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Many recent studies found signatures of motor learning in neural beta oscillations
(13–30 Hz), and specifically in the post-movement beta rebound (PMBR). All these
studies were in controlled laboratory-tasks in which the task designed to induce the
studied learning mechanism. Interestingly, these studies reported opposing dynamics of
the PMBR magnitude over learning for the error-based and reward-based tasks (increase
vs. decrease, respectively). Here, we explored the PMBR dynamics during real-world
motor-skill-learning in a billiards task using mobile-brain-imaging. Our EEG recordings
highlight the opposing dynamics of PMBR magnitudes (increase vs. decrease) between
different subjects performing the same task. The groups of subjects, defined by their
neural dynamics, also showed behavioral differences expected for different learning
mechanisms. Our results suggest that when faced with the complexity of the real-world
different subjects might use different learning mechanisms for the same complex task.
We speculate that all subjects combine multi-modal mechanisms of learning, but
different subjects have different predominant learning mechanisms.

Keywords: motor learning, skill, real-world, EEG, post-movement beta rebound, motor neuroscience

INTRODUCTION

Many different forms of motor learning were described and studied using various laboratory-tasks
over the past decades (for review see Krakauer et al., 2019). Two main learning mechanisms are
considered to account for most of our motor learning capabilities: error-based adaptation and
reward-based reinforcement learning. Error-based adaptation is driven by sensory-prediction
errors, while reward-based learning is driven by reinforcement of successful actions (Krakauer
and Mazzoni, 2011). While both mechanisms can contribute to learning in any given task, the
constraints of the highly controlled laboratory-tasks common in the field induce the predominance
of one mechanism over the other (Haith and Krakauer, 2013), and show different neural dynamics
associated with the different learning mechanisms (e.g., Uehara et al., 2018; Palidis et al., 2019).

The main neural signatures of voluntary movement and motor learning found in constrained
laboratory tasks are the beta oscillations (13–30 Hz), which are related to GABAergic
neural activity (Roopun et al., 2006; Yamawaki et al., 2008; Hall et al., 2010, 2011). More
specifically, there is a transient and prominent increase in beta oscillations magnitude across
the sensorimotor network after cessation of the voluntary movement known as post-movement
beta rebound (PMBR) or post-movement beta synchronization (Pfurtscheller et al., 1996). In
motor adaptation studies, PMBR over the motor cortex contralateral to the moving hand was
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reported to negatively correlate with movement errors, lower
errors induced higher PMBR (e.g., Tan et al., 2014a, 2016;
Torrecillos et al., 2015) and therefore PMBR increases over
learning. In reward-based tasks the PMBR shows the opposite
trend; e.g., in a force tracking task PMBR decreased with learning
(Kranczioch et al., 2008). Additionally, PMBR is positively
correlated with GABA concentration as measured by magnetic
resonance spectroscopy (Gaetz et al., 2011; Cheng et al., 2017)
which also decreases over reward-based learning tasks such as
sequence learning in force tracking (Floyer-Lea et al., 2006) and
serial reaction time (Kolasinski et al., 2019).

We are now seeking to understand to what extent previous
findings in artificial laboratory-tasks can be validated in a
complex, fully-body task people choose to experience in daily
life. Here, we set to study the human brain activity during motor
learning in a real-world task using mobile EEG, We recently
introduced a real-world motor-skill learning paradigm in pool
table billiards (Haar et al., 2019). Here, we set to study human
brain activity during motor learning in a real-world task using
mobile EEG. Subjects had to do a pool shot to put the ball
in the pocket using full-body, self-paced movement, with as
many preparatory movements as the subject needs for each
shot. We implemented this as a real-world task because we are
only adding sensors to a pool table setting. Subjects use the
natural tools and setups they normally would, carry out the
natural motor commands, receive the natural somatosensory
feedback and experience the same satisfaction rewards when
they put the ball in the pocket. In our pool playing paradigm,
as in most everyday motor learning experiences, performance
errors were not driven by artificial perturbations but by the
complexity of learning the task (which takes competitive pool
players years to master) and noise in the nervous system
(Faisal et al., 2008). We test here the hypothesis of whether
neural correlates of motor learning in real-world tasks show
features consistent with those in artificial laboratory tasks.
Specifically, we hypothesize that PMBR responses may look
different in real-world tasks, because learning in a real-world
paradigm may not be predominantly mediated by a single
specific learning mechanism, such as motor adaptation and its
increasing PMBR response over trials. Moreover, we hypothesise
that a far less constrained real-world task, may give human
subjects the freedom to learn in their personally most conducive
way, instead of being forced by an artificial paradigm to explore
a single route of leaning: thus we want to test the hypothesis if
different subjects may employ different learning strategies and
consequently exhibit different neural signatures of learning or if
all learn the same way.

