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Seasonality of agricultural exposure as an
important predictor of seasonal yellow fever
spillover in Brazil
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Yellow fever virus (YFV) is a zoonotic arbovirus affecting both humans and non-human

primates (NHP’s) in Africa and South America. Previous descriptions of YF’s seasonality have

relied purely on climatic explanations, despite the high proportion of cases occurring in

people involved in agriculture. We use a series of random forest classification models to

predict the monthly occurrence of YF in humans and NHP’s across Brazil, by fitting four

classes of covariates related to the seasonality of climate and agriculture (planting and

harvesting), crop output and host demography. We find that models captured seasonal YF

reporting in humans and NHPs when they considered seasonality of agriculture rather than

climate, particularly for monthly aggregated reports. These findings illustrate the seasonality

of exposure, through agriculture, as a component of zoonotic spillover. Additionally, by

highlighting crop types and anthropogenic seasonality, these results could directly identify

areas at highest risk of zoonotic spillover.
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Yellow fever (YF) is a zoonotic arbovirus affecting both
humans and non-human primates (NHP’s) in Africa and
South America1. In South America the virus is described

in two cycles, the sylvatic and the urban. In the sylvatic cycle
transmission is maintained between NHP’s via sylvatic mosquito
species such as those of the Haemogogus and Sabethes genera1,
with humans considered incidental hosts that likely do not con-
tribute to onward transmission. If the virus establishes itself in the
urban and diurnal Aedes aegypti, the vector of dengue and zika,
then transmission can be sustained in the absence of an NHP
reservoir host and can lead to rapid and devastating epidemics2,3.

In Brazil, since 1942, all cases of YF have been recorded as due
to the sylvatic cycle, with much of this transmission confined to
the North and North West of the country4. However, since 1998
there has been a significant expansion of the risk areas4, culmi-
nating in the largest outbreaks of YF since the sylvatic cycle was
described in the 1930s. As a consequence of a re-emergence
process started in 2014, when the virus spread outside the
Amazon region (endemic zone)5, the densely populated South-
Eastern states of the country were strongly affected in 2016–2017,
including areas with no record of the disease for decades6. This
was followed by an equally large and widespread outbreak during
the following season, 2017–2018, with additional, low level
transmission detected outside its endemic zone in the
2018–2019 season.

While the seasonality of YF has been previously highlighted7,8,
there remain substantial knowledge gaps about the processes
behind this. Seasonal variations in climate can lead to increased
vector populations and the suitability for disease transmission,
factors which have been used to explain this temporal variability
—and even allowed for the forecasting of coming seasons with a
high degree of accuracy9–13. However, due to sylvatic transmis-
sion driving YF cases in humans in Brazil, there remains a
counterpart to the seasonality of transmission, the seasonality of
exposure. In Brazil around 45% of cases of YF occur in those
involved in agriculture or extractivism, both highly seasonal
activities14. Despite the relationship between agriculture and
human disease transmission being one of considerable scientific
interest15,16, with numerous articles on how landscape changes
can affect exposure to human populations17,18, changes in vector
composition19,20 or alter zoonotic reservoir host behaviours21,
research on how disease transmission is altered by the seasonality
of agriculture is lacking.

In this study we seek to investigate the drivers of seasonal YF
transmission in Brazil in both humans and NHP ’s. We apply
random forest models to predict occurrence of human or NHP
YF using covariates related to the seasonality of climate and of
agriculture. We assumed that seasonality of agriculture (e.g.
harvesting) is a proxy for risk of exposure to the sylvatic cycle. We
evaluate the relative importance of these components and identify
individual crop types and agricultural activities that are related to
increase YF reporting.

Results
Seasonality of YF reports in humans and NHP’s in Brazil. YF
reports were highly seasonal in both humans and NHPs, though
specific patterns differed slightly (Fig. 1). Human YF reports are
minimal throughout much of the year, June–November, but
increase rapidly in December to a peak in January before
decreasing towards minimum values in May. In contrast, NHP
reporting has a lower seasonality amplitude—with cases reported
throughout the year at a background level. Cases increase from
October, with a similarly timed peak in January. This remains
stable for February and March, before descending to background
levels in June.

