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Abstract

Clustering is an important technology of data mining, which plays a vital role in bioscience,

social network and network analysis. As a clustering algorithm based on density and dis-

tance, density peak clustering is extensively used to solve practical problems. The algorithm

assumes that the clustering center has a larger local density and is farther away from the

higher density points. However, the density peak clustering algorithm is highly sensitive to

density and distance and cannot accurately identify clusters in a dataset having significant

differences in cluster structure. In addition, the density peak clustering algorithm’s allocation

strategy can easily cause attached allocation errors in data point allocation. To solve these

problems, this study proposes a potential-field-diffusion-based density peak clustering. As

compared to existing clustering algorithms, the advantages of the potential-field-diffusion-

based density peak clustering algorithm is three-fold: 1) The potential field concept is intro-

duced in the proposed algorithm, and a density measure based on the potential field’s diffu-

sion is proposed. The cluster center can be accurately selected using this measure. 2) The

potential-field-diffusion-based density peak clustering algorithm defines the judgment condi-

tions of similar points and adopts different allocation strategies for dissimilar points to avoid

attached errors in data point allocation. 3) This study conducted many experiments on syn-

thetic and real-world datasets. Results demonstrate that the proposed potential-field-diffu-

sion-based density peak clustering algorithm achieves excellent clustering effect and is

suitable for complex datasets of different sizes, dimensions, and shapes. Besides, the pro-

posed potential-field-diffusion-based density peak clustering algorithm shows particularly

excellent performance on variable density and nonconvex datasets.

1. Introduction

Clustering is an important task in data mining. Exploring data clustering is important to

understand the features of any given data, the relationship between these data, and the overall

data structure [1]. Cluster analysis has played important roles in bioscience, social networks,

and web analysis. For example, in protein interaction data, important protein cluster struc-

tures can be detected using clustering methods; this aids medical professionals in finding

comorbid or new disease subtypes [2]. In social networks, clusters can be used to determine
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groups that frequently communicate and understand communication within and between

communities to reduce network overload [3]. In sensor networks, closely related nodes can be

identified via clustering, and accordingly the applied information collection algorithm can be

optimized [4]. Clustering analysis is a critical process that has attracted significant research

attention and rapidly progressed; some examples of such analysis are k-means [5], k-medoids

[6], CURE [7] and BIRCH [8], DBSCAN [9], OPTICS [10], WaveCluster [11], STING [12],

statistical clustering [13], spectral clustering [14], subspace clustering [15], integrated cluster-

ing [16], and graph-based clustering [17]. Besides, there is automatic clustering that introduces

a metaheuristic algorithm, which can automatically determine the optimal number of clusters.

However, the problem of finding the optimal number of clusters is NP-Hard [18]. Real data

have different structures; thus, research on clustering is extremely challenging.

In 2014, Rodriguez proposed the DPC (clustering via fast search and finding density peaks)

algorithm [19] that exploits the advantages of both density and distance based clustering meth-

ods. On the one hand, similar to the k-medoids algorithm, DPC clustering depends on only

the distance between samples and requires fewer parameters to be adjusted. On the other

hand, identical to the DBSCAN algorithm, the DPC algorithm can find nonspherical clusters.

In addition, the DPC algorithm is similar to the mean-shift algorithm [20] in selecting cluster

centers, which can determine the number of clusters automatically. Compared with the mean-

shift algorithm, DPC does not need to maximize the density of each sample; thus, the algo-

rithm is simple and effective.

Although the DPC algorithm [19] has significant advantages over other clustering algo-

rithms, many areas require improvement. For example, the cluster center selection method is

too sensitive to distance and local density, incorrect cluster center points can easily be selected,

and it cannot adapt to differences in the data structure. Specifically, for datasets with signifi-

cant differences in cluster density, correct cluster centers cannot be effectively identified. In

addition, the allocation strategy of noncentral points excessively relies on the nearest higher

density points, thus being prone to attached allocation errors. In particular, each data point is

classified into a cluster from among clusters that are closest to it and have high local density. If

the allocation of this data point is incorrect, the allocation of subsequent data points will also

be incorrect; thus, the correct cluster will not be obtained.

To solve the above problems, this study proposes a PFD-DPC (potential-field-diffusion-

based density peak clustering) algorithm. Based on the potential field concept, the density

measure is redefined, and reasonable cluster centers are selected. Accordingly, the distribution

method of noncentral points is optimized, improving the clustering accuracy and efficiency.

The primary contributions of this study are summarized as follows.

1. A new density measure based on the diffusion of the potential field is proposed to make the

selection of cluster center points more reasonable, thus solving the problem of easily select-

ing incorrect cluster centers.

2. An improved noncentral point allocation strategy is proposed to avoid the allocation strat-

egy from relying excessively on the nearest higher density points, which solves the problem

that the traditional DPC algorithm is prone to attached allocation errors.

3. This study conducted many experiments on synthetic and real-world datasets to verify the

performance of the proposed PFD-DPC algorithm, and the experimental results demon-

strate that the obtained clustering effects are significantly better than those of the traditional

clustering algorithm and other DPC-improved algorithms.

The structure of this paper is as follows. Section 2 summarizes the related work of DPC

algorithm; Section 3 outlines the idea and process of DPC algorithm; Section 4 proposes
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PFD-DPC algorithm, including the proposal of potential, relevant definitions, cluster center

selection method and non-central point allocation algorithm; Section 5 verifies the perfor-

mance of the PFD-DPC algorithm through a large number of experiments and discusses it;

Section 6 discusses the sensitivity and running time of the algorithm; Section 7 summarizes

PFD-DPC algorithm and point out the improvement of the algorithm and the future research

direction.

2. Related work

Since the DPC algorithm was first proposed, studies have attempted to continuously improve

its performance. Improvements to the DPC algorithm are primarily reflected relative to the

following four aspects.

The first aspect of these is the improvement in local density and relative distance. The

method to improve local density is to find an effective kernel method to calculate local density.

