges at each time-step are free to vary. Note that new edges may 
emanate from and connect to any old or new nodes. Some examples are: a new edge from a new node to an old 
node (the network at t =  1), a new edge between existing nodes (the network at t =  2), and a new edge from an 
existing node to a new node (the network at t =  3).
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The questions as to how PA and node fitness mechanisms could be validated and quantified boil down to the 
following statistical estimation problem: how are the PA function Ak and node fitnesses ηi to be estimated from 
observed network data? It is important to note that no existing work considers the detection or estimation of the 
joint presence of these rich-get-richer and fit-get-richer effects.

Contrary to previous work, by assuming the GT model in its general form, we let the data speak for itself as 
regards the quantification of both rich-get-richer and fit-get-richer effects without imposing any assumptions 
on the functional forms of Ak and fitness distribution P(η). For example, we address such questions as: is there 
evidence for PA in real-world networks even after having taken node fitness into account, and vice versa? Another 
motivation for estimating these effects is that even a rough understanding of the functional forms of Ak and P(η) 
is liable to provide valuable insights into the global characteristics of complex networks. An important theoretical 
question then arises as to whether the widely accepted log-linear form in k is true of real-world networks, or does 
Ak take other more exotic forms?

Analogous questions arise in the context of fitness. When Ak is linear, it has been shown that bounded dis-
tributions of node fitness give rise to a power-law degree distribution with different scaling exponents, while 
unbounded distributions lead to a “winner-takes-all” scenario, in which a single node absorbs all the newly 
incoming edges16,29,30. So it is only natural to ask what kind of empirical distributions of node fitness exist in 
real-world complex networks, after we have allowed the simultaneous estimation of Ak free of any assumption on 
its functional form?

Last but not least, the jointly estimated Ak and ηi may more accurately reflect the evolutionary mechanisms of 
a network, than those obtained from a method that estimates either Ak and ηi in isolation, and can be exploited in 
practical problems. For example, using the estimation result, we are able to calculate the probability a given node 
receives new links in link prediction problems49,50. Moreover, the ηi’s are of particular interests in their own right. 
Using the ηi’s, it is possible to identify the nodes that are really “attractive” based on their intrinsic excellence, 
after having accounted for the rich-get-richer effect described by the Ak function. This might be of considerably 
interest, for example, in identifying research papers that have real value35,37.

Our main contributions are two-fold. The first contribution is a statistical method called PAFit to simultane-
ously estimate the PA and node fitness functions without imposing any assumptions on their functional forms. 
To the best of our knowledge, PAFit is the first ever method in the literature that can do so. Even though there 
are recent works35,44–46 that employ a time-varying PA function or node fitness, which at first glance appears to 
be more general than our time-invariant setting, all of these works assumed the presence of PA and fitness with 
functional forms imposed a priori, and thus cannot answer the very question about the co-existence of PA and 
fitness, as well as their true functional forms. While our time-invariant setting may seem to be restrictive, the 
nonparametric nature of our method makes it an important first step towards a truly nonparametric time-varying 
method, if such a method is possible.

In PAFit, we take a Bayesian approach, and formulate the estimation problem as the maximization of the 
log-likelihood function of the GT model with suitably added regularization terms to avoid overfitting. The regu-
larization terms can be interpreted as Bayesian prior distributions of the parameters. Thus the estimated (Ak, ηi)  
is the Maximum-a-Posteriori (MAP) estimate from Bayesian inference. For statistically reliable results, we 
also implement logarithmic binning over the degrees when estimating the PA function31. We then provide a 
Minorize-Maximization (MM) algorithm51 to efficiently solve the maximization problem. Using the inverse of 
the negative Hessian matrix of the log posterior calculated at the MAP, our method can also provide approximate 
credible intervals for the estimated values. The proposed method is implemented in the R package PAFit52. For a 
tutorial of how to use the package, see the accompanying vignette53.

Our PAFit method contains two regularization parameters: r (PA regularization parameter) and s (fitness 
regularization parameter). The parameter r controls the amount of regularization for the PA function in so far as 
the bigger the value of r, the more Ak assumes the form kα. On the other hand, 1/s is the variance of a gamma prior 
distribution over P(η) with mean 1. As will be shown in the Methods Section, each scenario of the co-existence of 
PA and fitness (e.g. PA only, fitness only, or both PA and fitness, and their assumed functional forms) corresponds 
to a particular combination of the regularization parameters r and s (see Table 2).

Generative Network Model PA Function Fitness Reference

GT model Free Free Pham et al.31,47

Callaway et al. Ak =  1 ηi =  1 Callaway et al.33

BA model Ak =  k ηi =  1 Barabási and Albert15

Extended BA model Ak =  kα ηi =  1 Krapivsky et al.32

Krapivsky et al. Free ηi =  1 Krapivsky et al.24

Caldarelli model Ak =  1 Free Caldarelli et al.28

BB model Ak =  k Free Bianconi and Barabási16

Extended BB model Ak =  kα Free Not previously considered.

