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Abstract

Motivation: Each year, the number of published bulk and single-cell RNA-seq datasets is growing exponentially.
Studies analyzing such data are commonly looking at gene-level differences, while the collected RNA-seq data inher-
ently represents reads of transcript isoform sequences. Utilizing transcriptomic quantifiers, RNA-seq reads can be
attributed to specific isoforms, allowing for analysis of transcript-level differences. A differential transcript usage
(DTU) analysis is testing for proportional differences in a gene’s transcript composition, and has been of rising inter-
est for many research questions, such as analysis of differential splicing or cell-type identification.

Results: We present the R package DTUrtle, the first DTU analysis workflow for both bulk and single-cell RNA-seq
datasets, and the first package to conduct a ‘classical’ DTU analysis in a single-cell context. DTUrtle extends estab-
lished statistical frameworks, offers various result aggregation and visualization options and a novel detection prob-
ability score for tagged-end data. It has been successfully applied to bulk and single-cell RNA-seq data of human
and mouse, confirming and extending key results. In addition, we present novel potential DTU applications like the
identification of cell-type specific transcript isoforms as biomarkers.

Availability and implementation: The R package DTUrtle is available at https://github.com/TobiTekath/DTUrtle with
extensive vignettes and documentation at https://tobitekath.github.io/DTUrtle/.

Contact: tobias.tekath@wwu.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High throughput gene expression profiling via RNA-seq has been a
major driver of biological insight in the last decade. The number of
publicly available datasets has grown exponentially (Supplementary
Fig. S1 and Supplementary Methods), recently boosted by the so-
called ‘single-cell revolution’ (Pennisi, 2018). In the last few years, a
plethora of new single-cell RNA-seq technologies and analysis meth-
ods arose (Aldridge and Teichmann, 2020). These technologies
allow for an unprecedented level of biological insight (Aldridge and
Teichmann, 2020; Kamies and Martinez-Jimenez, 2020), but simul-
taneously present unique challenges to scientists (Lähnemann et al.,
2020).

While most studies mainly focus on analyzing RNA-seq datasets
in regard to differential gene expression (DGE) between cell types,
conditions or time points, only few also have a look at expression
differences of differently spliced transcript isoforms of a gene
(hereafter referred to as ‘transcripts’). A great amount of higher
organism’s genes are expressed in different isoforms (Chen et al.,
2014; Gerstein et al., 2014), e.g. over 86% of human protein-coding
genes have at least two annotated transcripts (Gencode v34). Such

often-overlooked transcript-level analyses revealed splicing differen-
ces related to various genetic diseases (Scotti and Swanson, 2016)
like several types of muscular dystrophy and Parkinson’s disease,
or cancer (Vitting-Seerup and Sandelin, 2017). Alternatively, infor-
mation on transcriptional differences can be used for cell-type
identification, as most cell types express a unique transcriptomic
pattern (Aguet et al., 2017; Reyes and Huber, 2018). While direct
differential transcript expression (DTE) analysis would be possible,
a differential transcript usage (DTU) analysis is better suitable to
accompany a DGE analysis (Soneson et al., 2015). A DTU analysis
is testing for proportional differences in the expressed transcript
composition of a gene, thus comparing how much each transcript
contributes to the gene’s total expression between conditions. The
ability of DGE, DTE and DTU analyses to identify a gene, or at least
one of the gene’s transcripts, as differential is exemplified for three
cases in Figure 1.

A DTE analysis identifies all significantly differentially expressed
transcripts without considering which transcript is originating from
which gene. The analysis also includes transcripts of genes, which
could already be identified in a DGE analysis. For these genes,
the shown gene-level expression differences strongly resemble the
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direction of differences observed in the DTE analysis, i.e. there is no
difference in the gene’s transcript composition (e.g. Fig. 1a). Thus, it
would not be preferable to perform a DTE analysis alongside a DGE
analysis, as both analyses would spend statistical power on identify-
ing the same effect. A DTU analysis, on the other hand, is not
affected by this phenomenon, as there is an information gain if a
gene is identified both in a DGE and a DTU analysis. Such a gene
would not only show differential expression between conditions,
but there would also be a proportional shift in transcript compos-
ition, e.g. there is a change in the majorly expressed transcript.