MATERIALS AND METHODS

Experimental Setup and Design
Thirty right-handed healthy human volunteers (12 women and
18 men, aged 24 ± 3) with normal or corrected-to-normal
visual acuity participated in the study. The recruitment criteria
were that they played pool/billiards/snooker for leisure fewer
than five times in their life, never in the recent 6 months, and
had never received any pool game instructions. All volunteers

gave informed consent before participating in the study, and
all experimental procedures were approved by the Imperial
College Research Ethics Committee and performed following the
declaration of Helsinki. The volunteers stood in front of a 5 ft
pool table (Riley Leisure, Bristol, UK) with one 7/8" (48 mm
diameter) pool balls. Volunteers performed 300 repeated trials
where the cue ball (white) and the target ball (red) were placed
in the same locations. We asked volunteers to shoot the target
ball towards the pocket of the far-left corner (Figure 1A). Trials
were split into six sets of 50 trials with a short break in-between
to allow the subjects to rest a bit and reduce potential fatigue.
Each experimental set (of 50 trials) took 8–12 min. For the data
analysis, we further split each set into two blocks of 25 trials each,
resulting in 12 blocks. During the entire learning process, we
recorded the subjects’ brain activity with a wireless EEG headset
(Figure 1B). The balls on the pool table were tracked with a
high-speed camera to assess the subjects’ success in the game
and to analyze the changes throughout learning, not only in the
body movement and brain activity but also in its outcome—the
ball movement (Figure 1C). EEG and ball motion tracking
camera were recorded on the same machine. All signals were
time-stamped by accessing the high precision event timer of the
computer and synchronized accordingly.

Balls Tracking
The balls movement on the pool table were tracked with a
computer vision systemmounted from the ceiling. The computer
vision camera was a Genie Nano C1280 Color Camera (Teledyne
Dalsa, Waterloo, ON, Canada), color images were recorded
with a resolution of 752 × 444 pixels and a frequency of
200 Hz. This Ethernet-based camera was controlled via the
Common Vision Blox Management Console (Stemmer Imaging,
Puchheim, Germany) and image videos recorded with our
custom software written in C++ based on a template provided by
Stemmer Imaging. Our software captured the high-performance
event timer, the camera frames and converted the images
from the camera’s proprietary CVB format to the open-source
OpenCV1 image format for further processing in OpenCV.
The video frames were stored as an uncompressed AVI file to
preserve the mapping between pixel changes and timings and
the computer’s real-time clock time-stamps were recorded to
a text file. Each trial was subject-paced, so the experimenter
observed the subject and hit the spacebar key as an additional
trigger event to the time-stamps text file. This timing data was
later used to assist segmentation of the continuous data stream
into trials. The positions of the two pool balls (white cue ball
and red target ball) were calculated from the video recordings
offline using custom software written in C++ using OpenCV.
Then, with custom software written in MATLAB (R2017a, The
MathWorks, Inc., MA, USA), we segmented the ball tracking
data and extracted the trajectory of the balls in each trial. For
each trial, a 20 × 20 pixels (approx 40 × 40 mm) bounding box
was set around the center of the 48 mm diameter cue ball. The
time the center of the ball left the bounding box was recorded
as the beginning of the cue ball movement. The pixel resolution

1https://opencv.org/
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FIGURE 1 | Experimental setup and task performance. (A)
Thirty-right-handed healthy subjects performed 300 repeated trials of billiards
shots of the target (red) ball towards the far-left corner. (B) Brain activity was
recorded with wireless EEG systems: 20 subjects with eMotiv EPOC+ (left)
and 10 subjects with Wearable Sensing DSI-24 (right). (C) The pool balls were
tracked with a high-speed camera. Dashed lines show the trajectories of the
cue (white) and target (red) balls over 50 trials of an example subject. (D) The
mean absolute directional error of the target-ball (relative to the direction from
its origin to the center of the target pocket) over blocks of 25 trials, averaged
across all subjects, error bars represent SEM across subjects. Written
informed consent was obtained from the individual in Figure 1 for the
publication of any potentially identifiable images included in this article.

and frame rate were thus sufficient to detect movement onset,
acceleration and deceleration of the pool balls. The target (red)
ball initial position and its position in the point of its peak
velocity were used to calculate the ball movement angle (relative
to a perfectly straight line between the white cue ball and the red
target ball). We subtracted this angle from the center of the
pocket angle (the angle the target ball initial position and the
center of the pocket relative to the same straight line between
the balls) to calculate the directional error for each shot.

EEG Acquisition and Preprocessing
For the first group of 20 subjects, EEG was recorded at 256 Hz
using a wireless 14 channel EEG system (Emotiv EPOC+, Emotiv