Table 1.  Prominent generative network models that are included as special cases of the General Temporal 
(GT) model. The GT model is our model for growing network generation. In the model, Pr(Node vi receives 
new links) ∝  Ak ×  ηi where both the PA function Ak and node fitnesses ηi are time-invariant. Callaway et al.’s 
model is reminiscent of the Erdös-Rényi (ER) model48 in so far as connections are formed uniformly at random 
at each time-step.
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In order to choose the optimal r and s for a particular dataset, we use the common approach of splitting the 
dataset into two parts: a learning part and a testing part. Recall that the full dataset consists of time-steps collected 
sequentially. In this paper, we set the value of p, that is, the ratio of the number of new edges in the learning data 
and the full data, to 0.75. This can be done by taking the first three-quarters of the full dataset (in terms of number 
of new edges) as the learning data, and taking the remaining last quarter be the testing data. We estimate Ak and 
ηi of the GT model for every combination of r and s on some grid D using the learning data, and then measure 
the likelihood of the testing data. It is important to note that the testing part is unseen in the learning phase. Thus 
a model with a large number of parameters does not necessarily give higher likelihood in the testing part than 
a model with smaller number of parameters. The workflow of the PAFit method is summarized in Fig. 2. More 
details are provided in the Methods Section.

In our second contribution, we report the first evidence of the co-existence of PA and fitness mechanisms, or, 
in other words, rich-get-richer and fit-get-richer effects in the growth of a Facebook wall-post dataset54. While 
this confirms our expectation that there can be a mixture of two effects driving complex network evolution, we 
go further and show that, in this dataset, the fit-get-richer is actually the stronger of the two effects in governing 
the degree of a node. We also show that, contrary to the popular assumption of a log-linear PA function, the 
estimated Ak turned out to be highly non-log-linear. These estimated Ak become flat in the high-degree region. 
This might indicate a limit in our capacity to make new acquaintances or new collaborations55. Given that most 
existing works have modeled the PA function as log-linear in k at best, and a substantial body of previous works 
even assume Ak to be linear, this important finding calls for a need to consider more general functional forms.

Results
An illustrative example. Here we present two simulated examples to demonstrate the workings of our 
proposed methodology. In the first example, the true PA function is Ak =  max(k, 1), which is the widely-popular 
linear PA function. The second example uses the true PA function Ak =  3(log max(k, 1))2 +  1, which presents a 
non-log-linear function that deviates from conventional assumptions. Other examples with different functional 
forms are considered in the Supplementary Information Section S1.1. Note that these are true functions used for 
simulation, not that our PAFit method needs to use any information about them in the estimation. Starting from 
a seed network with 100 nodes, m(t) =  5 new edges and n(t) =  1 new node are added at each time-step t until 

Generative Network Model r s Reference

GT model Free Free Pham et al.31,47

Callaway et al. ∞ ∞ Callaway et al.33

BA model ∞ ∞ Barabási and Albert15

Extended BA model ∞ ∞ Krapivsky et al.32

Krapivsky et al. Free ∞ Krapivsky et al.24

Caldarelli model ∞ Free Caldarelli et al.28

BB model ∞ Free Bianconi and Barabási16

Extended BB model ∞ Free Not previously considered.

Table 2.  Generative network models and the regularization parameters r and s. The parameter r is the PA 
function regularization parameter and the parameter s is the fitness regularization parameter. The bigger the 
value of r, the more Ak assumes the form kα. Since s is inversely proportional to the variance of the gamma prior 
of node fitness, the bigger the value of s, the more the estimated node fitnesses concentrate around 1. By varying 
r and s, we can investigate many scenarios of the co-existence of PA and fitness (see the Methods Section for an 
explanation).

Figure 2. The workflow of PAFit. In this paper, we use p =  0.75. An example of the grid D is the one that is 
used in Fig. 3 with r in (0, 0.25, 0.5, 1, 2, 5, 10, 20) and s in (0.1, 0.5, 0.75, 1, 1.25, 1.5, 2, 5, 10). See the Discussion 
Section for more details on the choice of p and D.
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the total number of nodes reached is N =  10000. The true underlying node fitnesses are sampled from a gamma 
distribution with mean 1 and variance 1/s*. Here we set s* =  1. We note that in this case the distribution is also an 
exponential distribution with mean 1.

We compare PAFit with the growth method of Kong et al.29, which is designed to estimate node fitness, albeit under 
the assumption that Ak is equal to k. The growth method is the closest existing work to our setting. We use the following 
three metrics to measure how well the methods perform: the average relative error in estimating node fitness, defined 
as η η η= ∑ −η

− ˆe n ( ) /i i i i
1 2 2 where n is the number of nodes that we estimated fitness for; the average relative error in 

estimating the PA function, defined as = ∑ −−
=
− ˆe K A A A( ) /A k

K
k k k

1
0
1 2 2 where K is the maximum degree that appears 

in the growth process of the network; and, finally, the correlation rη between true and estimated fitness. In both methods 
we only estimate fitness of nodes that acquired at least five new edges in the growth process.