The rise of fast transcriptomic quantifiers, like Salmon (Patro
et al., 2017) or kallisto (Bray et al., 2016), leveraged the possibility
of quickly assessing gene and transcriptomic counts without the
need to perform a compute-intensive genomic alignment. Recently,
single-cell variants of these tools were made available as Alevin
(Srivastava et al., 2019) and bustools (Melsted et al., 2019), sup-
porting single-cell RNA-seq data from various protocols. The quan-
tification results can be used with established DGE and DTU calling
methods, allowing for an analysis based on the very same underlying
data. Besides their computation time improvement, transcript abun-
dance estimators retain multi-mapping reads (i.e. reads that could
originate from multiple transcript isoforms) for their inference
steps, which showed increased sensitivity compared to a classical
alignment (Robert and Watson, 2015). In addition, this behavior is
essential for correctly quantifying transcript isoforms and therefor
also for DTU analysis.

Recently published DTU analysis tools either focus on bulk
[IsoformSwitchAnalyzeR (Vitting-Seerup and Sandelin, 2017,
2019), RATs (Froussios et al., 2019), BANDITS (Tiberi and
Robinson, 2020)] or single-cell RNA-seq data [Sierra (Patrick et al.,
2020)]. The established tool IsoformSwitchAnalyzeR offers a pleth-
ora of different analyses, including DTU calling utilizing either the
DRIMSeq (Nowicka and Robinson, 2016) or DEXSeq (Anders
et al., 2012) package. It offers various analysis steps, trying to
identify isoform switches with functional consequences, mainly by
incorporating data from external tools. The recently published
RATs enhances previous approaches by taking (optional) inferential
replicate information of the transcriptomic quantifiers into account
for the DTU calling. BANDITS also focuses on modeling uncer-
tainty of the transcriptomic quantification process by using

transcript equivalence classes and a Bayesian hierarchical model in
conjunction with Markov chain Monte Carlo sampling. The results
look very promising, but the complex statistical computations heav-
ily impact the analysis’s computation time. Lastly, the recently pub-
lished Sierra introduces DTU analysis of single-cell RNA-seq data
by implementing a novel approach of dissecting transcript expres-
sion based on peak calling of specific gene feature sites. In contrast
to the approach presented in this publication, Sierra relies on a gen-
omic alignment followed by attributing peak counts to annotated
features (exons, introns, UTRs). These counts are then aggregated to
pseudo-bulk samples and tested for differential usage via DEXSeq.
Notably, Sierra’s approach is not comparable to ‘classical’ DTU
analyses, as not expression proportions of transcripts are compared
but expression proportions of features. Thus, the results are not dif-
ferentially used transcript isoforms between groups, but rather dif-
ferential exon usage, differential intron usage, etc. in a gene.

This publication presents DTUrtle, the first DTU calling and
visualization workflow for bulk and single-cell RNA-seq data, and
the first method to perform a ‘classical’ DTU analysis in a single-cell
context. DTUrtle adapts and extends one recently presented DTU
calling workflow (Love et al., 2018), adding the capability to ana-
lyze (sparse) single-cell expression matrices. Furthermore, it introdu-
ces a novel detection probability score for tagged-end data, and
offers the possibility to perform a DGE analysis alongside. DTUrtle
is an easy-to-use R package, aiding the user at importing data and
visualizing results. It also offers direct integration with Seurat
(Stuart et al., 2019) objects, further leveraging the use of DTU ana-
lysis alongside various single-cell analyses. DTUrtle allows to con-
duct the main DTU analysis of a ‘standard’ bulk or single-cell
experiment in less than 20 and 30 min, respectively.

2 Materials and methods

Description of the analysis of public RNA-seq dataset growth,
about DTUrtle’s filtering strategy, the performed Gene Ontology
(GO) analysis, Seurat’s cell marker identification, DTUrtle’s DGE
calling via DESeq2, the performed computation time benchmark,
the genomic gene body coverage analysis and about the development
of the sparseDRIMSeq package can be found in Supplementary
Methods.

2.1 Pre-processing of supporting datasets
To exemplify the usage of DTUrtle, vignettes for four different data-
sets ranging over different species and sequencing protocols are
available online at https://tobitekath.github.io/DTUrtle/articles/
index.html. In this publication, results for three of these datasets are
presented.