The vast majority of human reports of YF occur between −18°
and −24° latitude, whereas NHP reports have a more widespread
distribution, with less clustering and substantial numbers further
south at −28° to −30° latitude.

Model fits and comparison of agricultural seasonality and cli-
mate/vegetation. Model fits varied across all covariate inclusions
and classification report types. Generally, AUC scores for out-of-
sample predictions of reports of human cases and of both human
and NHP cases were higher than those of reports of NHP cases
alone (Table 1). The best performing model, as measured by the
Brier score, was 15 (Table 2). Model OHAC contained all cov-
ariate groups. The best-fitting model which did not include
agricultural seasonality was OHC, ranked 5th. The out-of-sample
AUC for human reports of YF varied from 0.80 (0.73–0.87) in
model O, to 0.93 (0.90–0.96) in OHAC (Table 1). AUCs for NHP
reports of YF were lower, ranging from 0.78 (0.75–0.82) in model
A, to 0.92 (0.90–0.94) in models HAC and OHAC. Municipalities
that had both human and NHP reports of YF had out-of-sample
AUCs ranging from 0.73 (0.69–0.77) for model A, to 0.84
(0.81–0.87) for the model OHAC.

Out-of-sample predictive performance, as calculated using a
spatial-block bootstrapping method was overlapping or only
slightly lower than within-sample performance for predicting the
human and NHP reports, but slightly worse for predicting both
reports (Fig. 2). Out-of-sample performance tracked within-
sample performance for all models.

Seasonal trends in model predictions. While all covariate
groupings captured the monthly seasonality of YF to a degree,
they did so at differing levels of accuracy. The seasonality of
human YF reports was generally better reproduced (correlation of
0.80 in the best fit climate/vegetation seasonality model to 0.99 in
the best fit including both types of seasonality) than the season-
ality of NHP reports (0.83 in the climate/vegetation seasonality
model to 0.95 in the models that included the agriculture of
seasonality) or of reports of both human and NHP cases (0.80 in
the agricultural seasonality model to 0.97 in the OHAC model)
(Table 2, Table 3, Table 4 and Fig. 3).

The best fit models that included the seasonality of agriculture
provided a substantially better fit to the seasonality of human
reports (Table 2, Table 3 and Fig. 3). In particular they more
accurately captured the magnitude of seasonality—something
that the best fit model that only included the seasonality of
climate/vegetation failed to account for. Models generally under-
predicted reports of YF in months of heightened transmission,
and marginally overpredicted during the “low season” (Fig. 3).
While no models captured the true magnitude of the peak of the
epidemic, models that included agriculture seasonality more
accurately represented the data than those without.

At a national level, there is significant seasonality in YF reports
(human, NHP and both), with 79.8% of all reports occurring
January–March, and a minimum of 1 report in October, and 255
in January. The probability of a human report is minimal from
July to October for all models and the data, while in November
the best fit climate/vegetation seasonality model predicts a
substantial increase in reports this is not reflected in the data
or the other model predictions. A rise in actual reports, from 4 to
55, and predicted reports in December, with the climate/
vegetation seasonality model over-predicting the number of
reports. January sees a significant increase in the reporting of
cases, rising from 55 to 255 reports, followed by a fall to 194 in
February, a trend which is accurately followed in all models’
predictions, apart from the climate/vegetation seasonality model
which underpredicts substantially.
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Fig. 1 The proportion of human and NHP reports occurring each month by 1° latitude across Brazil. A The number of human YF reports by both across
Brazil, B the proportion of human reports occurring at each latitude, C the number of human YF reports by 1° latitude. D The number of NHP YF reports by
both across Brazil, E the proportion of NHP reports occurring at each latitude, F the number of NHP YF reports by 1° latitude. Shade of cell refers to the
proportion of reports occurring at the latitude.
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NHP reports follow a less strongly seasonal pattern than
human reports, with higher levels of reporting seen across the
year, with the minimum of 12 reports occurring in August, and
the maximum of 181 in January. Model predictions follow a
similar pattern to predicting to the human reports, with the
climate/vegetation model predictions consistently over-predicting
the “low-season” months of June–December, and under-
reporting the peak of January–April, with other models generally
performing well.