In each example, we follow the workflow of PAFit shown in Fig. 2 over a grid D with r in (0, 0.25, 0.5, 1, 2, 5, 
10, 20) and s in (0.1, 0.5, 0.75, 1, 1.25, 1.5, 2, 5, 10). For the Ak =  max(k, 1) example, the optimal combination is 
(r, s) =  (5, 2). For the Ak =  3(log max(k, 1))2 +  1 example, the optimal one is (r, s) =  (0.25, 2). The final estimators 
are shown in Fig. 3b,c,e,f.

Let us first consider the results of the growth method shown in Fig. 3a,d. In the case of the linear PA function, 
the growth method gave eη =  0.16 and rη =  0.74. For the non-log-linear PA function Ak =  3(log max(k, 1))2 +  1, the 
growth method gave eη =  0.26 and rη =  0.57. It is encouraging to note that the growth method performed better in 
the linear case, which is precisely the situation for which it is designed. Although the growth method performed 
acceptably well in both cases, one can see that the estimated fitness does not follow the true fitness closely, espe-
cially when Ak is non-log-linear.

Turning our attention to the results PAFit shown in Fig. 3b,c,e,f, it gave eη =  0.08, rη =  0.84, eA =  0.0007 when 
Ak is linear; and eη =  0.09, rη =  0.9, eA =  0.004 when Ak =  3(log max(k, 1))2 +  1. We can see that PAFit succeeded in 
the simultaneous recovery of Ak and ηi in both cases, and clearly outperformed the growth method. We note that 
one advantage of PAFit is that it can naturally estimate confidence intervals for the estimated results.

To find out whether joint estimation of PA and fitness is needed in estimating the PA function, we compare 
PAFit with a method we named “constant η”, in which we also use PAFit, but assume the model of Krapivsky 
et al.24 with η fixed at 1. The constant η method gave eA =  0.003 when Ak is linear, and eA =  0.04 when Ak is 

Figure 3. Estimation by PAFit (our proposal) and the growth method (Kong et al.29) in two simulated 
examples. First row: Ak =  max(k, 1). Second row: Ak =  3(log max(k, 1))2 +  1. The true underlying node fitnesses 
are sampled from a gamma distribution with mean 1 and variance 1/s* =  1. The plots are on a log-log scale. 
Since the number of logarithmic bins for the PA function is B =  100 in both examples, there are 100 points in 
each estimated PA function. The lightblue band around the estimated values represents two-sigma confidence 
intervals of these estimated values. “Constant η” is our name for the case when we assume the Krapivsky et al. 
model24, and use PAFit with all node fitness η fixed at 1 to estimate only the PA function. In these two examples, 
PAFit successfully recovers the PA function and node fitnesses simultaneously, as well as outperforms existing 
methods.
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non-log-linear. These two numbers, which are much worse than those of the simultaneous estimation results 
(eA =  0.0007 when Ak is linear and eA =  0.004 when Ak is non-log-linear), clearly indicate the need for simultane-
ous estimation of PA and fitness.

We note that for the PAFit method there is a tendency such that the more new edges a node acquires in the 
growth process, the better its fitness can be estimated. The simple reason for this is that the number of new edges 
a node acquires corresponds to the amount of observed data for that node.

We make some remarks about the chosen values of r and s. The chosen r correctly reflects the fact that it is 
the regularization parameter that enforces the log-linear form kα. In the log-linear example, the chosen r is large 
(r =  5), while in the non-log-linear example, the chosen r is small (r =  0.25). Although PAFit did not recover the 
true parameter s* of the underlying gamma distribution of node fitnesses, we note that in both examples the 
chosen s’s are very close to s*. Due to random fluctuations, s* does not necessarily best represent the observed 
data. Indeed, the estimated PA functions and node fitnesses in both examples agree well with the true values. In 
Supplementary Information Section S1.1, we give more examples of choosing the regularization parameters in six 
simulated networks, and show that in all cases PAFit succeeds in recovering both PA and fitness simultaneously.

In these two simulated examples, the true distribution of node fitnesses is the same as the prior distribu-
tion of node fitnesses in PAFit, i.e., both are gamma distributions. On the other hand, the growth method is a 
distribution-free method. In Supplementary Information Section S1.2, we show four examples where PAFit out-
performs the growth method when the true distribution of node fitnesses is log-normal or power-law, which are 
more heavy-tailed than the gamma distribution.

Finally, in Supplementary Section S1.3, we perform a simulation study with 48 combinations of different s* 
and different true functional forms of Ak, where each combination consists of 100 simulated networks. We show 
that PAFit generally outperforms existing methods in estimating PA and node fitness.