The first dataset is from Hoffman et al. (2020) (Supporting Data
S1), presenting a time series of bulk RNA-seq data of human A1-2
breast cancer cells after treatment with dexamethasone. For demon-
stration purposes, we focus on comparing samples after two-hour
dexamethasone treatment to samples of the ethanol-treated control
group. Three treated samples (‘Dex2hr’) are compared to three con-
trol samples (‘EtOH’). After initial quality control as well as quality
and adapter trimming with Trim Galore! (Babraham Bioinformatics),
transcript-level quantification was performed with Salmon based on
Gencode transcriptome release v34 (Frankish et al., 2019).

The second dataset consists of murine single-cell RNA-seq data
from the Tabula Muris project (Schaum et al., 2018) (Supporting
Data S2). We focus on cells aggregated from two mammary gland
samples, comparing cells annotated as T cells versus luminal epithe-
lial cells. For data pre-processing, BAM files were converted to
FASTQ files and then quantified with Alevin against Gencode
transcriptome release vM24. The dataset was prepared with
10� Genomics Chromium V2, which is directly supported by
Alevin. In addition, cell barcode identification and correction was
performed by Alevin, resulting in quantification data for 3992 and
4326 cells per sample, respectively. Finally, cells of the two samples

Fig. 1. Distinction of differential analysis methods. (a–c) Example cases to differenti-

ate the detection ability of DGE, DTE and DTU analysis. Each case represents a

gene’s transcripts expression and their proportion between two conditions. (d)

Which differential analysis method detects a differential effect in the examples (a–c).

A differential effect is detected, if the gene (DGE, DTU) or at least one of the gene’s

transcripts (DTE) shows significant differences. For DGE and DTE analysis, a 2-

fold expression increase of the gene or transcript is assumed as a requirement for

detection. DGE analysis is based on the sum of the transcript expressions per condi-

tion. In (c) the difference between the transcripts is just below the 2-fold threshold

for DTE detection

3782 T.Tekath and M.Dugas

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab629#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab629#supplementary-data
https://tobitekath.github.io/DTUrtle/articles/index.html
https://tobitekath.github.io/DTUrtle/articles/index.html


were mixed, resulting in comparing 1750 T cells to 459 luminal
epithelial cells in the DTU analysis.

The third dataset consists of murine single-cell RNA-seq data
from Wuidart et al. (2018) (Supporting Data S3). This dataset con-
sists of mammary gland cells, which were sequenced according to
the Smart-seq2 protocol, and therefore should not be impaired by a
potential 30- or 50-bias (Picelli et al., 2014). As Smart-seq2 is not
UMI based and reads from single cells are sequenced as single sam-
ples, the very same pre-processing as for Supporting Data S1 was
applied.

Key software used in the analysis of the Supporting datasets are
stated in Supplementary Table S2.

2.2 Import of transcript-level quantification data
DTUrtle supports quantification results from the following tools:
Salmon, Alevin, kallisto, bustools, RSEM (Li and Dewey, 2011),
StringTie (Pertea et al., 2015) and Sailfish (Patro et al., 2014). This
is mainly achieved by utilizing the tximport (Soneson et al., 2015)
R-package, with additional support for bustools. The quantification
tools Alevin and bustools are specifically designed for single-cell
datasets, supporting various single-cell protocols.

2.3 Count scaling and normalization
Depending on the sequencing technique used to create reads, the
resulting quantification counts are confounded by specific biases.
Notably, only spliced mature mRNA reads are of interest in the con-
text of DTU analysis, as only these allow differentiation of different
transcript isoforms. One apparent bias is created by a varying
sequencing depth per sample (Mortazavi et al., 2008; Tarazona
et al., 2011). The bigger the library size, i.e. the more reads are
sequenced per sample, the higher are the actual counts. This effect
can be mitigated by scaling the counts by a library-size-related factor
(e.g. reads per million). In the context of DTU analysis, this bias is
negligible as we are looking at proportional differences.

A more DTU relevant bias is resulting from a varying length of
the single annotated transcripts (Oshlack and Wakefield, 2009). The
longer a transcript is, the more likely a fragment of such transcript is
sequenced. Again, we can account for this bias by scaling the counts
by an individual gene or transcript length factor. Notably, this bias
is only present in randomly fragmented sequencing techniques, i.e.
where reads are not uniquely originating from the 30 or 50-end of
RNA sequences. For tagged-end sequencing techniques, which most-
ly generate reads from spliced mRNA, the annotated transcript
length is negligible (Srivastava et al., 2019).