Geographical distribution of YF reports. Reports of YF in all
classifications are found throughout much of the country, with
the exception of the North East of Brazil (Fig. 4).

Notable hotspots for human reports are seen in the South-
Eastern Atlantic states of Brazil, Western and Amazonian states.
NHP reports are more widely spread throughout the country,
with reports in states without human cases such as Bahia and
Tocantins. Municipalities with both human and NHP reports
reflected the distributions of human and NHP reports, with much
of Espírito Santo and large areas of São Paulo state recording both
human and NHP reports.

The best fit model (OHAC) reproduced all these patterns well.
The predicted pattern of human reports largely matched the data,
with the exception of predictions of higher in the North states
that constitute part of the Amazon where cases have not been
reported in this time period.

Variable importance comparisons for best-fitting models. We
assessed variable importance ranks for the best-fitting models
with only agricultural seasonality (OHA), only climate seasonality
(OHC) and with both (OHAC).

For models which included vegetation/climate grouping, these
had high levels of importance attributed, similarly host covariates
were ranked favourably in all models. Agriculture output and
agriculture seasonality were not found to have high values in
permutation importance (Fig. 5).

In the OHAC model, the top performing covariates were
related to temperature and rainfall, with Night Temperature
particularly important (any its value in the last and 2 months ago
similarly ranked highly). The most important agricultural output
covariates were the number of bean, corn and soya farms and the
agricultural seasonality covariates that had the most influence was
rice harvesting and peanut planting.

Discussion
We have identified the highly seasonal nature of YF reporting in
both humans and NHP’s, as well as demonstrating the relative
predictive power of utilising covariates related to the seasonality
of climate and the seasonality of agriculture. All model fits
accurately captured the seasonality of reporting in humans and
NHP’s, though models fit to reports of YF that included humans
performed significantly better. Models that included the season-
ality of agriculture had a significant and substantial improvement
in their ability to predict human reports (aggregate monthly
correlation: 0.99 vs 0.80) (Table 3 and Table 1). Our findings
illustrate the importance of the seasonality of exposure, and that it
is not necessarily just an increased viral transmission in zoonotic
reservoir hosts which leads to spillover, but also an increased
interaction with the sylvatic cycle. In addition to this we have
highlighted the individual role of different crop types such as
peanut and bean planting/harvesting on increasing the prob-
ability of YF reporting.

While the link between agriculture and disease has long been
highlighted, there has been little work done on how the season-
ality of exposure relates to increased disease transmission, andT
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even less for yellow fever. The increased predictive performance
of models fit to the seasonality of agriculture over climate is an
important finding for predicting zoonotic spillover into human
populations. Despite climate dictating the environmental

suitability for vectors, and so likely increasing viral transmission
within the sylvatic reservoir host, it is covariates that indicate an
increased exposure to the sylvatic cycle that appear more deter-
minant. The importance of human-animal contact in zoonotic
spillover has previously been highlighted as a significant deter-
minant of spillover events22,23, though this has not been explored
in the context of seasonality of agriculture as a driver of exposure
for vector-borne diseases.