Inc., CA, USA) as we wanted to demonstrate the feasibility of
using a consumer-grade system for free behavior research. To
then validate our results with a research-grade EEG system, we
ran another group of 10 subjects with the DSI-24 (Wearable
Sensing Inc., CA, USA). With this wireless 21 channel EEG
system, EEGwas recorded at 300Hz and downsampled to 256Hz
to be analyzed with the same pipeline as the first group. Since
there was no difference in the outcomes between the different
systems (see ‘‘Results’’ section), we analyzed them as a single
group, except the system comparison analysis. EEG signals were
preprocessed in EEGLAB2 (Delorme and Makeig, 2004). EEG
signals were first band-pass filtered at 5–35 Hz using a basic
FIR filter, and then decomposed into an independent component
(IC) and artifact ICs were removed with ADJUST, an EEGLAB
plug-in for automatic artifact detection (Mognon et al., 2011).
Following previous PMBR studies in motor learning (Tan et al.,
2014a, 2016; Torrecillos et al., 2015; Alayrangues et al., 2019),
all further analysis was performed on the EEG activity over the
motor cortex contralateral to the moving arm. As all subjects
were right-handed and the movement during the trial was done
almost exclusively by the right arm (Haar et al., 2019), we
focused on the left motor cortex. Following (Alayrangues et al.,
2019) we manually selected for each subject an IC-based on
its topographies. To validate it with a less subjective approach,
we repeated the analysis using a single channel, C3 according
to the international 10-20 EEG system, which sits over the left
motor cortex. For the subjects recorded with the Emotiv system
C3 channel was interpolated from the recorded channels with
spherical splines using EEGLAB ‘‘eeg_interp’’ function. The two
approaches yield the same results, thus, the data reported here
is that of the latter. We repeated the analysis over the right
motor cortex (ipsilateral to the moving arm contralateral to
the stabilizing arm) using C4 according to the international
10-20 EEG system. This analysis yields similar results and is
reported in the Supplementary Materials.

EEG Time-Frequency Analysis
Each block was transformed in the time-frequency domain by
convolution with the complex Morlet wavelets in 1 Hz steps.
Event-related EEG power change was subsequently calculated
as the percentage change by log-transforming the raw power
data and then normalizing relative to the average power
calculated over the block, as no clear baseline could be defined
during the task (Tan et al., 2014a, 2016; Torrecillos et al.,
2015; Alayrangues et al., 2019), and then subtracting one
from the normalized value and multiplying by 100. While this
normalization procedure might be less common than one based
on motion-free pre-movement baseline period, it was used by
most of the PMBR motor learning studies mentioned above
and enabled the natural free-behavior aspect of the task of
self-paced movement, with as many preparatory movements as
the subject needs for each shoot, and no go-cues or hold-cues.
Event-related power changes in the beta band (13–30 Hz) were
investigated. Since there was no go cue and the subject shot
when they wanted, the best-defined time point during a trial

2https://sccn.ucsd.edu/eeglab
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was the beginning of the cue ball movement, defined by exiting
its bounding box (see ‘‘Balls Tracking’’ section above). Thus,
we used the ball movement onset to estimate movement offset
(which could last few hundred milliseconds more due to follow
through movement) and looked in the following 2 s window
for the peak beta power which should follow the movement
termination. The PMBR was defined as the average normalized
power over a 200 ms window centered on the peak of the
power after movement termination (Tan et al., 2016). The PMBR
was calculated for each trial before averaging over blocks for
further analysis. The time-frequency analysis was performedwith
custom software written in MATLAB (R2017a, The MathWorks,
Inc., MA, USA).

Multiple Groups Analysis
To assess if there may be multiple groups of subjects with
different PMBR trends we used generative Bayesian modeling
to determine in a data-driven way the structure of the data.
We fitted the data with a Gaussian mixture model (GMM) of
one to five components, allowing us to understand if 1, 2, 3, 4 or
5 distinct groups appeared in the distribution or not. To select
between these five models of different complexity we used two
information criteria, the Akaike information criterion (AIC) and
its corrected version for small sample size (AICc). AIC estimates
the amount of information that is lost while fitting a model and
thus can measure the quality of different models relative to each
other. In addition to the Bayesian framework, we validate this
grouping with unsupervised fuzzy c-means (FCM) clustering,
tested for 2 to 10 clusters. FCM assigns a friendship to each data
point in each cluster according to its distance from the cluster’s
center, and on iterative process recalculate the cluster’s centers
and the friendship until it converges. After convergence, each
point is classified into the cluster with which it had the highest
friendship. Following Haar et al. (2015), we used the cluster
validity index proposed by Zhang et al. (2008). This index uses
a ratio between a variation within each cluster and a separation
between the fuzzy clusters. The smaller the ratio, the better
the clustering.

Behavioral Measures of Motor Skill
Learning
We calculated and analyzed three know matrices for motor
skill learning: movement complexity, lag-1 autocorrelation,
and intertrial variability. Movement complexity was defined
as the number of degrees of freedom used by the subject
as their body move while making the pool shot. For that,
we used the manipulative complexity (Belić and Faisal, 2015)
over the full-body kinematics. For the analysis of full-body
kinematics and its complexity measurements during this task,
see Haar et al. (2019). Briefly, we applied Principal component
analysis (PCA) over the velocity profiles of all body joints
and asked how many PCs are needed to explain the variance.
The manipulative complexity quantifies complexity for a given
number of PCs on a fixed scale (C = 1 implies that all
PCs contribute equally, and C = 0 if one PC explains all
data variability). Lag-1 autocorrelation [ACF(1)] is a lagged
Pearson correlation between a signal to itself. In our case, the

signal is the directional error of the target-ball relative to the
pocket in each trial. Since the estimation of autocorrelations
from short time series is fundamentally biased (Kendall, 1954;
Marriott and Pope, 1954; van Beers, 2009), we calculated the
ACF(1) over the first and the second halves of the learning
session (sets of 150 trials, blocks 1–6, and 7–12, respectively)
and not in each block of 25 trials. Intertrial variability
was defined for each block by the standard deviation over
the directional error of the target-ball in all block’s trials.
The decay in the intertrial variability was measured from
the first block (trials 1–25) to the learning plateau (trials
201–300).