DTUrtle aims to automatically apply the most appropriate nor-
malization strategy based on the input. For bulk RNA-seq data,
which is mostly randomly fragmented, the default scaling scheme is
tximport’s ‘scaledTPM’, which is well suited for DTU analysis as the
counts do not scale with transcript length (Love et al., 2018). If the
user provides information, which transcripts belong to which gene,
the DTU specific ‘dtuScaledTPM’ scaling scheme is used. This scal-
ing scheme re-scales the counts by the median transcript length of
the specific transcript isoforms. Because most current single-cell
RNA-seq protocols are tagged-end (Chen et al., 2019), e.g. the wide-
spread 10� Chromium platform or Drop-Seq, and most of the reads
originate from spliced mRNA, no scaling scheme is deployed by
default.

2.4 DTU calling and statistical correction
DTUrtle uses an extended DTU calling workflow consisting of
DRIMSeq and stageR (Van den Berge et al., 2017), as suggested pre-
viously (Love et al., 2018). In brief, the Dirichlet-multinomial model
of DRIMSeq is used to estimate the precision parameter, which is
used together with the group-wise maximum likelihood estimates of
transcript proportions pA and pB in a likelihood ratio test against
H0: pA ¼ pB.

In general, a DTU analysis should answer two questions: First,
‘Which genes show overall signs of DTU?’ and second, ‘Can we
pinpoint specific transcripts that are differentially used in those
genes?’. These questions can be tested independently, but the results

(and therefore the error rates) are dependent. To address both ques-
tions, the two-stage statistical procedure stageR is used. In this pro-
cedure, the (multiple-testing unadjusted) DRIMSeq gene P-values
are analyzed in a screening stage, to determine which genes show
signs of DTU via an omnibus test. For the genes with significant
signs of DTU, the DRIMSeq transcript-level P-values are individual-
ly tested for DTU in a confirmation stage. Both testing stages are
performed against a mutual overall false discovery rate (OFDR),
which ensures a controlled combined error-rate in both tests. This
procedure results in a corrected P-value for each gene, as well as a
corrected P-value for each transcript of a significant gene.

2.5 Detection probability score for tagged-end data
Tagged-end sequencing data might impair the capability of certain
transcripts to be detected in a DTU analysis (see Section 4). DTUrtle
introduces a priming bias detection probability score to estimate,
how severely each transcript might be impaired (Equation 1). The
basic idea of the score is to quantify the relative distance between
the priming enriched end and the first position, that would allow a
unique assignment of a read to the to-be-scored transcript.

scoreðtref ; tiÞ ¼ 1�
d
�

min
�
fjx� cij : x 2 diffðtref ; tiÞg

�
; ci

�

dðc0i; ciÞ
(1)

For each gene that shall be scored, the transcript with the highest
mean proportion over all samples/cells is chosen as reference tran-
script tref. If no expression data is available, DTUrtle uses the first
annotated transcript as a fallback reference. Subsequently, for all
non-reference transcripts ti, the score is calculated as above, with
diff(a, b) returning a set of start and end coordinates of exonic dif-
ferences between transcripts a and b, and d(n, m) measuring the
exonic distance between coordinates n and m. The coordinate of the
priming enriched end of transcript ti is denoted by ci, with �ci repre-
senting the coordinate of the opposing end. A visual example of the
score calculation is given in Supplementary Figure S2. In brief, the
score calculation identifies the position of the exonic difference
between the reference transcript and the to-be-scored transcript ti,
which is closest to the priming enriched end of ti. The actual score is
calculated by the counter probability of the proportional relative
position of this difference. E.g. if the first exonic difference is located
after 22% of tis length (measuring from the priming enriched end),
the priming bias detection probability score would be 0.78.

3 Results

DTUrtle’s three-step analysis workflow (Fig. 2) is exemplified and
validated on three distinct real-world datasets, spanning two species
and three sequencing techniques. The sundry visualization options
are exemplified for key results in Supplementary Figure S3.

Fig. 2. Detailed depiction of DTUrtle’s workflow. First, transcript-level quantifica-

tion counts and annotation data are read-in and formatted. For tagged-end data, the

calculation of a priming bias detection probability for each transcript can be con-

ducted. In a second step, the filtering and DTU calling is performed with DRIMSeq,

followed by two-stage statistical correction with stageR and optional post-hoc filter-

ing. Alternatively, DGE calling can be performed with DESeq2. The analyses results

can be aggregated to a results tables, including four distinct visualization options.