Real-world dataset. We apply PAFit to a real-world network: a directed multiple network representing 
wall-posts between a subset of Facebook users from 2005 to 200954. A directed edge in the network represents 
a post from one user to another user’s wall. One might speculate that the following factors are important for a 
user to attract posts to his/her wall: a) How much information about his/her life that he/she publicises: his/her 
birthday, engagement, promotion, etc. b) How influential and/or authoritative his/her own posts are which call 
for further discussions from other people; and c) how responsive the user is in responding to existing wall posts. 
We then can hypothesize fitness ηi to be a combination of these three factors averaged over time. On the other 
hand, PA can be interpreted as a herding effect of some kind: Ak captures the averaged pattern of how people will 
post more on a wall based solely on how many wall post it already has, regardless of all other factors such as the 
wall owner’s characteristics, the content of existing posts, and so on.

We choose the network at the onset of year 2007 as the initial network, and use the data added from 2007 to 
2009 to estimate Ak and ηi. We also grouped the edges into daily time-steps as has previously been done in other 
social network datasets56,57. The total number of nodes |V| and total number of edges |E| in the final snapshot of 
the network are 46952 and 876993, respectively. Meanwhile, T =  754 is the number of observed time-steps, while 
Δ |V| =  37967 and Δ |E| =  803930 are the increments of nodes and edges after time-step t =  0, respectively. We 
fit the power-law distribution k−γ to the in-degree distribution of the final snapshot by the MLE method26. We 
choose 40 as the starting degree from which the distribution is assumed to be power-law, and find the estimated γ 
to be 2.3. K =  1428 is the maximum degree that appears in the growth process. Finally, we use B =  50 logarithmic 
bins for the PA function.

Co-existence of PA and fitness. We found that for the Facebook dataset, the optimum combination of the 
regularization parameters is when (r, s) =  (0.29, 4.64). As can be seen from the density plot in Fig. 4, this point is 
well inside the area of the GT model. This indicates the necessity of simultaneous estimation of both fitness and 
PA free of any assumptions. Estimating either ηi or Ak in isolation, or estimating the attachment exponent α and 
node fitness ηi jointly with the assumption Ak =  kα as in the extended BB model gave much worse log-likelihood 
of the testing data than the best combination.

Figure 5a shows the estimated Ak when fitness is ignored, while Fig. 5b,c show the estimated Ak and the dis-
tribution P(η) of the estimated ηi in the case of joint estimation, respectively. We also ran PAFit for a number of 
other combinations of r and s around the maximum point (0.29, 4.64), as well as for a number of different values 
of r when s is held fixed at 4.64. We found that the estimation results in these cases are similar to the estimation 
results when we use the best combination (figures not shown). This indicates, understandably, that our method 
is robust. We also note that, reassuringly, with the optimum combination of parameters, the estimation results 
of Ak and ηi when using only the learning data are similar the estimation results when we use the full dataset  
(see Supplementary Information Section S1.4 and Supplementary Fig. S6). This assures us that the growth mech-
anisms of the network in the learning data and in the full data are reasonably similar. This implies that the use of 
the learning data and the testing data to choose the regularization parameters as in our aforementioned procedure 
is sound. We also note that the main findings in this section do not change if we change the ratio between learning 
data and full data from 0.75 to 0.5 or 0.9 (see Supplementary Information Section S1.4).

Inspecting the estimated Ak in Fig. 5b, we observe several important findings. Firstly, the estimated Ak is an 
increasing function, thus clearly signals the existence of the rich-get-richer phenomenon (corresponding to an 
increasing Ak on average). Secondly, the estimated Ak is highly non-linear in log-scale, which is different from the 
widely assumed log-linear model Ak =  kα. This reinforces the need to consider non-log-linear functional forms 
when modelling the PA function31,47. Since the estimated Ak is nearly log-linear when fitness is ignored (Fig. 5a), 
this dataset shows the need for joint estimation of PA and node fitness. Finally, the form of the PA function gradu-
ally becomes flat when the degree is large, which might indicate a limit in our capacity to make new acquaintances 
or new collaborations55.
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To get a sense of the growth rate of the estimated PA function in comparison with the conventional log-linear 
form, we fitted the function Ak =  kα to the estimated Ak by a weighted least squares method where the weights are 
inversely proportional to the estimated variance of the Âk

31. Using this procedure, we found that α = .ˆ 0 43, which 
implies that the PA function is sub-linear in this dataset. Finally, comparing with the estimated PA function in the 
case of constant node fitness in Fig. 5a, the estimated PA function in Fig. 5b became lower. This indicates that the 
rich-get-richer effect became weaker when the fit-get-richer effect was taken into account, which is expected since 
a portion of a node’s ability to attract new edges could then be explained by its fitness.

Turning our attention to the estimated node fitness in Fig. 5c, while almost all node fitnesses are concentrated 
around the mean, which is 1, there are some nodes with very high fitness. This highly non-uniformity of the fit-
ness distribution is a clear signal of the fit-get-richer phenomenon.