RESULTS

Thirty right-handed volunteers, with little to no previous
experience playing billiards, performed 300 repeated trials
(six sets of 50 trials each with short breaks in-between) where
the cue ball and target ball were placed in the same locations,
and subjects were asked to shoot the target ball towards the
far-left corner pocket (Figure 1A). During the entire learning
process, we recorded the subjects’ brain activity with wireless
EEG (Figure 1B), and the balls on the pool table were tracked
with a high-speed camera to assess the outcome of each trial
(Figure 1C). We divided the trials into blocks of 25 trials (each
experimental set of 50 trials was divided into two blocks to
increase the resolution in time). The learning curve showed decay
in the directional error of the target ball (relative to the direction
from its origin to the center of the target pocket) over trials
(Figure 1D).

The PMBR, a transient increase in beta oscillations over the
motor cortex after the end of the movement, was evident in
the data (Figure 2A). On average across subjects, there was
no clear trend of PMBR (increase or decrease) over learning
(Figure 2B). With a data-driven approach, we assessed if
there may be multiple groups with different PMBR trends that
averaging blends away. We used generative Bayesian modeling
to determine in a data-driven way the structure of the data.
We fitted to the PMBR data (a 12-dimensional matrix, one
data point per run for each subject) a GMMs of one to
five components and used AIC and AICc to select between
these five models (see ‘‘Materials and Methods’’ section). Both
information criteria showed that the data followed a bimodal
distribution (Figure 2C).

The most meaningful measure for learning is the PMBR
correlation with the performance error, as it accounts for the
dependency between this brain signal and the behavior, and it
was reported to show negative correlations in classic adaptation
task consistently across individuals (e.g., Tan et al., 2016). The
subject-by-subject correlation over blocks between the PMBR
and the directional error showed a clear bimodal grouping.While
16 of the 30 subjects showed negative PMBR-Error correlations
(as reported in adaptation studies), the other 14 subjects
showed positive correlations. Again, we used generative Bayesian
modeling to determine the structure of the data. We fitted
to the distribution of the PMBR-Error correlations GMMs
of one to five components, the information criteria (AIC
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FIGURE 2 | Post-movement beta rebound (PMBR). (A) Time-frequency map of a typical subject aligned to movement offset (ball movement onset), obtained by
averaging the normalized power over electrode C3. (B) PMBR over blocks (of 25 trials), averaged across all subjects, error bars represent SEM. (C) The information
criteria (AIC and AICc) of Gaussian mixture model (GMM) fits with one to five components to the PMBR data. (D) The information criteria of GMM fits the PMBR-Error
correlations. (E) The distribution of subject-by-subject PMBR-Error correlations fitted with two-component GMM (pdf: probability density function). Subjects are
color-coded based on the two-component model: subjects with negative correlations are in blue (PMBR Increasers) and subjects with positive correlations are in red
(PMBR Decreasers). The grouping was also validated by unsupervised clustering (see main text). (F,G) PMBR (F) and Baseline beta power (G) of the PMBR
Increasers (blue) and PMBR Decreasers (red) over blocks, averaged across all subjects in each group, error bars represent SEM.

and AICc) showed that the data followed a clear bimodal
distribution (Figure 2D). Eachmode corresponded to a grouping
of subjects with either all positive and all negative correlation
coefficients (Figure 2E). We note that the opposite signs of
the correlations reflect opposite dynamics, further justifying a
grouping into two distinct groups. This validated our findings
with the purely data-driven approach on the multidimensional
PMBR data. Since errors decay over learning, the PMBR-Error
correlation was negatively correlated with the PMBR dynamic
(increase/decrease). Thus, the first group showed a clear trend
of PMBR increase over learning (linear model fit: F-statistic vs.