Although further study is needed to establish a mechanistic
understanding of how these agricultural activities increase expo-
sure to the sylvatic cycle, the associations highlighted here
represent an important first step. Agricultural activities in Brazil,
and much of the world, are rapidly changing. Rising populations
and the growing of “cash” crops, such as rice and soya, for
exportation are changing the agricultural ecosystem, as well as
driving deforestation and general habitat conversion24. These
changes are likely to lead to both short term effects, and long-
term changes in the epidemic and endemic potential of numerous
diseases—particularly those with a zoonotic component18,25,26.
Our findings suggest that these changes, in addition to changing
the overall suitability of a habitat, may even change the relative
seasonality of spillover. Following the initial disruptions to the
sylvatic cycles that are brought on by land conversion, the regular
transformation of the landscape, through planting and harvesting,
as well as the increased interaction of humans to this habitat
appear to increase the risk of YF spillover for several crop types
and activities. This “anthropogenic seasonality” may have public
health consequences for surveillance and further transmission.
Aligned with the strong seasonality typically associated with
changes in rainfall and temperature7,8, surveillance efforts for YF
are generally intensified between December and May in Brazil
with priorities shifted towards other activities outside of this time
period, a strategy undertaken following a YF case series analysis
(1970–2008)27. However, if this seasonal spillover is not merely
dictated by climate as was previously believed, then human
transmission may be occurring undetected at higher levels than
currently suspected outside of the traditional seasonal period,
especially in endemic zone. Undetected and unopposed spillover
into humans additionally raises the risk of establishment in Aedes
aegypti populations—potentially sparking urban epidemics which
have historically spread rapidly, been hard to contain, and
reached outside of their country of origin3,28.

Despite the substantial model improvements offered when
including the seasonality of agriculture, the model OHAC which
considered both the seasonality of climate and agriculture,
highlighted the variable importance of climate. Without an
increased sylvatic transmission of the virus, determined by cli-
mate, spillover cannot occur and so still plays an important role
in YF transmission in Brazil. Although climate and agriculture are
intrinsically linked, with different activities occurring at times
where climate favours growing and harvesting, they are not

Table 2 Absolute total deviances between YF reports and
within-sample model predictions (for models fitted to all the
data) by covariate grouping.

Covariate groupings Monthly difference from data (Total YF
reports—total model predictions)

Human NHP Both

OHA 295.4 249.4 91.3
OHC 440.1 414.8 117.3
OHAC 278.7 260.0 71.2

Results are shown for the best fit model including agricultural (but not climate) seasonality
(OHA), climate (but not agricultural) seasonality (OHC) and both forms of seasonality (OHAC).

Fig. 2 Comparison of training and validating AUC values for human, NHP
and municipalities with both. AUC values for the classification of a
municipality as having (A), human YF report (B), NHP YF report and (C)
human and NHP YF report. The x-axis numbers refer to the models found in
Table 1. Red refers to the training AUC value and blue the validation AUC
value. Error bars represent the 95% confidence intervals of the prediction,
calculated from the 100 out-of-sample validation AUC values for each
model formulation. N= 100 out-of-sample calculations of the AUC for 15
independent models.

Table 3 Pearson’s correlation values comparing within-
sample model predictions (for models fitted to all the data)
with the data by covariate grouping.

Covariate groupings Monthly predictions correlation

Human NHP Both

OHA 0.99 0.95 0.94
OHC 0.80 0.83 0.80
OHAC 0.99 0.95 0.97

Results are shown for the best fit models including agricultural (but not climate) seasonality
(OHA), climate (but not agricultural) seasonality (OHC) and both forms of seasonality (OHAC).
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equivalent. In addition to the significant differences in model fit,
climate and agricultural activity covariates only show moderate
correlation. This is partly because agriculture is not solely decided
by the climate, with anthropomorphic adaptations such as the use
of irrigation, fertilisers and herb/pesticides allowing for an ever-
increasing detachment from seasonal farming. This, in conjunc-
tion with the binary nature of our agriculture seasonality data,
and analysis into covariate correlations, variable inflation frac-
tions and exploring the impact of different methodologies, sug-
gests that we are investigating two separate processes and not
simply overfitting to climate driven data.