Fitness dominates PA. Now with evidence decisively pointing to the co-existence of rich-get-richer and 
fit-get-richer phenomena, one cannot help but ask the question as to exactly which one of the two effects played the 
greater role in governing the evolution of node degree over the growth of the network. To investigate the relation 
between fitness and the degree of a node, in Fig. 6a–c, we drew the degree growth curves of 200 random chosen nodes 
from three groups: low-fitness nodes with η <ˆ 1, medium-fitness nodes with η≤ <ˆ1 2 and high-fitness nodes with 
η ≥ˆ 2, respectively. We also plot theoretical degree growth curves of a generic node with fitness η =  8, 4, 2, 1, 0.5 and 
0.25 to serve as anchors (see Supplementary Information Section S1.6 for the way to calculate these curves).

In Fig. 6, the degree of a high fitness node tends to grow faster than that of a low fitness node. This results in a 
general trend: curves in Fig. 6a mostly have a near-horizontal orientation, while those in Fig. 6b have mild upward 
slopes, and most of those in Fig. 6c have steep slopes. These observations indicates clearly the fit-get-richer effect. 
We also note that the real-world data curves generally agree well with the theoretical curves, which implies that 
the estimated fitness of PAFit is consistent with the underlying GT model. We perform some additional analyses 
on the degree growth curves in Supplementary Information Section S1.5.

To further investigate the intertwined effects of the PA function and node fitness, in Fig. 7 we plot the number 
of acquired new edges of a node versus its estimated fitness for three groups of nodes with different initial degrees 
(degree at time 0). We found that in the Facebook dataset, fitness plays the major role in deciding the number of 
edges a node acquired. In Fig. 7a, the difference in the number of new edges a node acquired is largely explained 
by its fitness. While the initial degree, and hence the PA function, does have a visible effect, its effect is small, since 
the three groups overlap substantially. A plausible explanation for this phenomenon is that, in the Facebook data-
set, the estimated PA function is rather weak (as mentioned earlier, the estimated attachment exponent α is about 
0.43). For checking this explanation, we generate two simulated networks as controlled experiments. In both 
simulations, we set the initial network G0, the number of new edges and new nodes at each time-step the same as 
what were observed in the Facebook dataset. We also use the variance of Facebook’s estimated fitness (Fig. 5c) for 

Figure 4. Density model landscape. For a two-dimensional grid of the regularization parameters r and s, 
which includes all models in Table 2, we learn Ak and ηi using the learning data, and plot the log-likelihood  
of the unseen testing data. The relation of the models are shown clearly. The log-likelihood at the peak  
(r, s) =  (0.29, 4.64) is − 1765188. The log-likelihood given by growth method (which assumes the BB model)  
is − 1936320, which is lower than the minimum value in the figure.
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the variance of the gamma distribution to generate true node fitness. On the one hand, Fig. 7b shows the situation 
when we use the same estimated PA function of the Facebook dataset (Fig. 5b). We can spot a similarity with 
Fig. 7a: the number of new edges of a node is largely explained by its fitness, not by its initial degree. On the other 
hand, in Fig. 7c we show the plot when we use the much stronger PA functional form Ak =  k. This time the three 
groups are clearly separated by their initial degrees. This shows how the situation would look like if a strong PA 
function dominated fitness. These two simulated examples strongly imply that a weak PA function is the reason 
for the dominance of fitness in the Facebook dataset.

Discussion
We have proposed a statistically sound Bayesian method, called PAFit, for estimating both the PA function (Ak) 
and node fitness (ηi) in growing complex networks. PAFit is nonparametric in the sense that it does not fix any 
particular functional form for either Ak or ηi, so that it is able to detect different types of functional forms.
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Figure 5. Co-existence of “rich-get-richer” and “fit-get-richer” effects in the Facebook wall-post network. 
(a) Estimated Ak with constant node fitness (existing method31). Ak is reasonably log-linear (i.e. in the form kα) 
when fitness is ignored. (b) Estimated Ak when node fitness is taken into account using our proposed method. 
The functional form of Ak becomes highly non-log-linear. Since this case is the optimal one that best represents 
the dataset, it shows the need for joint estimation of PA and node fitness, as well as the need for considering PA 
functions that deviate from the popular form kα. (c) The distribution of estimated fitnesses. The horizontal axis 
is in log-scale with the blue marginal rugs indicating the individual node fitnesses. The distribution is heavy-
tailed, which suggests the existence of the “fit-get-richer” effect.