constant model = 24, p = 0.0006), while the second group showed
a clear trend of PMBR decrease over learning (F vs. constant
model = 45.1, p = 0.00005; Figure 2F). This was validated with
a mixed-design ANOVA model with a between-subjects factor
of the group effect, a within-subjects repeated measures factor
of the change over blocks and their interaction. The model
yielded a significant interaction (F(11) = 6.746, p = 3e-10), but
no significance for the between- and within-subjects factors
(F(1) = 0.27, p = 0.61 and F(11) = 1.767, p = 0.06, respectively).
Thus, for simplicity, we named the groups PMBR Increasers and
PMBR Decreasers.
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While we pursued a probabilistic analysis Bayesian framework
of data science, to further validate this grouping we also tried
a completely different method. We used unsupervised fuzzy c-
means (FCM) clustering, tested for 2 to 10 clusters using a cluster
validity index based on the ratio between-within cluster variation
and between clusters separation (Zhang et al., 2008). The validity
index strictly suggested two clusters in the data, which were
the same groups found by the GMM: the subjects with the
positive and the negative PMBR-Error correlation coefficients.
Additionally, since we calculated beta-power changes as per
cent signal change relative to the average power over the block
(see ‘‘Materials and Methods’’ section), the observed group
differences might be driven by differences in their baselines.
However, we found that this was not the case: there was no
real difference in the beta-power baseline between the groups, in
terms of their values and trend over learning (Figure 2G). There
was no significant difference between the groups’ beta-power
baseline in any of the blocks (t-test, p > 0.076) and not in
the change of the beta-power baseline between blocks (t-test,
p > 0.58). This was also validated with a mixed-design ANOVA
model which yielded no significant group effect (F(1) = 1.286,
p = 0.27), change over blocks effect (F(11) = 0.685, p = 0.75)
or interaction (F(11) = 1.169, p = 0.31). Lastly, we ensured that
these groupings were evident with both EEG systems used in the
study. The brain activity of 20 subjects was recorded with EPOC+
while the other 10 were recorded with DSI-24 (see ‘‘Materials and
Methods’’ section). From the subjects recorded with the EPOC+
system, 10 subjects were PMBR Increasers and the other 10 were
PMBR Decreasers. From the subjects recorded with the DSI-
24, there were six PMBR Increasers and four PMBR Decreasers.
Correspondingly, there was no correlation between the system
and the PMBR-Error correlation (Spearman rank correlation
r = 0.01, p = 0.97).

Based on the EEG data, which suggests two groups of
subjects with different PMBR dynamics, we looked for behavioral
signatures in the task performance of different learning between
these groups. In the task performance metric—the target ball
directional error—we found no significant difference between
the groups. After learning plateaus, the PMBR Decreasers seems
slightly more accurate (Figure 3A) and less variable (Figure 3B),
though not significantly. Mixed-design ANOVA model yielded
no significant group effect (F(1) = 0.001, p = 0.97) or interaction
(F(11) = 0.75, p = 0.69) for the absolute directional error.
PMBR Decreasers seemed to modify their variability (actively
control of the exploration-exploitation trade-off, explicitly or
implicitly) to improve learning, as evidenced by their high
variability in the first block and the very steep decrease towards
the second (Figure 3B). Yet, the Mixed-design ANOVA model
of the directional variability yielded no significant group effect
(F(1) = 0.25, p = 0.62) or interaction (F(11) = 1.57, p = 0.11).
The dynamical control of the variability also evident in the trial-
to-trial directional changes, where the PMBR Decreasers showed
much bigger changes over the first 4 blocks (100 trials), therefore
using more exploration than the PMBR Increasers who made
smaller changes from one trial to the next (Figure 3C). Here
the Mixed-design ANOVA model yielded close to significance
interaction (F(11) = 1.76, p = 0.06), and a t-test over the trial-

FIGURE 3 | Behavioral differences between the groups. (A–D) Directional
absolute error (A), directional variability (B), trial-to-trial directional change (C),
and manipulative complexity (D) of the PMBR Increasers (blue) and PMBR
Decreasers (red) over blocks of 25 trials, averaged across all subjects in each
group, error bars represent SEM. (E) Correlations between the PMBR change
[from the first block (trials 1–25) to the learning plateau (trials 201–300)] and
the learning, across all subjects (black line) and within each group.

to-trial directional changes in the initial four block showed
significant group effect (p = 0.04).

Learning in the task was defined as the difference between
the initial error (over the first block: trials 1–25) and the final
error (over the learning plateau: trials 201–300) normalized
by the initial error. PMBR Decreasers were on average better
learners (mean learning rates were 0.48 and 0.6 for the PMBR
Increasers and PMBR Decreasers respectively) though the group
difference was not significant (t-test, p = 0.17). We explored the
correlation between learning and the PMBR change over blocks
(the difference between the final PMBR over the learning plateau:
trials 201–300, and the initial PMBR over the first block: trials
1–25). Across all subjects, we found no correlation between the
learning rate and the PMBR change (r = −0.11, p = 0.55). When
considering each group separately, for the PMBR Decreasers
there was no clear trend (r = 0.16, p = 0.58), but the PMBR
Increasers showed a clear trend (though non-significant) of
positive correlation of the PMBR change with learning (r = 0.42,
p = 0.1; Figure 3E). This means that within the PMBR Increasers
group subjects who had a higher PMBR increase also showed
more learning.
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Next, we set to study metrics of skill-learning which might
suggest differences in the learning mechanism between the
groups. First, we tested the complexity of themovement—i.e., the
number of degrees of freedom used by the subject—since the
use of multiple degrees of freedom in the movement is a
hallmark of skill learning (Bernstein, 1967). For that, we used
the manipulative complexity (Belić and Faisal, 2015) over the
full-body kinematics (see Haar et al., 2019) for the analysis of
full-body kinematics and its complexity measurements during
this task). While the manipulative complexity is increasing with
learning for all subjects, PMBR Increasers tended to have higher
complexity in their movement, i.e., use more DoF, throughout
the training session (t-test, p < 0.05; Figure 3D).