Finally, the results table can be exported as an interactive HTML-table. The

DTUrtle object is gradually built during this workflow and contains all final and

intermediate results for further processing and analysis
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3.1 DTUrtle workflow
The DTUrtle package offers a three-step analysis workflow: Step 1:
Data import and formatting. Step 2: Filtering and DTU calling. Step
3: Visualization and result aggregation.

The workflow requires transcript-level quantification counts and
a transcriptome annotation file (GTF or GFF3) as input. DTUrtle’s
pre-processing vignettes exemplify the generation of transcript-level
quantification counts for bulk RNA-seq data and three different
types of single-cell RNA-seq data (10� Chromium, Illumina
SureCell and Smart-seq2) using Salmon and Alevin. DTUrtle is able
to import the output of seven quantification tools (see Section 2)—
other formats can be imported manually. As cell identifiers from
single-cell experiments are not necessarily unique across samples,
these identifiers are modified when merging the count matrices, if
applicable. Tagged-end sequencing protocols potentially impair the
ability of certain transcript-level differences to be found in a DTU
analysis (see Section 4). DTUrtle offers the calculation of a novel pri-
ming bias detection probability score for tagged-end data, to assess
how much each transcript is affected by this potential bias. In add-
ition, various ‘helper’ functions are offered to correctly format the
data, e.g. functionality to ensure a one-to-one mapping between
gene or transcript identifiers and names.

Following data import, DTUrtle offers customizable functions to
conduct DTU calling, extending concepts presented in Love et al.
(2018). First, an initial filtering and DTU calling is performed with
DRIMSeq. DTU calling results then undergo an optional post-hoc
filtering, followed by a two-stage statistical correction using stageR.
Besides two predefined filtering strategies for bulk or single-cell data
(Supplementary Methods), filtering thresholds can be specified and
adjusted by the user. DTUrtle utilizes an extended version of the
DRIMSeq package, called sparseDRIMSeq, which allows usage of
dense as well as sparse data matrices. All intermediate and final
results are stored in one DTUrtle object, an accessible list. This ob-
ject is constructed gradually, beginning from the first DTU calling
step, and can be passed down to all following steps of the workflow.

Optionally, DTUrtle allows to extend Seurat objects with
transcript-level counts, harmonizing DTU analysis with prior single-
cell RNA-seq analyses. These extended Seurat objects can also be
used in the first DTU calling step to automatically provide required
input.

Besides DTU analysis, DTUrtle allows to perform a DGE
analysis of bulk or single-cell data alongside, utilizing DESeq2
(Love et al., 2014). For single-cell data, specific parameters are set
by default, as suggested in the DESeq2 vignette (Supplementary
Methods).

3.2 Visualization and result aggregation
DTUrtle’s result aggregation and visualization capabilities are
described in detail in the Supplementary Results.

3.3 DTU in human breast cancer cells
To exemplify the usage of DTUrtle, three different datasets ranging
over different species and sequencing protocols were analyzed (see
Section 2). We examined a public dataset of bulk RNA-seq data
from Hoffman et al. (2020), representing a time series of transcript
expression in human A1–2 breast cancer cells after treatment with
dexamethasone (Supporting Data S1). The DTU analysis focused on
ethanol-treated control samples (EtOH) and samples after two
hours of dexamethasone treatment (Dex2hr), comparing three bio-
logical replicates each. DTUrtle identified 294 genes with DTU. The
transcript-level tests identified 146 transcripts of these genes with
significant proportional differences between the groups (OFDR <
0.05).

GO (Ashburner et al., 2000; The Gene Ontology Consortium,
2021) analysis of the significant DTU genes identified 11 significant
GO terms (P-value < 0.01), including biologically expected terms
like ‘response to ethanol’ (GO:0045471), ‘negative regulation of
GTPase activity’ (GO:0034260) and ‘negative regulation of dendrit-
ic spine development’ (GO:0061000) (Supplementary Methods).
DTU in ethanol responding genes is very plausible, as the control

samples have received an ethanol treatment instead of the
dexamethasone treatment. In addition, the synthetic glucocorticoid
dexamethasone is known for its regulatory effect on the small
GTPase Rasd1 (Lellis-Santos et al., 2012) and the development
and plasticity of the dendritic spine (Liston and Gan, 2011)
(Supplementary Table S1).