These kernels help selecting cluster centers and reducing the dependence of the DPC algo-

rithm on cutoff distance. Previously, Mehmood [21] proposed a nonparametric DPC algo-

rithm based on thermal diffusion (CFSFDP-HD). This algorithm is based on the kernel

density estimation technology of statistics, i.e., the contribution of each point to the total den-

sity function is expressed by the kernel function, and the total density function is the sum of

the influence functions of each point. Here, the optimal bandwidth of the kernel function can

be obtained; thus, the sensitivity of the algorithm to the dc parameter value is reduced. The

most significant problem with such methods is the high cost of calculation because the density

of each point should be explicitly calculated, and this density is the sum of the contribution of

the density function of all points, which limits the applicability of the algorithm to large-scale

applications.

To deal with uneven density classes and reduce the impact of the dc parameter, a DPC clus-

tering method based on the neighbor concept has been previously proposed. This kind of

method assumes that considering the contribution of all points is not necessary for calculating

the local density of any point, i.e., only the contribution of points around the data point must

be considered. They use local information to calculate the local density of data points. Conse-

quently, this algorithm reduces the calculation of the similarity matrix and enhances the local

density’s perception of the context of the data points. However, when the density difference

between clusters is significant, local density substantially impacts the cluster centers. Du [22]

proposed DPC based on k-nearest neighbors (DPC-KNN) and introduced the k-nearest

neighbors concept into the DPC algorithm. This algorithm also uses PCA dimensionality

reduction to solve the problem of clustering high-dimensional data. Juanying [23] stated that

using an exponential kernel to measure the local density of samples in the traditional DPC

algorithm is better than directly estimating the local density of samples. However, the expo-

nential kernel measurement method is too sensitive to cutoff distance; thus, she proposed a

DPC algorithm based on optimizing the local density of k-nearest neighbors (KNN-DPC). In

addition, Yaohui [24] proposed the adaptive DPC algorithm based on the k-nearest neighbor

and aggregation strategy. However, using this method, the manner in which an appropriate K

value is selected is very important. If K is too small, the local density is susceptible to noise

interference. In contrast, if K is too large, the local density may be inaccurate because the k-

nearest neighbors may contain non-nearest neighbors.

To solve the problem of over-dependence on K, Rui [25] proposed a shared-nearest-neigh-

bor-based clustering algorithm via fast search and finding density peaks, i.e., (shared-nearest-

neighbor density peak clustering; SNN-DPC). This algorithm considers the first-order and

shared neighbors of data points, redefines the local density and the distance between the
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nearest higher density points, and proposes a two-step allocation strategy. In addition, Li [26]

used the fuzzy neighborhood relationship to calculate the local density of data points and used

the comparison distance to replace the distance of the nearest higher density points in the

DPC algorithm.

The second aspect is the automatic determination of the number of clusters and cluster

centers.

Most methods used to automatically determine cluster centers are based on the overall

structure. Wu [27] proposed the ADPC algorithm, redefined the decision value equation, pro-

posed an adaptive cutoff distance adjustment method based on the Gini coefficient, and estab-

lished a mechanism to automatically obtain cluster centers without manually specifying the

cluster centers and cutoff distance. However, the occurrence of attached allocation errors and

ignoring low-density clusters on datasets having significant density differences is easy when

using this algorithm.

Tao [28] proposed a density peak clustering algorithm to automatically determine cluster-

ing centers. First, that algorithm constructs a γ sorting graph according to the DPC method,

and then potential cluster centers are determined based on the inflection points in the sorting

graph. Finally, the actual cluster centers are screened from the potential cluster centers.

According to the literature [29], the normalized local density and distance to the point with

high density can improve clustering results. He normalized the obtained local density and dis-

tance to the point with high density, and then identified clustering centers. In addition, Liang

[30] applied the divide and rule strategy to automatically identify cluster centers. This method

belongs to the global calculation method and does not require prior knowledge to adjust

parameters.

The third aspect is the allocation strategy of noncentral points. Improvements in the non-

central point allocation method attempts to develop a new method to assign noncentral points

to clusters more accurately.

Bie [31] proposed the Fuzzy-CFSFDP algorithm, which considers points higher than the

average value of the local density estimation as the local clustering centers. Therein, data points

are assigned to clusters to which the nearest local cluster center belongs, and then clusters with

close peak density and average density at the edge of the cluster are merged.

Qiu [32] proposed a clustering algorithm based on nearest neighbor descent, which orga-

nizes data points into fully connected graphs, and then uses the nearest neighbor descent algo-

rithm to map the graph to a tree. According to this tree, each data point is connected to its

nearest neighbor only in the direction of density decline. In a previous study [23], a two-step

allocation strategy was proposed. In that strategy, a connected graph is constructed based on

the KNN, beginning with all types of cluster centers using breadth-first search to allocate non-

central points. Then, the KNN majority voting strategy is used to allocate noncentral points.

Accordingly, the fuzzy weighted KNN algorithm based on the density DPC points

(FKNN-DPC) [33] was proposed, wherein noncentral points are allocated using the fuzzy

weighted KNN method. Lotfi [34] proposed IDPC, which uses the label propagation method

to distribute the remaining points according to Euclidean distance. Similarly, the DPC-DLP

clustering algorithm [35] first constructs weighted all connected graph, and the weight on an

edge is the KNN kernel distance. Thus, tag propagation based on random walk is realized.

The fourth aspect involves new application scenarios of the DPC algorithm. Research on

DPC algorithm applications attempts to apply the DPC algorithm and its improved versions to

various real-world tasks to solve practical problems.

For example, Mehmood [36] applied the DPC algorithm in the biomedical field. The DPC

algorithm was run on a leukemia dataset to identify B-lineage acute lymphoblastic leukemia

(ALL), T-lineage ALL, and acute myeloid leukemia with an accuracy of 97.3684%. The DPC
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algorithm was also run on a breast cancer dataset to distinguish drug-resistant and sensitive

subclasses, showing an accuracy of 70.8333%.

In addition, Shi [37] applied the DPC algorithm to scene image clustering, and Chen [38]

used the DPC algorithm to estimate the age range of a given facial image. In a previous study

[39], Zhang used a density peak clustering algorithm to extract the abstracts of multiple docu-

ments. Wang applied the DPC algorithm and information entropy to detect and eliminate

noise features in datasets [40].