Although in and out-sample AUC values of models fit to
human reports of YF were not significantly different (or sub-
stantially so), AUC values for predicting both reports showed
larger differences, indicating potential overfitting. This suggests
that these models do not capture the underlying transmission
dynamics distinguishing areas as spillover where both human and

NHP cases are founds, an unsurprising finding given the differ-
ences expected in human and NHP exposure to the sylvatic cycle.
Additionally, this result may relate to the surveillance of NHP
cases. As the number of humans entering habitats suitable for
NHP’s and sylvatic mosquitoes increases, then there will be an
increased observation of NHP’s and so the probability of
detecting an NHP YF report will increase. Therefore, the rela-
tionship we have captured may be partially related to a seasonal
increase in surveillance, a finding which could be used to correct
for seasonal variations in NHP report detection biases related to
exposure to sylvatic habitats.

Human reports of YF, geo-located to the site of infection rather
than the site of reporting, are representative of the environmental
and climatic covariates associated with transmission. Unfortu-
nately, reporting of NHP YF brings substantial heterogeneities in
surveillance sensitivity across Brazil, with some regions not
reporting these events officially, despite their occurrence. While it

Table 4 Covariate groupings for statistical modelling.

Groupings Covariates Monthly variation in
covariate

Number of
covariates

Agricultural output (O) Number of farms producing each crop type No 8
Host demographics (H) Number of NHP species, proportion of total human population working

in agriculture, log of rural human population
No 3

Agricultural seasonality (A) Binary (0, 1) indicator for planting and harvesting of the 8 crop types
measured in the agriculture output

Yes 16

Climate/vegetation
seasonality (C)

Rainfall, day and night temperature, the temperature range and the
EVI, as well as the 1 and 2 month lagged values of these covariates

Yes 15

Fig. 3 Comparison of monthly model predictions and the data for models including seasonality of climate, agriculture and both. Total monthly YF
reports and in-sample model predictions A, D for humans, B, E NHPs and C, F both classifications. The top row (A, B, C) depicts the overall monthly data
and model predictions for each classification type. The black rectangles indicate the data. The bottom row (D, E, F) show the residuals. Results are shown
for the best fit model including agricultural (but not climate) seasonality (model OHA), climate (but not agricultural) seasonality (model OHC) and both
forms of seasonality (model OHAC). Within-sample predictions are shown. Red refers to the OHA model predictions, green the OHC and blue the OHAC.
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may seem intuitive for the health system to specifically deal with
human health, regions where there are partnerships with other
governmental organisations are better at detecting these events,
and so improve human health by considering the entire ecology
of disease transmission, not just the human component. The
heterogeneities in NHP reporting may additionally explain why
models that included human reports of YF performed better with
human reporting less influenced by heterogeneity in sensitivity.
Furthermore, in some areas the reporting of epizootic events is
directly related to human reports of YF, with zoonotic surveil-
lance intensified following the reporting of a human case of YF.
While this follows a sensible protocol for disease surveillance and
response, it introduces additional surveillance biases into our
model, which may affect the relationships between NHP YF
reports and the environment/climate that we are trying to
capture.

Future work may be able to expand this analysis through
increased detail on the seasonality of agricultural activities and
reporting. Here we have only been able to collate presence/
absence for limited crop types at the first administrative division,
which despite its limitations still offers substantial improvements
to models (Table 1 and Fig. 3). Additional quantification of the
scale of agricultural activities, additional crop types, and their
relationship with sylvatic habitats at a higher spatial resolution
may reveal further relationships within these agriculture land-
scape mosaic and YF reporting. This expansion would rely on
further geo-localisation of reports, and so in order to increase the
accuracy and applicability, the collection and reporting of
coordinates of YF reports is vital for improved data and
predictions.

In conclusion, our analysis represents an important first
investigate the relationship of the seasonality of agriculture and
yellow fever, as well as other arboviruses. By identifying the types
of agriculture and crops associated with YF transmission, this
work has direct and immediate applicability. Through targeting
vaccination and surveillance activities towards areas, and time-
periods, most at risk of spillover, we can more accurately and
effectively prevent human YF before it occurs. This increased
understanding of YF spillover is particularly important in the
context of limited resources29, and a globally changing epide-
miology of YF30, and the increased risk of international expor-
tation that these bring28.