In Hoffman et al., expression of specific known dexamethasone
and glucocorticoid target genes is visualized along the treatment
time course, including glucocorticoid-induced leucine zipper
TSC22D3 and Serine Palmitoyltransferase Small Subunit B
(SPTSSB). These two genes were also identified in the DTU analysis,
indicating not only a change in gene expression but also a change in
the expressed transcript proportions in treated samples. To validate
the coherence of the DTU effect for these two genes, additional
samples of the treatment time course were analyzed (time after treat-
ment: 1, 4, 8 and 18 h; 3 samples each). In Figure 3, the mean gene
expression and the proportions of each analyzed transcript of
TSC22D3 and SPTSSB are shown.

While the expression of TSC22D3 rapidly increases over the
time course, the expression proportion of TSC22D3-206 rises from
�65% (without treatment) to �95% (18 h after treatment). Thus,
TSC22D3-206 becomes the almost exclusively expressed isoform
after dexamethasone treatment, while the expression of the
TSC22D3-203 isoform quickly vanishes. Conversely, gene expres-
sion of SPTSSB decreases after the dexamethasone treatment.
On transcript level, the expression proportion of SPTSSB-205 rapid-
ly decreases right after treatment, then quickly recovers after ap-
proximately two hours and even surpasses its original proportional
level 18 h after treatment.

3.4 Identifying transcriptional cell-type markers in mur-

ine mammary gland tissue
In 2018, a transcriptome data compendium of 20 distinct organs
and tissues from Mus musculus—called ‘Tabula Muris’—was pub-
lished (Schaum et al., 2018). To demonstrate DTUrtle’s single-cell
capabilities, single-cell RNA-seq data of the mammary gland tissue
was analyzed in regard to DTU (Supporting Data S2). The analysis
was performed comparing T cells (n¼1750) and luminal epithelial
cells (n¼459) of the mammary gland, revealing 2100 significant
genes and 3130 significant transcripts (OFDR < 0.05). As the ana-
lysis compares different cell types, we tried to identify cell type spe-
cific transcriptional markers in DTU genes and transcripts,
highlighting the heterogeneous transcriptional profile of each cell
type. Ideally, a candidate marker transcript would be expressed in
nearly all cells of one cell type, while not being expressed in the
other cell type. ‘Expressed in’ describes the ratio of cells, where the
expression of a gene or transcript could be measured, i.e. expression
is above zero. In addition, a strong proportional difference in the
expression of one of the gene’s transcripts is of great interest.
We visualized DTU genes according to these two parameters in
Supplementary Figure S4, depicting the maximal expressed-in differ-
ence of a gene’s transcript on the x-axis and the maximal propor-
tional difference on the y-axis. Of the 2100 DTU genes, we selected
the 64 most extreme genes according to the parameters above

Fig. 3. Differential transcript usage of dexamethasone target genes SPTSSB and

TSC22D3 in human breast cancer cells. (a) Mean gene expression of SPTSSB and

TSC22D3 along the dexamethasone treatment time course in transcripts per million

(TPM). Standard deviation is indicated by error bars. (b,c) Mean proportions of

TSC22D3 and SPTSSB transcripts along the dexamethasone treatment time course.

Standard deviation is indicated by error bars
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(Supplementary Fig. S4b) by fitting a multivariate normal distribu-
tion ellipse (Fox et al., 2011) at the 99th percentile of the variables.

Among the 64 selected genes are well-known cell type specific
marker genes, like Cd3d and Cd3g (T cell), or Epcam and Lcn2
(Zhao et al., 2020) (epithelial cell), which partially have been used
in the initial cell-type assignment by the Tabula Muris Consortium.
GO analysis of the selected genes revealed 12 enriched terms (P-
value < 0.01), including three T cell specific terms [‘alpha-beta T
cell differentiation’ (GO:0046632), ‘positive thymic T cell selection’
(GO:0045059) and ‘negative regulation of T cell apoptotic process’
(GO:0070233)] (Supplementary Table S1). To examine the cell-type
specificity of the selected genes, we performed an established cell
marker identification with Seurat on the transcriptional counts of
the whole mammary gland dataset (Supplementary Methods).
Besides T cells and luminal epithelial cells, the dataset also contains
B cells, basal cells, endothelial cells, macrophages and stromal cells.
Seurat analysis identified 136 transcripts of the 64 selected genes
identified as cell-type markers. We examined these transcripts’ cell
types based on the total number of transcripts identified for each cell
type and identified an increased proportion of luminal epithelial
cells (1.5-fold) and T cells (2.9-fold), in comparison to the third-
highest cell type (basal cell) (Supplementary Table S1). Major tran-
script proportions of cell marker DTU genes Rps24, Myl6 and
Pde4d are shown in Figure 4. Expression proportions of Rps24-202,
Myl6-206 and Pde4d-211 could be used as luminal epithelial cell
specific markers, and therefore to differentiate T cells from luminal
epithelial cells on transcript level.