Shi [37] and Bai [41] implemented the DPC algorithm on an overlapping community parti-

tion problem. Herein, a new distance matrix is defined to overcome the defect of the integer

adjacency matrix and the probability that each point belongs to a different cluster is given, so

as to achieve the goal of dividing overlapping communities.

The above are the improved DPC algorithms that the authors know. There is no idea of

introducing the concept of potential field and potential field diffusion into density peak clus-

tering. At the same time, for the definition of similar points, the proposed PFD-DPC algorithm

is also different from the above algorithms.

3. Density peak clustering algorithm

Currently, the DPC algorithm is widely used. Rodriguez proposed the DPC algorithm in Sci-
ence in 2014. The DPC algorithm is based on two assumptions: the local density of points

around cluster centers is relatively low, and the distance between cluster centers is relatively

large. Accordingly, the DPC algorithm proposes two measures to describe the density and dis-

tance of data points i, i.e., local density ρi and distance to the nearest high density point δi.
In terms of ρi, local density is measured in terms of two parameters: cutoff distance and

Gaussian cutoff distance is given in Eq (1).

ri ¼
X

i6¼j
wðdij � dcÞ ð1Þ

Here, dij is the Euclidean distance between data points i and j, and dc is a custom cutoff

distance.

Function χ(x) is given in Eq (2).

wðxÞ ¼
1 x < 0

0 x � 0

(

ð2Þ

When the Euclidean distance between data points i and j is less than the cutoff distance, the

function value is 1, which increases the value of local density by 1, and when the Euclidean dis-

tance between data points i and j is greater than or equal to the cutoff distance, the function

value is 0. Therefore, the local density calculated by cutoff distance is the number of data points

within the cutoff distance of a given data point.

The definition of Gaussian kernel distance is given in Eq (3).

ri ¼
X

i6¼j
e
�

dij
dc

� �2
� �

ð3Þ

Here, the terms have the same definitions as those in Eq 1.

Eqs (1) and (2) show that local density ρ is positively correlated with the number of points

in the dc neighborhood to i. The difference between cutoff distance and Gaussian kernel dis-

tance is that local density ρ represented by the former is discrete, and local density ρ repre-

sented by the latter is continuous.
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Relative to δi, the distance to the nearest high density point is calculated as shown in Eq (4).

di ¼ min
j:rj>ri
ðdijÞ ð4Þ

Here, ρi and ρj are the local density of data points i and j, and dij is the Euclidean distance

between data points i and j.
For the point with the highest local density, the distance of the nearest higher density point

δi is defined in Eq (5).

di ¼ max
i6¼j
ðdjÞ ð5Þ

Here, the point with the highest local density also has the largest δ value.

To better represent cluster centers, the DPC algorithm calculates the decision value γi of

each data point i as follows.

gi ¼ ri � di ð6Þ

This indicates that the decision value of a data point is the product of its local density and

the distance to the nearest higher density point.

The definition of a boundary point by the DPC algorithm is described as follows. If the dis-

tance between an allocated data point and a point in another cluster is less than cutoff distance

dc, the allocated data point is considered a boundary point.

Based on the above definitions, the DPC algorithm proposes a clustering process involving

three steps: finding clustering centers, assigning noncentral points to corresponding clusters,

and processing boundary points.

In the first step, the DPC algorithm calculates the local density and the distance to the near-

est higher density point δ for each data point, and then calculates decision value γ based on the

calculated ρ and δ. Then, the DPC algorithm plots a decision graph. In this graph, the abscissa

is ρ, the ordinate is δ, and data points with high values of ρ and δ are selected as cluster centers.

In the second step, after selecting the cluster centers of the sample, the data points are

arranged in descending order of local density, and the remaining data points are attributed to

the cluster of the nearest high local density data points.

In the third step, the highest local density of the boundary points is deemed the threshold.

If the local density of the data point is greater than or equal to the threshold, the data point is

considered the core point of the cluster. Otherwise, the data point is considered a noise point.

Although the experimental results demonstrate that the DPC algorithm can obtain better

clustering results in many cases, its shortcomings are significant. For some datasets, the DPC

algorithm cannot find the correct clustering center, and even in the case of datasets for which

it obtains the clustering center, the result may be incorrect. Consider the Jain dataset as an

example. The DPC algorithm exhibits poor clustering effect on this dataset. Fig 1 shows the

clustering results of the DPC algorithm on the Jain dataset.

Here, points A and B are the cluster centers obtained by the DPC algorithm, and point C is

the real cluster center of the low-density cluster. As can be observed in Fig 1, regardless of the

cutoff or kernel distances, the DPC algorithm does not select the correct cluster center, result-

ing in incorrect data point allocation because the Jain dataset is a variable density dataset. On

one hand, points in low-density clusters typically have small ρ values, and even large δ values

cannot effectively improve their inferior position in decision graphs. On the other hand, points

in high-density clusters tend to have high ρ values. Compared to the points in low-density clus-

tering, selecting these points as clustering centers is easy.
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In the following sections, this paper considers the Pathbased dataset as another example.

Fig 2 shows the clustering results of the DPC algorithm when implemented on the Pathbased

dataset.

Here, two points can be observed. First, the DPC algorithm can correctly identify the cluster

centers. Second, in the initial allocation process, noncentral points are allocated to the correct

clusters. However, the points on both sides of the ring are assigned to the incorrect cluster

owing to the DPC algorithm’s three-step allocation strategy. When a noncentral point is

assigned to an incorrect cluster, subsequent points will also be assigned to the incorrect cluster,

resulting in inaccurate results.

In summary, the DPC algorithm must be improved relative to cluster center selection and

noncentral point allocation.

4. Potential-field-diffusion-based density peak clustering algorithm

In consideration of the above problems, this paper proposes the PFD-DPC algorithm. First,

the PFD concept is proposed, following which a new measurement of ρ is presented. Then, the

PFD-DPC algorithm is described, including the clustering center selection and noncentral

point allocation algorithms.

4.1 Potential field diffusion principle

This part will introduce the concept of potential field and influence propagation.