Figure 6. High fitness nodes have dominant degree growth curves. Node age is defined as the time since it 
first attains degree 10. The dashed lines are theoretical growth curves of a generic node with true fitness η =  8, 4, 
2, 1, 0.5 and 0.25, based on the GT model. These theoretical curves are added as visual guides, and are calculated 
using the procedure described in Supplementary Information Section S1.6. Overall, the fit-get-richer effect is 
visible: nodes with high fitness have steep growth curves, while nodes with low fitness have more moderate 
ones. The real-world curves agree well with the theoretical curves, which indicates that the estimation results of 
PAFit are consistent with the GT model. (a) 200 randomly chosen curves from nodes whose η <ˆ 1. Most of 
these curves broadly follow around the η =  0.25 and η =  0.5 theoretical curves. Some real curves with darker 
blue color are well below the η =  0.25 theoretical curve, while some real curves with lighter blue color rise near 
the η =  1 theoretical curve. (b) 200 randomly chosen curves from nodes whose η≤ <ˆ1 2. Most of these real 
curves are between the η =  1 and η =  2 theoretical curves. (c) 200 randomly chosen curves from nodes whose 
η ≥ˆ 2. While most of these real curves are between the η =  2 and η =  4 theoretical curves, some very steep real 
curves rise around the η =  8 theoretical curve.
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PAFit uses a PA regularization term and a fitness regularization term to avoid overfitting. The fitness regu-
larization term is equivalent to placing a gamma prior distribution on each fitness. There is the question of how 
well PAFit performs when the true distribution differs from a gamma distribution. Although an extensive study 
involving different types of true fitness distributions is needed to answer this question, as a first step, we show 
by four simulated examples that our method performs well even when the true fitness distribution follows a 
power-law or log-normal form, which is more heavy-tailed than the gamma distribution.

We use the likelihood of the testing data for choosing the PAFit regularization parameters. Some well-known 
statistical criterions such as the Bayesian Information Criterion or the Bayes factor are not known to be applica-
ble in our situation, since not only the data here is not independent and identically distributed, but the number 
of parameters in our model (A and η) is also a random variable that grows with the size of the network and the 
number of time-steps. This differers from a standard statistical setting. While the risk of overfitting still remains 
in PAFit, we contend that our method serves as an important first step before more involved statistical procedures 
can be developed for our model.

We reported clear evidence for the joint presence of the “rich-get-richer” phenomenon (corresponding to an 
increasing Ak on average) and the fit-get-richer phenomenon in a Facebook wall-post network. The functional 
form of the PA function Ak differs from the conventional log-linear form, Ak =  kα. We also observed that the dis-
tribution of node fitnesses is heavy-tailed with a number of nodes having very high fitness.

We found that in the Facebook wall-post network, fitness plays the major role in deciding the number of 
future edges a node acquires, while the PA function has comparatively little effect. We caution that our analysis of 
the roles of PA and fitness here is rather qualitative. For a more conclusive answer, it might be needed to develop 
a quantitative method to measure the contribution of PA and fitness.

In this paper, we set the ratio p between the learning data and the full data to be 0.75. Although this choice 
seems to be arbitrary, we showed that the results in the Facebook dataset do not change if we use p =  0.5 or p =  0.9. 
As discussed in the Methods Section, given the bias-variance trade-off in choosing p, we contend that our choice 
of p =  0.75 in PAFit represents a reasonable balance between two extremes of this trade-off.

Although the above contributions are established entirely in the setting of growing networks with 
time-invariant PA and node fitness functions, one potential merit of our estimated Ak and ηi is that, since they 
can be interpreted as the time-averaged version of some time-varying Ak(t) and ηi(t), they are arguably more 
robust to the network fluctuations, as well as the changes in the number of new edges m(t) and new nodes n(t) at 
each time-step. At a minimum our method stands as a first step towards the full resolution of the estimation of 
time-dependent Ak(t) and ηi(t).

Our method requires a grid D to search for the optimal pair of r and s. As can be seen from Fig. 4, the log-likelihood 
of the testing data has only one peak, and gradually changes only on log-scale. We also reported that the final estimator 

ηˆ ˆA( , )p pfull, full,  would almost not change if we used different (r, s) around the optimal pair. We note that we have the 
same observations on simulated networks. Thus for the initial probing, we recommend to use a coarse grid on loga-
rithmic scale in order to quickly cover a large range. Then one might use another logarithmic scale grid around the 
peak of the previous search for local exploring.

There are various directions for future research. First, given the new findings we obtained, it is only natural to 
conduct a large-scale application of PAFit to public data to discover the extent to which our findings in the 
Facebook wall-post dataset generalizes to other complex networks. Secondly, convergence of the PAFit method, 
as well as consistency and asymptotic normality of the MLE, are open research questions. Thirdly, there are some 
immediate extensions of the PAFit framework worth pursuing. For example, since PAFit assumes the 
time-invariant case of a growing network, it would be interesting to see if one can extend the methodology to the 

Figure 7. Fitness plays the major role in deciding the number of future edges that a given node acquires.  
(a) Facebook dataset. We consider three groups of nodes with initial degree k0 in [3, 5], [15, 30] and [90, 180].  
The differences in numbers of acquired edges are largly explained by fitness, not by initial degree. (b) A simulated  
network using the estimated PA function of Facebook as the true PA function. (c) Another simulated network 
with the much stronger Ak =  k as the true PA function. This time, the three groups are well separated by their 
colors.
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time-varying case with not only addition, but also deletion of nodes and edges. Another interesting extension is 
to use more heavy-tailed distributions such as the log-normal or power-law as prior distributions for node fitness. 
Finally, the PAFit method assumes that we fully observed the sequence =G{ }t t

T
0 of network snapshots. However, 

there are situations where we can only observe the final network snapshot, namely GT, but none of the preceding 
snapshots. Making PAFit able to jointly estimate the PA function and node fitness will enable us to ask the core 
question of co-existence of rich-get-richer and fit-get-richer, as well as all other questions concerning the func-
tional forms of the PA function and node fitness, for these networks too.