3.5 Overlap of tagged-end and full-length single-cell

protocols
A second dataset of mouse mammary gland cells was analyzed
(Wuidart et al., 2018) (Supporting Data S3). In contrast to the 30-
biased Tabula Muris data, the used Smart-seq2 protocol produces
reads spanning over the full-length of an mRNA. The gene body
coverage analysis (Supplementary Methods) still indicates a 30-bias
in the Smart-seq2 data, although less severe than in the
10� Chromium Tabula Muris dataset (Supplementary Fig. S5).
We focused on performing DTU and DGE analysis between luminal
epithelial cells and basal cells, as these cell types are both present in
Supporting Data S2 and Supporting Data S3.

In the Wuidart et al. dataset, 90 luminal epithelial cells are com-
pared to 60 basal cells, while in the Tabula Muris dataset 459 cells
are compared to 392, respectively. DTU analysis with DTUrtle
found 162 and 835 significant DTU genes (OFDR < 0.05), respect-
ively. Of these, 55 DTU genes were found in both analyses (�34%
overlap). DGE analysis revealed 1927 and 3178 significantly differ-
ential genes (s-value < 0.01 for a log2 fold change threshold of 1),

respectively. Both analyses revealed 852 common differential genes
(�43% overlap).

3.6 Detection probability of DTU genes
We analyzed the score distribution of the priming bias detection
probability in two datasets with priming bias (Supporting Data S2
and Supporting Data S3). In addition, we were interested in the
score distribution of transcripts of significant DTU genes and signifi-
cant DTU transcripts directly (Supplementary Fig. S6). Notably, we
see that the majority of transcripts have a detection probability of 1
(median in boxplots)—thus DTU analysis for the majority of
transcript isoforms is potentially not affected by tagged-end data.
Furthermore, the transcripts of significant DTU genes show a
(slightly) higher detection probability than the baseline, with a dras-
tically increased detection probability of the significant DTU tran-
scripts alone.

3.7 Benchmark of DTUrtle’s computation time
The computation time for DTUrtle’s main DTU analysis steps have
been measured for bulk and single-cell data (Fig. 5, Supplementary
Fig. S7 and Supplementary Methods), using Supporting Data S1 and
Supporting Data S2 as respective prototypes. In general, DTUrtle’s
computation time does scale sub-linearly, both for an increasing
number of samples/cells and transcript isoforms. The number of
transcripts that are analyzed has a greater impact on the computa-
tion time than the number of samples/cells—e.g. tripling the number
of samples in the bulk dataset did only marginally increase the
computation time. DRIMSeq’s precision estimation step is by far
the most compute intensive step, followed by the initial filtering of
transcript isoforms. DTUrtle uses a run-time optimized filtering
step, which quickly filters dense and sparse matrices in a parallelized
manner.

4 Discussion

The potential of RNA-seq data is often not fully exploited by waiv-
ing on transcript-level analyses, like DTU. DTUrtle aims to promote
and streamline DTU analysis for novel or already existing datasets.
It is the first DTU workflow that supports bulk and single-cell RNA-
seq data, it simplifies import and formatting of transcript-level
counts and annotation, and offers various result aggregation and
visualization options.