Second, we explored the lag-1 autocorrelation [ACF(1)] of
the performance measure (in our case, the directional error
of the target-ball relative to the pocket) which was suggested
as an index of skill, where close to zero values corresponds
to high skill (van Beers et al., 2013). The logic behind this
measure is that as skill evolve subjects are less susceptive to noise
from the previous movement. We calculated the ACF(1) over
the first and the second halves of the learning session (sets of
150 trials, blocks 1–6, and 7–12, respectively). The ACF(1) values
of both groups were significantly greater than zero during both
halves of the session (t-test, p < 0.01), as expected for naïve
participants (Figure 4A). The initial ACF(1) values of the PMBR
Decreasers were higher than those of the PMBR Increasers,
though not significantly (t-test, p = 0.06). But, the decay in
the ACF(1) from the first half of the training session to the
second was significantly higher for the PMBR Decreasers (t-test,
p < 0.01; Figure 4B). This was also validated with a mixed-
design ANOVAmodel which yielded no significant overall group
effect (F(1) = 0.119, p = 0.73), but a significant change over the
two halves (F(1) = 7.79, p = 0.009) and a significant interaction
(F(1) = 8.393, p = 0.007).

A third behavioral measure which can differentiate between
learning mechanisms is the decay in the intertrial variability
over learning, which is a known feature of skill learning
(Deutsch and Newell, 2004; Müller and Sternad, 2004; Cohen
and Sternad, 2009; Guo and Raymond, 2010; Shmuelof et al.,
2012; Huber et al., 2016; Sternad, 2018; Krakauer et al., 2019).
The decay in the intertrial variability [measured from the first
block (trials 1–25) to the learning plateau (trials 201–300)]
was also significantly larger in the PMBR Decreasers (t-test,
p < 0.05; Figure 4C). We further tested the link between
the intertrial variability structure and the reported grouping
by correlating the block-by-block directional variability and
PMBR values within subjects. The PMBR Increasers showed
negative correlations over blocks between the PMBR and the
directional variability, while the PMBR Decreasers showed
positive correlations, leading to a very significant difference
between the groups (t-test, p < 0.0001; Figure 4D, left). The
same trend was evident for the trial-to-trial directional changes
(t-test, p < 0.0001; Figure 4D, middle). We also used the
same correlation approach to control for head movements
contamination of the PMBR dynamics.We looked for correlation
over blocks between the PMBR and the peak head acceleration
during the same time interval. Here, we found no significant

correlations for either of the groups (Figure 4D, right), and
most importantly, no difference between the groups (t-test,
p = 0.99).

DISCUSSION

In this article, we detected brain activity signatures for motor
learning in the complex real-world task of playing pool billiards.
Our results produce new insights into motor learning by
revealing two types of motor learners with different EEG
dynamics in their PMBR over learning: PMBR Increasers and
PMBR Decreasers. These groups were defined by their PMBR
dynamic, and the grouping was validated over the correlation
between the dynamics of their PMBR and their performance
errors. While the groups showed no difference in the overall
task performance—as measured by the directional errors of the
ball—there were clear task-level differences between the groups
in measures of skill learning which suggest differences in the
underlying learning mechanisms.

The two known main mechanisms that drive motor
learning—error-based learning and reward-based reinforcement
learning—are engaging different neural processes (e.g., Doyon
et al., 2003; Doyon and Benali, 2005; Uehara et al., 2018).
While both mechanisms can contribute to learning in any
given task, controlled laboratory-tasks are usually designed to
induce the predominance of one mechanism over the other.
In motor adaptation tasks the dominant mechanism is error-
based learning, guided by an internal forward model which
is updated based on sensory-prediction errors; while in tasks
often addressed as skill-learning (such as sequence-learning,
curve-tracking, and force-tracking) the dominant mechanism
is reward-based learning where the controller learns form
reinforcement of successful actions (Krakauer and Mazzoni,
2011; Haith and Krakauer, 2013). PMBRwas reported to increase
over learning in adaptation error-based learning tasks (e.g., Tan
et al., 2014a, 2016; Torrecillos et al., 2015), showing negative
correlations with the decreasing errors. On the other hand,
in skill-learning tasks it was reported to decrease (itself or its
magnetic resonance spectroscopy correlate) over the learning
(e.g., Floyer-Lea et al., 2006; Kranczioch et al., 2008; Kolasinski
et al., 2019). PMBR is positively correlated with magnetic
resonance spectroscopy-measured GABA concentration (Gaetz
et al., 2011; Cheng et al., 2017). This may be due to the
general correlation of beta activity with GABAergic activity
(Roopun et al., 2006; Yamawaki et al., 2008; Hall et al.,
2010, 2011). We raise the possibility of a more nuanced link
of GABA to motor learning: namely that the two diverging
PMBR dynamics (increase vs. decrease) reflect that GABA
activity is a distinguishing feature of different motor learning
mechanisms. These may be reflections of GABAergic projections
from different subcortical regions, cerebellum for error-based
adaptation and basal ganglia for reward-based reinforcement
learning (Doyon et al., 2003; Doyon and Benali, 2005).