Fig 1. The DPC algorithm on Jain dataset. (A) use cutoff distance and (B) use kernel distance.

https://doi.org/10.1371/journal.pone.0239406.g001

Fig 2. The DPC algorithm on Pathbased dataset. (A) use cutoff distance and (B) use kernel distance.

https://doi.org/10.1371/journal.pone.0239406.g002
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4.1.1 Potential field. According to Newton’s law of universal gravitation, each object has

gravitation: a large mass results in strong gravitation, and the longer the distance, the smaller

is the gravitation.

Assume mi and mj are two particles in space (particles are points where volume does not

exist, but mass does exist). According to the law of universal gravitation, gravitation between

particles mi and mj can be expressed as follows.

F ¼ G�
mi �mj

rij � rij
ð7Þ

Here, G is the constant of gravity, and rij is the Euclidean distance between particles mi and

mj.

For clustering purposes, authors simplify Eq (7) [42]. First, this paper considers that all

points in the data space follow Newton’s law of universal gravitation and that the mass of all

data objects is unit mass 1. Second, this paper considers that object nodes i and j are high-

dimensional data points; thus, they should be expressed in vector form, i.e., ri
! and rj

!. There-

fore, rij
!¼ ri

!� rj
!; brij ¼

rij
!

rij
can be obtained, where rij is the Euclidean distance between two

objects. The gravity of nodes i and j is expressed as follows.

Fij

!
rij
!
� �

¼ G
rijb

rij2
ð8Þ

Third, a threshold value ε is set to modify Eq (8) to avoid the singular value of the equation

when the rij infinity is close to zero. The gravity of modified nodes i and j is expressed as fol-

lows.

Fij

!
rij
!
� �

¼ G
rij
b

rij2
rij � ε

rij < ε
ð9Þ

8
><

>:

Finally, this paper sets the value of G to 1 because G is the gravity constant, which is barely

relevant clustering data objects. Therefore, gravity is expressed as follows.

Fij

!
rij
!
� �

¼ rij
b

rij2

rij � s

rij < s

ð10Þ

8
<

:

Definition 1. Cumulative potential

The cumulative potential of data object i is the sum of the attractiveness of all data objects

in the data space to i, as shown in Eq 11.

Fi ¼
X

j6¼i
Fij

!
ð rij
!
Þ ð11Þ

Note that ε, which is introduced to avoid the singular value problem, is a hyper parameter,

and its optimal value is experimentally obtained.

4.1.2 Influence propagation. According to the influence propagation principle of com-

plex networks, the influence probability of nodes on other nodes is related to the degree of

nodes [43]. Herein, this paper expresses a network as G = (V,E,W), where V is the set of nodes,

E is the set of relationships among nodes, and W is the relationship matrix of network G. The

influence probability of nodes in G can be used to measure the influence propagation of nodes.

0

0
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The element pij of G0s influence probability matrix P represents the one-step influence proba-

bility of node i2V on node j2V. pij is calculated as follows.

pij ¼
wij

P
k2nbsðiÞwik

ð12Þ

Here, wij is an element in row i and column j of the matrix W, and nbs(i) is the neighbor set

of the node i.
In network G, the two-step influence probability matrix between nodes can be expressed as

the product of two one-step influence probability matrices. When further considering attenua-

tion factors in the process of information dissemination, the influence propagation process

can be formalized as follows.

Following one influence propagation step, the node relationship matrix is WβP.

After two influence propagation steps, the node relationship matrix is WβP2.

. . .

After k−1 influence propagation steps, the node relationship matrix is WβPk−1.

Here, β is the attenuation coefficient of influence propagation.

Each element of the above relationship matrix represents a proximity between nodes in the

network, which is actually the embodiment of the number of nodes in the influence propaga-

tion process. Therefore, the sum of the above relation matrix represents node proximity after k
−1 influence propagation fusion steps. The fused relation matrix is presented in Eq (13).

WS ¼WðbP þ b2P2 þ � � � þ b
k� 1Pk� 1Þ ð13Þ

Here, the parenthesized expression in Eq (13) is the Katz similarity index [44]. Because k
can tend to infinity, the Katz similarity index belongs to the global similarity in a complex net-

work. Therefore, the influence propagation calculated based on Eq (13) is the global influence

of the node on network G.

The above potential field and diffusion concepts produce the following inferences. As the

potential field of a data point increases, the core of the node grows stronger, and the potential

spread can be based on both local and global data distribution information. Selecting a cluster-

ing center in this manner can achieve better clustering results; therefore, this study proposes a

clustering algorithm based on PFD.

4.2 Definitions

Here, this paper presents several definitions.

Definition 1: k-nearest neighbors. For any point i in dataset S, its k-nearest neighbors are

expressed as σ(i).
Definition 2: Common neighbor. For any points i and j in dataset S, their common neigh-

bors are the intersection of their k-nearest neighbor sets, which is expressed as follows.

oði; jÞ ¼ sðiÞ \ sðjÞ ð14Þ

Definition 3: Potential field θ(i,j).
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The potential field of nodes i and j is presented in Eq (15), which is the cumulative potential

of the common neighbors of nodes i and j.

y i; jð Þ ¼
joði; jÞj2

P
p2oði;jÞðdip

2
þ djp

2
Þ
; i; j 2 oði; jÞ

0; else

8
>><

>>:

ð15Þ

Definition 4: PFD similarity Θ(i,j).
The PFD of nodes i and j is expressed in Eq (16), which represents k-step diffusion of the

potential field between nodes i and j.

Y i; jð Þ ¼
joði; jÞj2 �

P
m2sðiÞ

P
n2sðmÞ . . .

P
q2sðoÞðdim

2
þ dmn

2
þ . . .þ doq

2
Þ

P
p2oði;jÞðdip

2
þ djp

2
Þ

; i; j 2 oði; jÞ

0; else

ð16Þ

8
><

>:

Here, dim, dmn, doq, dip, and djp are the Euclidean distances between points i and m, m and

n, o and q, i and p, and j and p, respectively. The PFD similarity is calculated when points i and

j are k-nearest neighbors to each other; otherwise, the PFD similarity between the two is zero.

One term in Eq (16) is as follows.