Methods
YF reports. YF case data for humans and NHP’s were provided by the Brazilian
Ministry of Health at the municipality level for all cases recorded between 2003 and
2018. Cases were anonymised and included a municipality identification number,
municipality name, and the date of symptom onset. There were 2423 human cases
of YF in the original dataset; of these 10 did not contain a date, 18 could not be
geo-located, leaving 2395 cases. These 2395 cases translated to 694 monthly
occurrences of YF across 434 unique municipalities.

Case data for NHP’s contained a municipality identification number,
municipality name and the data of epizootic event discovery. There were 3209
NHP epizootic events confirmed by either laboratory or epidemiologic link criteria,
of which all could be identified at the municipality level, and with a date—though
10 occurred before 2003, leaving 3199 cases. This led to 771 monthly occurrences
in 409 unique municipalities.

Monthly reports of YF were aggregated over the time period 2003–2018 due to
the relative scarcity of YF reports on an individual annual basis. Thus, the final
dataset consisted of occurrence (coded as a binary 0/1 variable) of YF for each of
the 12 calendar months and each municipality. Municipality represents the second
administrative level in Brazil.

Fig. 4 Data and predictions of YF cases in humans, NHPs and both across Brazil. A Aggregate reports of the data for human, NHP and both reports
model predictions for the probability of classifying an administrative location as A only having human reports, C only NHP reports and D both human and
NHP reports. Model predictions are from the best fit model with all covariates (model OHAC). Colours indicate the probability of presence for each of the
report type in figures B–D.
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This approach was taken rather than using the number of cases due to the large
uncertainties in reporting and detection of YF cases. Due to the presence of
asymptomatic infection, and non-specific symptoms in mild cases, in addition to
the rural locations and issues related to diagnosis, case numbers represent just the
tip of the iceberg, and potentially do not indicate the magnitude of actual
transmission, particularly in endemic settings {Monath, 2006 #516}. Furthermore,
the differences between regions in their surveillance are likely to be inconsistent.
However, by modelling the presence/absence of a YF report in a month, this
approach is more robust to these issues, as it only takes a single report of YF during
the time period to be classed as a province with YF presence.

Host demographics. NHP species distribution maps were obtained from
NatureServe31. This data were available as demarcations of distribution, which was
geo-located to the municipality level and used to calculate the number of NHP
species present in each location.

Data on the population of each municipality and the proportion of the
population working in agriculture were obtained from Instituto Brasileiro de
Geografia e Estatística (IBGE). Available from: https://www.ibge.gov.br/estatisticas-
novoportal/downloads-estatisticas.html.

Seasonally varying agricultural activity. Information on agricultural activities
(planting, harvesting and planting or harvesting) at the state (first administrative
level) was extracted from an agricultural calendar published by Companhia
Nacional de Abastecimento (Conab) in conjunction with the Ministério da Agri-
cultura, Pecuária e Abastecimento (Mapa) in Brazil32. This provided data on a
monthly basis for 15 crops in Brazil. This information was tabulated as a dataset of
monthly presence and absence (0/1) of planting and harvesting for each crop.

Of these, eight were chosen for further analysis due to the number of farms
producing the crop type: peanuts, rice, the common bean, castor beans, corn, soya,
sorghum and wheat. These eight crop types represent 16 binary covariates of
planting and harvesting.

Agricultural output. Information on agricultural output of Brazil at the munici-
pality level is provided by the “2017 Agricultural, Forestry and Aquaculture Cen-
sus” in a variety of formats at their portal https://censoagro2017.ibge.gov.br/
templates/censo_agro/resultadosagro/agricultura.html. This provided the number
of farms producing each of the eight crop types that seasonal agriculture data were
available for.