Methods
The General Temporal model. The PAFit method assumes the GT model, which is a generative network 
model for both directed and undirected growing networks31. According to the GT model, a network is generated 
by starting from some seed network G0, then at each time-step t ≥  1, m(t) new edges and n(t) new nodes are added 
to Gt−1 to form Gt. Note that m(t) may consist of both new edges that emanate from the n(t) new nodes and emer-
gent new edges between existing nodes. This allows wide applications of PAFit in real-world situations, where new 
edges do emerge between existing nodes.

Here we state the GT model for directed networks. The details of the undirected GT model is provided in 
Supplementary Information Section S2.2. When a new edge is added to the network Gt−1, it will connect to an 
existing node vi with probability

π η∝ ×t A( ) , (1)i k t i( )i

where ki(t) is the in-degree of node vi at the onset of time t. For a directed network, given m(t) and n(t), Eq. (1) 
does not completely determine Gt, since it ignores the source nodes of the edges. But the quantities Ak and ηi 
are by definition concerned with the ability of nodes to acquire new edges, and thus are independent of the 
out-degrees of the source nodes in the directed case. Therefore, modelling only the destination node as in Eq. (1) 
is actually enough for the estimation of Ak and ηi. The GT model includes a number of important generative net-
work models as special cases, as can be seen from Table 1.

Finally, it is important to note that, although the GT model in this paper contains only the addition of nodes 
and edges, this is purely for simplicity and clarity of exposition. The PAFit method is easily extendable to handle 
the case when there are deletions, as long as the probabilistic mechanism of deletions is independent of the addi-
tion mechanism, and does not involve Ak and ηi.

Bayesian estimation. Here we provide a brief discussion of the Bayesian estimation for the directed GT 
model. The case of the undirected GT model is treated in a similar way. The full details of both cases are described 
in the Supplementary Information Sections S2.3 and S2.4. Our observed data is the sequence =G{ }t t

T
0 of networks. 

Let K and N be the maximum degree and the final number of nodes in a GT model network, respectively. Let 
= −A A AA [ ]K0 1 1  and η η η η= [ ]N1 2  be the parameter vectors we want to estimate.
Adopting a Bayesian approach, PAFit maximizes the following objective function:

η η= + + .ηh l reg regA A( , ) ( , ) (2)A

l(A, η) is the log-likelihood function of the data:

∑∑ ∑∑ ∑∑ ∑η η η= + −
= = = = = = =

l z t A z t z t AA( , ) ( ) log ( ) log ( ) log ,
(3)t

T

i

N

i k t
t

T

i

N

i i
t

T

i

N

i
j

N

k t j
1 1

( )
1 1 1 1 1

( )i j

with zi(t) be the number of new edges that connect to node vi at the onset of time t. regA is the following regular-
ization term for the PA function:

∑= − + −
=

−

+ −reg r w A A A(log log 2 log ) ,
(4)A

k

K

k k k k
1

1

1 1
2

with = ∑ =w m t( )k t
T

k1  and mk(t) is the number of edges that connect to a degree k node at time t. regη is the fol-
lowing regularization term for node fitness:

∑ η η= − − .ηreg s s(( 1) log )
(5)i

i i

These two regularization terms are equivalent to Bayesian prior distributions for Ak and ηi. Thus r of regA and s 
of regη are hyper-parameters in the Bayesian interpretation, and the estimated (Ak, ηi) is the MAP estimate.

By using regA in Eq. (4), we estimate Ak without any assumptions on its functional form, but will be able to 
fall back to the widely-assumed functional form Ak =  kα when needed, since this regularization term becomes 
approximately 0 when Ak =  kα, and is negative otherwise. Note that in order to balance the strength of the regu-
larization and the observed data, each quadratic term in Eq. (4) is then weighted by the number of observed data 
points wk of degree k. If r is 0, then we estimate the PA function without any prior assumptions. The larger the 
value of r, the more the form of the estimated Ak approaches kα. When r =  ∞ , the strength of Eq. (4) overwhelms 
the observed data, and forces Ak to be kα. We note that the regularization term in Eq. (4) is the same as in ref. 31.

We derive this regularization term as follows. Starting from Ak =  kα, for non-zero log k this is equivalent to 
log Ak/log k =  α. Now using the same formula but with k replaced by k +  1 and k −  1 yields log Ak+1/log(k +  1) =  α 
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and log Ak−1/log(k −  1) =  α. This implies log Ak+1/log(k +  1) −  log Ak/log k =  log Ak/log k −  log Ak−1/log(k −  1). 
This is equivalent to log Ak+1/log(k +  1) +  log Ak−1/log(k −  1) −  2 log Ak/log k =  0. For moderately large k, since 
log(k +  1) ≈  log(k −  1) ≈  log k, the last equation leads to log Ak+1 +  log Ak−1 −  2 log Ak =  0, whose left hand side 
forms the quadratic terms of Eq. (4).