X

m2sðiÞ

X

n2sðmÞ
. . .
X

q2sðoÞ
ðdim

2
þ dmn

2
þ � � � þ doq

2
Þ

This expression can be more intuitively represented as shown in Fig 3 (assuming the num-

ber of neighbors of each data point is four), i.e., the potential field of the red layer diffuses to

Fig 3. k-layer diffusion of potential field.

https://doi.org/10.1371/journal.pone.0239406.g003
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the yellow layer, and then to the blue layer via the yellow layer and so on and so forth, finally

reaching the black layer (layer k).

Definition 5: Local density. For any data point i in dataset S,T(i) = {t1,t2,. . .,tk} denotes the

set of the first K points with the highest PFD similarity to data point i. Here, the local density

of point i is defined as the sum of the PFD similarity of each element in T(i), which can be

expressed as follows.

ri ¼
X

j2TðiÞ
Yði; jÞ ð17Þ

Definition 6: Distance to nearest higher density point. For any data point i in dataset S, if a

point i that satisfies ρj>ρi is found, find the closest point to data point i in the set of all j points

that satisfy this condition, and use the minimum value of this distance as δ value of point i. It is

expressed as follows.

di ¼ min
j:rj>ri

dij ð18Þ

For data points with the highest local density, the δ value is defined as the largest δ value in

the sample, which is expressed as follows.

di ¼ max
j2ðT� iÞ

ðdjÞ ð19Þ

Definition 7: For any data point i in dataset S, its decision value γ is the product of the local

density ρ and its nearest higher density point distance δ.

gi ¼ ri � di ð20Þ

The decision value can be used to quickly select cluster centers.

Definition 8: Similar point. For any data points i and j in dataset S, if the relationship

between points i and j satisfies Eq (21), then point j is referred to as a similar point of point i.

yjy 2 s ið Þ \ p 2 s jð Þf g >
K þ 1

2

� �

ð21Þ

If two points have more common nearest neighbors, the more similar the two data points

are. Therefore, this paper stipulates that if the number of common nearest neighbors of two

data points is greater than dKþ1

2
e, the two points are called similar points. That is to say, no mat-

ter whether the value of K is odd or even, the number of common neighbors of two similar

points is always more than half of the number of K nearest neighbors. If this paper lowers the

standard of the number of common nearest neighbors of similar points, the accuracy of alloca-

tion will be reduced in the subsequent allocation of data points, and if this paper raises the

standard of the number of common nearest neighbors of similar points, the operation amount

of the algorithm will be increased.

Eq (21) can also be expressed as follows.

joði; jÞj >
K þ 1

2

� �

ð22Þ

4.3 Determining the number of clusters

The number of clusters often critically influences the clustering effect. In the proposed algo-

rithm, authors determine the number of cluster centers based on the generated ρ−δ decision

graph or γ decision graph. For example, for a dataset with two clusters, its ρ−δ distribution is

shown in Fig 4A(cluster centers are marked with a pentagram), and the ρ and δ values of the
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two cluster center points are significantly greater than the values of other data points; thus,

these two points can easily be selected as the cluster center. Its γ distribution is shown in Fig

4B (cluster centers are marked with a star), and two points with the greatest γ value can be

selected as cluster centers.

In addition, if the number of clusters is known, this information can be used directly as the

input parameter of the algorithm. Note that the algorithm does not need to manually select the

cluster center based on the decision graph.

4.4 Allocation strategy

The distribution of data points determines the accuracy of the clustering results. In this sec-

tion, this study introduces a two-step allocation strategy, discuss the similar point concept,

present a first-step allocation strategy for similar point, and present a second-step allocation

strategy for the remaining unallocated points.

The first step is to assign similar points. After determining the cluster centers according to

the decision value and number of clusters, cluster centers are added to a queue. For each ele-

ment in the queue, the algorithm finds all unallocated similar points, and then classify similar

points into the cluster to which the corresponding element belongs. Then, the similar points

are added to the end of the queue. Then, the algorithm continues to find similar points of the

elements in the queue until there are no unallocated similar points.

The second step is to traverse all k-nearest neighbors of the remaining unallocated points.

According to the KNN majority voting strategy, counting the clusters of k-nearest neighbors,

and attributing the points to the clusters of most k-nearest neighbors until there are no unallo-

cated points.

In the second step, if there is an unassigned point and its K neighbors are not assigned, or

there are as many data points in its K neighbors as belonging to different clusters, the algo-

rithm cannot assign this point through KNN majority voting strategy. Therefore, it is neces-

sary to increase the value of K by 1 until the algorithm can find a certain cluster to which most

points in the K nearest neighbor belong and classify the point as this cluster.

4.5 Processes

The proposed PFD-DPC algorithm primarily involves two aspects, i.e., (1) calculating the local

density, the distance to the nearest higher density points, and the decision value together with

Fig 4. Decision graph. (A) ρ−δ graph and (B) γ graph.

https://doi.org/10.1371/journal.pone.0239406.g004
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(2) determining the cluster centers and using the two-step allocation strategy to allocate data

points. The flow of the proposed PFD-DPC algorithm is described as follows.

Algorithm 1

Input: dataset data, number of neighbors K, diffusion layer k
Output: Clustering result answer

1. Preprocess the data. Normalize the data and complete missing features.

2. Calculate Euclidean distance matrix dist.

3. Calculate the potential field θ according to Eq (15).

4. Calculate PFD similarity Θ according to Eq (16).

5. Calculate local density ρ according to Eq (17).

6. Calculate the distance to the nearest higher density points δ according to Eqs (18) and (19).

7. Use ρ and δ obtained in steps 5 and 6 to draw a ρ−δ decision graph or calculate the decision

value γ according to Eq (20) and draw a γ decision graph.

8. In the ρ−δ decision graph, select points with greater ρ and δ or in the γ decision graph.

Then, select points with the greatest γ value as the cluster centers and insert them into

queue Q.

9. Find unallocated similar points for the element in queue Q, classify similar points as the

cluster to which the element belongs, and insert the similar points at the end of the queue.

10. Continue to step 9 until there are no unallocated similar points.

11. Traversing k-nearest neighbors for unallocated points. If there are assigned K nearest

neighbors at this point, then classify this point as the cluster to which most of the allocated

k-nearest neighbors belong; otherwise, let K! K+1.