We were able to reproduce and extend published findings for
bulk and single-cell RNA-seq datasets of human and mouse, show-
casing the potential of DTU analysis to gain deeper insights. We
showed that dexamethasone treatment of human breast cancer cells
does not only induce a change in gene expression in specific genes,

Fig. 4. Revealing cell type specific transcripts in murine mammary gland tissue via

differential transcript usage analysis. t-SNE reduction, colored with proportions of

cell type specific marker transcripts. Selected transcripts of Rps24, Myl6 and Pde4d

are depicted separately for T cells and luminal epithelial cells. Significant transcripts

are highlighted in red. The mean fitted proportional difference for each transcript is

shown at the bottom, the direction of this difference is in regard to luminal epithelial

cells

Fig. 5. Computation time of DTUrtle’s main DTU steps for a varying number of

samples/cells. The y-axis represents the cumulative computation time in Minutes,

the x-axis depicts the number of samples/cells used in the comparison. The segments

of each stacked bar are colored according to the DTU analysis step. The visualiza-

tion is split for Supporting Data S1 (bulk) and Supporting Data S2 (single-cell),

where �53k and �23k transcripts are analyzed after filtering
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but also significantly changes the transcriptional composition of
some of these genes. In addition, we identified transcript isoforms,
which could act as markers for T cells and luminal epithelial cells in
murine mammary gland tissue. This single-cell transcript-level ana-
lysis furthermore offers the potential to identify and separate specific
sub-populations of a cell type, based on their transcript expression
profile. Furthermore, we cross-validated DTU analysis results by
performing an analysis between the same cell types from different
datasets. We found the overlap of DTU results being comparable to
a classical DGE analysis. Especially as the compared datasets were
sequenced with different protocols and sampled from different
mouse strains at different developmental stages.

As the currently most prominent single-cell RNA sequencing
technologies are tagged-end protocols, the full DTU calling potential
is not yet available in most single-cell datasets. Tagged-end sequenc-
ing protocols only capture or amplify fragments originating from
the 50 or 30 end of the cDNA. Due to this priming bias, some tran-
script differences are less likely or impossible to find. This effect is
more severe for a gene’s transcripts, if structural differences are
located in the opposite direction of the specific protocol. E.g. DTU
for isoforms, where the only difference is an exon-skipping event
near the 30 end, are probably not detectable in 50 sequenced data.
Notably, this limitation only impacts the Type II error of the ability
to detect DTU effects. There is no effect on positive results, i.e.
found significant DTU genes and transcripts are not affected. Thus,
only the sensitivity is lowered for such a dataset, not the specificity
or precision. DTUrtle introduces a novel scoring scheme, the so
called priming bias detection probability, to assess which transcripts
might be most affected by this bias in the DTU calling process. The
detection probability allows to estimate if a potential DTU effect is
not present (no effect found, but high detection probability) or if it
might be missed because of the tagged-end limitation (no effect
found, but also low detection probability). With this score, we were
able to show, that the majority of transcript isoforms is not affected
by a priming bias, in the Supporting datasets. Thus, the effect size of
the tagged-end limitation might be generally lower than commonly
assumed. We also showed, that this novel scoring scheme works as
expected, and DTU genes and especially transcripts show a higher
detection probability than the baseline.

Nonetheless, we hope upcoming full-length single-cell RNA-seq
protocols will alleviate this limitation. Alternatively, a potential pri-
ming bias could be reduced by a bias aware quantifier, which adjusts
the likelihood in the read-to-transcript attribution process with the
relative transcript mapping position.

Future work could extend DTUrtle to incorporate additional
DTU calling methods, for example a method to account for the
inferential variance of the quantification step. An additional DTU
calling method might also be able to handle more complex study
designs than the currently supported case-control design. For a
substantiated decision, which of the recently developed DTU
analysis methods would be the best addition, further research is
necessary.

Finally, we advocate to perform a DTU analysis alongside a
DGE analysis, to fully utilize the gene-level and transcript-level in-
formation of an RNA-seq dataset. If transcript-level data are avail-
able, no additional pre-processing steps are necessary to perform a
DTU and DGE analysis in parallel, as shown by DTUrtle.

5 Supporting data

The datasets supporting the results of this article are available in the
Gene Expression Omnibus (GEO) repository:

1. Hoffman et al. (2020) human bulk RNA-seq: GSE141834—

samples GSM4213967, GSM4213968, GSM4213969,

GSM4213973, GSM4213974 and GSM4213975.

2. Tabula Muris (Schaum et al., 2018) mouse single-cell RNA-seq

(10� Chromium): GSE109774—samples GSM3040910 and

GSM3040911.

3. Wuidart et al. (2018) mouse single-cell RNA-seq (Smart-seq2):

GSE110351—all samples .
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