Here, we found PMBR dynamic differences between groups of
subjects performing the same task and explored it as a potential
signature of motor learning mechanisms. In the data recorded
during real-world motor learning in the current study, we found
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FIGURE 4 | Behavioral differences between the groups. (A) Lag-1 autocorrelation of the target ball angle over the first and the second half of the training session
(blue: PMBR Increasers; red: PMBR Decreasers). (B) The decay of the lag-1 autocorrelation from the first to the second half of the training session. (C) Directional
variability decay from the first block (trials 1–25) to the learning plateau (trials 201–300). (D) Correlation coefficients over blocks for all individual subjects between the
PMBR and the directional variability (left), trial-to-trial directional change (middle), and head movements (right). Gray asterisk indicates group correlations significantly
different than zero. The black asterisk indicates a significant difference in the correlation coefficients between the groups.

two groups of subjects: PMBR Increasers and PMBR Decreasers.
The PMBR Increasers had low initial PMBR amplitudes and
showed an increase over learning negatively correlated with the
decreasing directional errors (r = −0.40 ± 0.26). Following
previous PMBR literature reported above, we presumed that
these subjects used error-based adaptation as their dominant
learning mechanism. The PMBR Decreasers had higher initial
PMBR amplitudes and showed a decrease over learning positively
correlated with the decreasing directional errors (r = 0.47± 0.17).
Again, following previous PMBR literature, we presume that
these subjects used reward-based learning as their dominant
learning mechanism. As this mapping is highly speculative, we
further explored the performance of the different groups in
the task, looking for signatures of differences in the learning
mechanisms in use. While the main test results are based on the
PMBR over the left motor cortex (contralateral to the moving
arm), we repeated the analysis over the right motor cortex
(ipsilateral to the moving arm contralateral to the stabilizing
arm). In line with previous literature showing similar PMBR
trends between the two hemispheres (e.g., Jurkiewicz et al.,
2006; Gaetz et al., 2010), the results over the right motor cortex
(reported in the Supplementary Materials) replicated those of
the left motor cortex, straightening the robustness of the different
PMBR trends.

While there were no significant differences between the
groups in their initial errors or their total learning, there
was a clear group difference in the learning process. These
behavioral differences can support the notion of differences
in the predominant learning mechanism. First, we looked for
group differences in the number of degrees of freedom of
the body movement used while making the pool shot. Since
the pioneering work of Nikolai Bernstein, who found that
professional blacksmiths use high variability in their joint angles
across repetitive trials to achieve low variability in their hammer
trajectory endpoint, it is known that as skill evolves one learns to
use more degrees of freedom in the movement (Bernstein, 1967).
Using the full-body kinematics in this task from our previous
study (Haar et al., 2019), we found that while over learning

both groups learned to use more degrees of freedom in their
movement, throughout the learning session there was a clear
group difference where the PMBR Increasers used more degrees
of freedom in their movement (Figure 3D).

We used the lag-1 autocorrelation [ACF(1)] as a second
biomarker for the difference in the learning prosses between
the groups. ACF(1) was suggested as an index of skill learning,
measuring the optimality of trial-by-trial motor planning (van
Beers et al., 2013). ACF(1) of zero indicates optimal performance.
What ACF(1) measures is the correlation between the errors in
consecutive trials, and thus could be a good metric to dissociate
between error-based adaptation (where we gradually decrease
the error from one trial to the next) to reinforcement learning
(where an error should lead to exploration). As expected for naïve
participants, the ACF(1) values of both groups during both halves
of the session were significantly greater than zero (Figure 4A).
More importantly, while the PMBR Increasers showed no
significant difference in the ACF(1) between the two halves of
the session, the PMBR Decreasers showed a significant decay
(Figure 4B). This decays difference is a behavioral indication for
learning mechanism differences between the groups.

Third, the intertrial variability patterns were in line with
the suggestion of different learning mechanisms. Decay in the
intertrial variability is a known feature of skill learning (Deutsch
and Newell, 2004; Müller and Sternad, 2004; Cohen and Sternad,
2009; Guo and Raymond, 2010; Shmuelof et al., 2012; Huber
et al., 2016; Sternad, 2018; Krakauer et al., 2019), but not of
adaptation. Here, the PMBR Decreasers (presumably reward-
based learners) showed more decay in their intertrial variability
over learning (Figures 3B, 4C). Additionally, the trial-to-trial
directional changes over the first four blocks (100 trials) were
much higher for the PMBR Decreasers than the PMBR Increasers
group, suggesting that the first group used more exploration
while the second made smaller changes from trial-to-trial
(Figure 4C). This latter behavior would be expected when
learning predominantly by error-based adaptation.

Laboratory-tasks are usually designed to look or characterize
a specific learning mechanism (which is being studied) for all
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subjects, using different types of feedback and perturbation
manipulations (e.g., Huang et al., 2011; Galea et al., 2015;
Kim et al., 2019). In contrast, the way we started to study
real-world motor learning here, which mechanisms are used
and to what extent is unknown a priori. However, we know
that they probably involve multiple high- and low-level learning
mechanisms (Krakauer and Mazzoni, 2011; Haith and Krakauer,
2013), where different subjects might emphasize one learning
modality over the other.