12. Execute step 11 until there are no unassigned points, at which point the algorithm ends.

4.6 Complexity analysis

In this part, this paper analyzes the time complexity and space complexity of the PFD-DPC

algorithm.

4.6.1 Time complexity. In this part, this paper will refer to the above algorithm steps, ana-

lyze the time complexity of each step, and calculate the time complexity of the whole algo-

rithm. Where n is the number of data points, K is the number of nearest neighbors, k is the

diffusion layer, and m is the number of clusters.

In step 1, the attribute values of the data points are completed and normalized, O(n).

In step 2, calculate the distance matrix, O(n2).

In step 3, calculate the Potential field θ, O(Kn2).

In step 4, calculate the PFD similarity Θ, O(Kkn2).

In step 5, calculate local density ρ, O(n2).

In step 6, calculate the distance to the nearest higher density points δ, O(n2).

In step 7, the decision graph is drawn using the values of ρ and δ calculated in steps 5 and 6,

which are not included in the main part of the algorithm.
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In step 8, manually select the clustering centers according to the decision graph, which is not

included in the main part of the algorithm.

In steps 9 and 10, determine the cluster of unallocated similar points, O(mn2).

In steps 11 and 12, determine the cluster of dissimilar points, O((K+m)n2).

Since in the experiment, the value of k ranges from 1 to 3, the value of K ranges from 4 to

50, and the value of m varies from dataset, so it is impossible to determine which Kk or K+m is

larger. For a better representation, this paper takes M = Max(Kk,K+m), so the time complexity

of the PFD-DPC algorithm is O(Mn2).

4.6.2 Space complexity. The PFD-DPC algorithm needs to use the space size O(n2) when

calculating the distance matrix and the similarity matrix. And storing ρ and δ only needs the

space size of O(n), so the space complexity of the PFD-DPC algorithm is O(n2).

5. Experiment

In order to prove the performance of the PFD-DPC algorithm, this paper compared the pro-

posed algorithm to the DPC [19], SNN-DPC [25], FKNN-DPC [33], DBSCAN [9], OPTICS

[10], k-means [5], and AP [45] algorithms. The AP, DBSCAN, and k-means algorithms were

implemented using the Python sklearn library, and OPTICS used the pyclustering library.

Besides, the SNN-DPC algorithm was implemented by the corresponding author’s source

code. For the DPC and FKNN-DPC algorithms, the code is reproduced by the algorithm flow

described by the author.

5.1 Experimental dataset

The performance of the proposed PFD-DPC algorithm was verified using synthetic and real-

world datasets. The synthetic and real-world datasets used in the experiments are listed in

Table 1. Synthetic datasets.

Dataset Source No records No attributes No clusters

Aggregation [46] 788 2 7

Jain [47] 373 2 2

Pathbased [48] 300 2 3

R15 [49] 600 2 15

Spiral [48] 312 2 3

DIM512 [50] 1024 512 16

https://doi.org/10.1371/journal.pone.0239406.t001

Table 2. Real-world datasets.

Dataset Source No records No attributes No clusters

Wine [51] 178 13 3

WDBC [51] 569 30 2

Seeds [51] 210 7 3

Optical Recognition [51] 5620 64 10

Waveform [51] 5000 21 3

Ecoli [51] 336 8 8

Parkinsons [52] 197 23 2

Dermatology [51] 366 33 6

https://doi.org/10.1371/journal.pone.0239406.t002
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Tables 1 and 2, respectively (The datasets used in this paper can be downloaded from https://

github.com/sdnu-ZhuangHui/Datasets-of-PFD-DPC).

5.2 Evaluation indicators

In this experiment, three indexes, i.e., adjusted mutual information (AMI) [53], the adjusted

Rand index (ARI) [53], and the Fowles Mallows index (FMI) [54] were used to evaluate the

performance of the compared clustering algorithms. Note that the upper limit of these indexes

is 1, and the closer the value is to 1, the better the clustering effect.

AMI is a measure of the degree of agreement between two datasets. This measure allows us

to observe the degree of consistency between the clustering results obtained by a clustering

algorithm and the actual categories of the samples. Assuming that the number of samples is N,

the actual category of the data is R, and the clustering result of the data is C. AMI is defined as

follows.

AMI ¼
MIðR;CÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðRÞ � HðCÞ

p ð23Þ

The elements are defined as follows.

HðRÞ ¼
XjUj

i¼1
PðiÞlogðPðiÞÞ ð24Þ

HðCÞ ¼
XjVj

i¼1
P0ðiÞlogðP0ðiÞÞ ð25Þ

MI R;Cð Þ ¼
XjRj

i¼1

XjCj

j¼1
Pði; jÞlog

Pði; jÞ
PðiÞP0ðjÞ

� �

ð26Þ

P ið Þ ¼
jRij

N
ð27Þ

P jð Þ ¼
jCjj

N
ð28Þ

The ARI measures the consistency of the distribution of the two datasets. ARI is expressed

as follows.

ARI ¼
RI � EðRIÞ

maxðRIÞ � EðRIÞ
ð29Þ

The elements are defined as follows.

RI ¼
aþ b

aþ bþ cþ d
ð30Þ

Here, a is the number of data points that belong to the same class in R (and belong to the

same class in C), b is the number of data points that do not belong to the same class in R (and

do not belong to the same class in C), c is the number of data points belonging to the same

class in R but not to the same class in C, and d is the number of data points not belonging to

the same class in R but belonging to the same class in C.
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FMI is defined as the geometric mean of the paired accuracy and recall rates.

FMI ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ cÞ � ðaþ dÞ

p ð31Þ

Here, a, c, and d are defined the same as above.

As shown in Fig 5, using the AMI, ARI, and FMI evaluation indicators can intuitively reflect

the performance of each algorithm.

5.3 Data preprocessing

Prior to performing a clustering experiment, the data must be preprocessed. Data preprocess-

ing primarily includes the completion of missing data and data normalization. In this experi-

ment, the missing eigenvalues were assigned as the mean of the features, and the data were

normalized via min–max normalization, which is expressed as follows.

xij ¼
xij � minðxjÞ

maxðxjÞ � minðxjÞ
ð32Þ

Here, i is the serial number of the sample point, and j is the serial number of the feature.