For node fitness, the regularization term regη has the same effect as placing a gamma prior with shape and rate 
parameters s on each ηi, since it is the logarithm of the density function of the gamma distribution. This prior set-
ting is viable, given that the ηi’s are positive real-numbers. Gamma priors have been used extensively for the rating 
parameters of the Plackett-Luce model, whose likelihood function consists of multinomial probabilities just as 
our GT model58–60. In the context of growing complex networks, we contend that only the gamma distribution has 
been explored as a fitness prior46. So in this paper we follow convention and adopt a gamma prior. We note that 
in large datasets, the likelihood is likely to dominate the prior’s information, so a different prior setting for node 
fitness is unlikely to change the numerical result significantly.

The mean and variance of our gamma prior are 1 and 1/s, respectively. Thus the larger the value of s, the 
smaller the variance of the node fitness. In the limiting case when s =  ∞ , all the ηi’s take the value 1. Thus s =  ∞  
is effectively equivalent to the case when we fix all ηi at 1 and only estimate Ak, i.e. the Krapivsky et al. model in 
Table 1.

The objective function in Eq. (2) can be efficiently maximized by a Minorize-Maximization (MM) algorithm49, 
which in this case is also known as a ConCave-Convex Procedure61. Starting from some initial value (A(0), η(0)) 
at iteration q =  0, the proposed algorithm iteratively calculates (A(q+1), η(q+1)) from (A(q), η(q)), until some con-
vergence condition (such as the relative difference between successive values of the objective function reaches 
some threshold) is met. At each iteration q, the proposed algorithm decomposes the multi-variate maximization 
problem into many one-dimensional problems in a way such that the value of h(η, A) is guaranteed to increase 
after each iteration. The one-dimensionality of these sub-problems allow them to be solved efficiently in parallel. 
We implemented the algorithm in the R package PAFit52.

Lastly, although we use Ak’s in all equations and algorithms in this paper for ease of exposition, in practice one 
invariably needs to perform binning on the degrees for more reliable results. In binning, Ak’s are set to be ωi for all 
k in the i-th bin, then ω1, , ωB are taken as parameters to be estimated. Here B is the number of bins. All the 
equations and algorithms described in this paper are valid with Ak’s replaced by ωi’s. The number of k’s inside a bin 
is determined by that bin’s width. In PAFit, we choose logarithmic binning in order to create small-width bins in 
low degree regions, where we have many data points for each degree, and large-width bins in the region of 
high-degrees, where we have few data points for each degree31. In our experience, 20 to 200 is a good range for the 
number of bins, B.

Choosing regularization parameters by testing data. Here we give more details on the workflow 
shown in Fig. 2. In this paper, we use 0.75 as the value for p, the ratio of number of new edges between the learn-
ing data and the full data. In other words, Tlearn, the final time-step in the learning data, is chosen so that 
∑ ∑= = z t( )i

N
t
T

i1 1
learn  is approximately three times of ∑ ∑= = + z t( )i

N
t T
T

i1 1learn
. Here recall that zi(t) is the number of new 

edges that connect to node vi at the onset of time t. When we calculate the log-likelihood of the testing data, we 
use Eq. (3) but with the set {1, … , N} restricted to the set of nodes that appeared in the learning data, since we do 
not have ηi for the nodes vi that newly appear in the testing data.

We note here about the inherent bias-variance trade-off in choosing p, the ratio between the learning data and 
the full data. When p is large, the bias of Â and η̂ is small, but the variance is large. To understand this statement 
let us take an example when p =  0.99. In this case, our estimated Ak and ηi using only the learning data are very 
close to those when we use the full data, since almost all of the full data is learning data. This means the bias is 
small. But since the testing data, which is the remaining one percent of the full data, has so few observations, any 
small random fluctuation can greatly change the optimal pair of r and s, and thus change Â and η̂. This means the 
variance is big. When p is small, a reverse situation occurs: the variance is small, but the bias is large.

While we do not have a theoretical reason to support our choice of p =  0.75 in this paper, we argue that this 
value of p represents a reasonable balance between the two extremes of bias-variance trade-off. On the one hand, 
Supplementary Fig. S6 suggests that there is a sense of convergence of the result when p approaches 1: the esti-
mated results when p =  0.75 and p =  0.9 are very similar, and thus the choice of p is not sensitive in this region. On 
the other hand, the same figure also shows that p =  0.5 is too small to get a reliable result.

It is important to stress that the above approach not only provides a statistically sound way to determine the 
regularization parameters r and s, but also answers the fundamental question: which of the models in Table 1 best 
describes the evolving process of a network? To answer this question, we fit each of the models in Table 1 to the 
learning dataset, and evaluate their log-likelihoods on the testing dataset.
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