In our pool playing paradigm, subjects could have performed
error-based adaptation as they learned from the directional
error of the target ball in each trial, but they also could have
performed reward-based learning as they learned a novel control
policy to use the cue and their body joints while making a
shot by reinforcement of successful actions. In the following, we
will discuss how we could map the distinct groups of learners
we discovered in our real-world task into the above learning
frameworks (error-based and reward-based). We speculate that
the group that showed the neural patterns which were previously
reported in error-based motor adaptation (PMBR increase, Tan
et al., 2014a, 2016) and behavioral patterns of error-based
adaptation (e.g., no decay in AFC, small decay in intertrial-
variability, low trial-to-trial change)—probably used more error-
based adaptation to adapt an existing motor control policy. At
the same time, the group that showed neural patterns which
were previously reported in reward-based motor skill learning
(PMBR decrease, Kranczioch et al., 2008) and behavioral patterns
of motor skill learning tasks (e.g., decay in AFC, decay in
intertrial-variability, high trial-to-trial change)–probably used
more reinforcement reward of successful actions for learning a
new control policy.

We recently showed in a machine learning study how
simultaneous reinforcement learning and error-based learning
can efficiently be used to learn to control multi-joint muscle
activities to learn to control an arm (Abramova et al., 2012, 2019).
That work suggested when adaptation should occur: if a ‘‘similar
enough’’ controller to achieve the task is already present (e.g.,
from other motor learning experiences) the existing controller is
adapted then learning should have an error correction signature.
In contrast, the absence of a suitable controller for the task either
spawned the generation of a new controller or switching between
multiple somewhat suitable controllers. We may see similar
effects at work in this present human study for the two groups
of learners. Thus, our real-world task merit further investigation
not only in terms of the neuroscience of learning but also in
light of robot andmachine learning algorithms that could explain
the combination of these learning paradigms or even an entirely
new process.

Recent studies suggest that event-related desynchronizations
and synchronizations, such as PMBR, are driven by beta bursts
(Little et al., 2019; Seedat et al., 2020; Wessel, 2020) which carry
more information than the trial-averaged band oscillation. At the
same time, a recent study suggested spatial differences between
beta oscillations that reflect implicit and explicit learning
(Jahani et al., 2020). These recent developments highlight the
potential for capturing neural signatures of learning in EEG
beta. To further validate the current findings, future studies

will need to compare the PMBR dynamics during learning of
the same paradigm with different dominant mechanism, forced
by experimental trickery (i.e., using feedback manipulations
and constraints) in laboratory-tasks or real-world task in a
virtual reality environment, where feedback manipulations can
be applied (Haar et al., 2020).

The transition from a highly controlled lab-based task to a
more ecological free-behavior task introduces many challenges
which led to a few limitations in the design. First, event-
related EEG power changes are ideally normalized relative to
a motion-free pre-movement baseline period. Since we were
trying to keep the task as ecologically valid as possible, we
choose not to force on the subjects a period of quiescence before
each shot. Instead, we normalized relative to the average power.
This follows a common normalization protocol in studies of
PMBR during motor learning in lab-based tasks (Tan et al.,
2014a, 2016; Torrecillos et al., 2015; Alayrangues et al., 2019).
Since the same normalization was applied to all blocks of all
subjects, we believe that the normalization protocol could not
have affected the within-subject PMBR trends in a way that
would change the results. Second, the movement has termination
is also not perfectly defined, as subjects could follow through, or
not. To address it, we used the ball-movement onset to define
the movement offset and defined the PMBR based on the peak of
the power in the following 2 s. Thus, even if the follow-through
lasted a few hundred milliseconds, the PMBR was well within
the window.

Finally, the results of the current study are correlational
and cannot, by design, establish a causal role of PMBR in
motor learning or motor learning causing PMBR. We propose,
however, that going forward that brain stimulation at the
beta band can be used to manipulate the PMBR to infer
causality (Pogosyan et al., 2009; Tan et al., 2014b; Herrmann
et al., 2016). Similarly, differential studies with patient groups
with evidence of an impaired beta activity, such as Parkinson
(Heinrichs-Graham et al., 2014), stroke (Rossiter et al., 2014),
Autism Spectrum Disorder (Gaetz et al., 2020), or Schizophrenia
(Robson et al., 2016), can also provide evidence for evaluating
causality. We believe that our natural task approach here will be
facilitating working with such patients’ groups instead of using
the artificially construed tasks of clinical settings.

CONCLUSIONS

In this mobile brain activity study in a pool playing task,
we demonstrate the feasibility and importance of studying
human neuroscience in-the-wild, and specifically in naturalistic
real-world motor learning. We highlight that real-world motor
learning involves different neural dynamics for different subjects,
which were previously associated with different learning
mechanisms in different tasks. Presumably, the individual
subject’s proportion of applying the two learning mechanisms
could be revealed by the overall trend of the PMBR over learning.
It suggests that real-world motor learning involves multi-modal
learning mechanisms which subjects combine in new ways when
faced with the complexity of learning in the real-world, and
different subjects emphasize one mechanism over the other.
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