5.4 Parameter selection

To evaluate the performance of the algorithms more objectively, authors optimized each algo-

rithm’s parameters.

For the PFD-DPC, SNN-DPC, and FKNN-DPC algorithms, parameter K is required, and

this parameter represents the number of nearest neighbors selected and adopts an integer

value. Here, authors adopted the value of K as an integer between 4 and 50. Notably, if the

value of K is less than the lower limit of 4, the algorithm will fall into a dead cycle, resulting in

errors. For the upper limit 50, with an increasing K value, the number of considered neighbor

points also increases, the influence of each neighbor gradually decreases, and consequently,

the influence of the change on the result gradually decrease. In addition, the PFD-DPC algo-

rithm must specify the diffusion layers k of the potential field. Here, k is an integer because

Fig 5. Performance score of each algorithm on datasets. (A) Jain dataset and (B) Optical recognition dataset.

https://doi.org/10.1371/journal.pone.0239406.g005
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each layer of diffusion must pay time and space costs; thus, authors adopted k values 1 to 3

after weighing the clustering effect and space–time cost.

The cutoff distance dc must be set for the DPC algorithm. According to the original author

of the DPC algorithm, a dc value that makes the number of neighbors account for 1% to 2% of

the total number of samples is effective. Therefore, authors adopted a value between 0.1 and 5

with a step size of 0.1 in the experiments.

For the DBSCAN and OPTICS algorithms, two parameters must be set, i.e., the neighbor-

hood radius ε and minimum number of samples contained in the neighborhood minpts. The

neighborhood radius ε was set between 0.01 and 1 with a step size of 0.01, and the minimum

sample number minpts was selected between 1 and 50.

The AP algorithm only has one parameter preference to set. For this parameter, large values

result in more clustering centers being selected by the algorithm. Here, authors first set a large

parameter value, and then gradually narrow the search scope until the best clustering effect is

found.

Note that only the correct number of clusters must be specified for the k-means algorithm.

For the PFD-DPC, SNN-DPC, FKNN-DPC, and DPC algorithms, although the cluster cen-

ter can be selected by a decision diagram, the number of clusters is not always correct; thus,

authors specified the correct number of clusters for each algorithm.

Fig 6. Control experiments on Jain dataset. (A) Regardless of potential field diffusion and (B) Considering potential

field diffusion.

https://doi.org/10.1371/journal.pone.0239406.g006

Fig 7. Control experiment on Pathbased dataset. (A) Regardless of potential field diffusion and (B) Considering

potential field diffusion.

https://doi.org/10.1371/journal.pone.0239406.g007
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5.5 Necessity of potential field diffusion

To further verify that the propagation of potential field significantly impacts data point cluster-

ing, this paper performed a comparative experiment in which authors only considered poten-

tial field without considering diffusion and the diffusion of the potential field.

Fig 6A shows the clustering results obtained when only the potential field was considered

(i.e., diffusion was not considered), and Fig 6B shows the clustering results when the potential

field diffusion was considered. Fig 6A shows that, without considering the potential field, the

local density of the lower cluster was generally higher than that of the upper cluster owing to

the high density of the lower cluster; thus, the two clustering centers were allocated to the

lower cluster. In Fig 6B, the diffusion of the potential field was considered in the calculation of

PFD similarity. Here, lower cluster density resulted in greater distance from the point to the

neighbors during diffusion such that that a cluster with low density will not be ignored.

Fig 7A shows the clustering results obtained when only the potential field was considered

(diffusion was not considered), and Fig 7B shows the clustering results when the potential field

diffusion was considered. Notably, without considering diffusion, the spherical cluster on the

left is divided into two clusters, and the spherical cluster on the right and the right half of the

circular cluster are directly classified into the same cluster. However, in Fig 7B, only the indi-

vidual points on the edge of the cluster generated distribution errors, and the overall clustering

effect was far better than that obtained without considering propagation.

These results indicate that the algorithm considering the diffusion of potential field is obvi-

ously better than that without considering diffusion because the algorithm that considers the

diffusion of potential field pays more attention to the overall distribution of the data points. If

only the potential field is considered, the cluster center will be concentrated in the high-density

cluster in the variable density cluster, thereby ignoring the low-density cluster, which is unde-

sirable. If the diffusion of the potential field is considered, the distance from the data point to

the nearest neighbor point is calculated in each layer of diffusion. The disadvantage of the low-

density cluster in the cluster will be changed, thereby making the cluster more reasonable.

5.6 Synthetic datasets

This study also experimented on a series of synthetic datasets that are widely used to test vari-

ous clustering algorithms. These datasets differ in overall distribution, sample size, and num-

ber of clusters, which can reflect the performance of an algorithm in different scenarios.

Table 3 shows the clustering results of each algorithm obtained on the synthetic datasets.

Here, bold values represent the optimal result of clustering on the dataset. In the following sec-

tions, this paper shows the clustering effect of the clustering algorithm on the dataset in the

form of pictures, where the star represents the clustering center, the cross represents noise

points, and data points in different colors represent different clusters.

The clustering effect of each clustering algorithm on the Jain dataset is shown in Fig 8. The

Jain dataset comprises two crescent-shaped clusters, in which the density of clusters in the

upper left is less than that in the lower right. For the PFD-DPC algorithm, the diffusion of the

potential field is considered in the local density calculation; thus, it can better represent the

global distribution of the data points rather than relying on traditional local density and dis-

tance to the nearest higher density points to determine cluster centers. Therefore, even if the

density of clusters in the upper left is small, the algorithm can accurately identify the cluster

centers. The SNN-DPC algorithm ignores clusters with lower density at the upper left, and the

clusters at the lower right are divided into two different clusters, which is undesirable. With

the DPC algorithm, only the number of points within the cutoff distance of the data points is

considered when calculating the local density; thus, the local density of clusters with high
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density is much greater than that of clusters with low density; thus, low-density clusters are

ignored. For the DBSCAN and OPTICS algorithms, although the lower right clusters are accu-

rately identified, the upper left clusters are incorrectly divided into two clusters. For the AP

and k-means algorithms, cluster opening is still misallocated.