Fig. 5 Covariate variable importance for models looking at the seasonality of climate, agriculture and both. Variable importance values for A the model
with agricultural seasonality but not climate seasonality, model OHA, B the model with vegetation/climate seasonality but not agricultural seasonality,
OHC and C the model with both agriculture and vegetation/climate seasonality, model OHAC. Variables are omitted when note present in the model.
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Seasonally varying climate and vegetation. Data on temperature33, vegetation
(as measured by the Enhanced Vegetation Index (EVI)34), and rainfall35 were
spatially aggregated from their original resolution, of between 1/120 and 1/12
degree, by calculating population-weighted means, based on the population dis-
tribution from LandScan 201536 for each municipality in Brazil. Multi-year
averages (over 2003–2016) were calculated for each calendar month of the year and
municipality.

Multi-collinearity. RF algorithms automatically reduce correlation amongst the
trees by performing a search over a subset of variables as opposed to searching
across all variables, with previous research showing that with tuning of the number
of trees and depth, RFs are capable of dealing with datasets that have a high degree
of correlation37–39.

Furthermore, we found that none of our seasonally varying agricultural
covariates were highly correlated with those in climate/vegetation, lending support
to the theory that these are measuring somewhat independent processes and not
purely overfitting to patterns in climate/vegetation (Fig. 6).

Covariate groupings. Agricultural output covariates were included alongside their
relevant seasonal variations in agricultural activity, along with covariates related to
climate and vegetation, and the number of NHP species, the proportion of the
population working in agriculture and the log of human population. In order to
increase the relevance of model findings, the dataset was ordered to follow the
Brazilian YF surveillance period of July–June.

These were grouped into four classes and all possible combinations of these four
classes were investigated, for a total of 15 models (see the SI for a full list of covariates).
For the purpose of comparison, covariates were standardised to the have zero mean
and unit standard deviation before being used in the random forest models.

Random forest models. Random Forests (RF) are a machine learning ensemble
method which use covariates to explain patterns in data but work by creating a series
of decision trees to explain the results40. These “trees” are then aggregated, and the
mean taken produce a “forest”. These can provide substantial improvements in
accuracy over traditional regressions, in addition to accounting for both interactions
and non-linear relationships41. Random forest modelling was carried out using the
Ranger package42 in the statistical programming language R43, version 3.5.1.

We used the RF models to classify municipalities into one of four categories, no
reports of YF, human reports of YF, NHP reports of YF or both, for each month.
Permutation variable importance44 and partial dependency plots45 were calculated for
each model to assess the contribution of individual covariates to predicted YF risk.

Model fit for each classification type was assessed by the out-of-sample area
under the receiver operating characteristic curve (AUC), a measure of sensitivity
and specificity, and the overall model performance rank by the out-of-sample Brier
score46. The Brier score is a way of modelling the accuracy of probabilistic
predictions when outcomes are mutually exclusive, with the lowest score indicating
the best set of predictions47.

Out-of-sample validation. Out-of-sample predictive ability was assessed using a
spatially disaggregated form of cross-validation called spatial-block bootstrapping.
A 5° × 5° grid of longitude and latitude was constructed, and municipalities
assigned to grid squares using their centroid coordinates. Grid squares were ran-
domly sampled from this grid with replacement to produce a training dataset of the
same size as the original but comprising of 60–70% of the municipalities. The
remaining 30–40% of municipalities were used as a validation set. This was
repeated 200 times to produce 200 different training and validation datasets

Models were fitted to the training dataset and used to predict the validation
dataset, with predictions being assessed via the out-of-sample AUC. This was repeated
200 times with different block bootstrapped training and validation sets. The average
AUC across all 200 samples was then taken to ascertain the out-of-sample predictive
performance of the models. See Supplementary Material for further details.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The underlying data used are anonymised and provided with the code in a repository
found at https://github.com/arranhamlet/YF_agriculture_seasonality 48.

Code availability
Example code how to load in the data, run the models and produce some of the figures
and tables is available at https://github.com/arranhamlet/YF_agriculture_seasonality 48.

Fig. 6 Heatmap of the correlation (−1 to 1) of agriculture seasonality and climate covariates included in the analysis.
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