The clustering effect of each algorithm on the Pathbased dataset is shown in Fig 9. For the

PFD-DPC and SNN-DPC algorithms, three clusters could be accurately identified. Although

there are a few points on the cluster boundary that produce a few allocation errors, the final

clustering effect is still relatively ideal. This is because the PFD-DPC algorithm improves the

data allocation strategy and considers its nearest neighbors more reasonably when allocating

edge data points, thus reducing the allocation errors. For the DPC, k-means algorithm, and AP

algorithms, the data points on both sides were incorrectly allocated to the two clusters in the

center, resulting in a series of attached allocation errors. For the DBSCAN algorithm, although

two clusters in the center were accurately identified, most points of the peripheral cluster were

identified as noise points. For the OPTICS algorithm, although the two clusters in the centers

were accurately identified, the points of the peripheral cluster were divided into several differ-

ent clusters.

The effect of each algorithm on the Aggregation dataset is shown in Fig 10. The density distri-

bution of this dataset is relatively uniform, and the distance of the center of each cluster is rela-

tively far. The traditional DPC algorithm and the improved DPC algorithm assume that the

Table 3. Clustering results on synthetic datasets.

Algorithm AMI ARI FMI Parameter AMI ARI FMI Parameter

Aggregation Spiral

PFD-DPC 0.9767 0.9847 0.9880 41/3 1.0000 1.0000 1.0000 5/2

SNN-DPC 0.9803 0.9876 0.9903 6 1.0000 1.0000 1.0000 4

FKNN-DPC 0.9775 0.9855 0.9886 20 1.0000 1.0000 1.0000 5

DPC 0.9922 0.9956 0.9966 3.1 1.0000 1.0000 1.0000 1.8

DBSCAN 0.9529 0.9779 0.9827 0.04/6 1.0000 1.0000 1.0000 0.04/2

OPTICS 0.9221 0.9753 0.9807 0.06/10 1.0000 1.0000 1.0000 0.04/1

AP 0.7667 0.4409 0.5771 -0.50 0.4833 0.1555 0.3469 -0.13

K-Means 0.7935 0.7300 0.7884 7 -0.0055 -0.0060 0.3274 3

Jain DIM512

PFD-DPC 1.0000 1.0000 1.0000 13/3 1.0000 1.0000 1.0000 4/1

SNN-DPC 0.5212 0.5935 0.8272 39 1.0000 1.0000 1.0000 4

FKNN-DPC 0.0562 0.1318 0.6430 10 1.0000 1.0000 1.0000 20

DPC 0.6183 0.7146 0.8819 0.9 1.0000 1.0000 1.0000 0.6

DBSCAN 0.8650 0.9758 0.9906 0.08/2 1.0000 1.0000 1.0000 0.36/2

OPTICS 0.8645 0.9758 0.9906 0.08/1 0.9029 0.9432 0.9478 0.19/1

AP 0.6693 0.8052 0.9253 -1.77 1.0000 1.0000 1.0000 -1.00

K-Means 0.4916 0.5767 0.8200 2 1.0000 1.0000 1.0000 16

Pathbased R15

PFD-DPC 0.9529 0.9707 0.9804 8/1 0.9938 0.9928 0.9933 14/1

SNN-DPC 0.9355 0.9596 0.9730 10 0.9938 0.9928 0.9933 40

FKNN-DPC 0.8344 0.8744 0.9165 9 0.9907 0.9892 0.9899 27

DPC 0.5212 0.4717 0.6664 3.8 0.9938 0.9928 0.9933 0.6

DBSCAN 0.8710 0.9011 0.9340 0.08/10 0.9825 0.9819 0.9831 0.04/12

OPTICS 0.4440 0.6330 0.7486 0.06/4 0.9798 0.9779 0.9794 0.04/11

AP 0.5122 0.4640 0.6635 -4.10 0.9938 0.9928 0.9932 -0.06

K-Means 0.5098 0.4613 0.6617 3 0.9938 0.9928 0.9932 15

https://doi.org/10.1371/journal.pone.0239406.t003
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clustering center point has a larger local density and is farther away from the higher density point.

Therefore, based on this assumption, the PFD-DPC, SNN-DPC, and DPC algorithms correctly

identified the clusters and achieved good results. The DBSCAN and OPTICS algorithms could

also correctly identify clusters; however, these algorithms incorrectly evaluated some points on

the cluster boundary as noise points. The AP algorithm incorrectly judged the number of clusters,

which caused inaccurate clustering. In addition, the k-means algorithm ignored the two smaller

clusters on the bottom left and mistakenly divided the two larger clusters into multiple clusters.

The clustering effect of each algorithm on the Spiral dataset is shown in Fig 11. The

PFD-DPC algorithm accurately identified the clusters. This is because after selecting reason-

able clustering centers, PFD-DPC algorithm adopts different allocation strategies for similar

points and dissimilar points, so that its nearest neighbors are fully considered in the process

of data point allocation, thus ensuring the accuracy of clustering. The SNN-DPC, DPC,

Fig 8. Results of algorithms on Jain dataset.

https://doi.org/10.1371/journal.pone.0239406.g008
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DBSCAN, and OPTICS algorithms also accurately identified each cluster. The AP algorithm

failed to accurately identify the number of clusters, which resulted in serious errors. In addi-

tion, the k-means algorithm incorrectly divided samples into three clusters according to the

spatial distribution of the data.

In summary, the proposed PFD-DPC algorithm outperformed most of the compared algo-

rithms. Although there were a few allocation errors on the cluster edge of the Aggregation

dataset, rendering it slightly inferior to the DPC algorithm, the clustering effect of the pro-

posed PFD-DPC algorithm was obviously superior to the DPC algorithm on the Jain and Path-

based datasets. In addition, the proposed PFD-DPC algorithm was also optimal on the Spiral,

R15, and DIM512 datasets.

Fig 9. Results obtained on Pathbased dataset.

https://doi.org/10.1371/journal.pone.0239406.g009
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5.7 Real-world datasets

This study compared eight real-world datasets to verify the clustering effect of each algorithm.

Note that these datasets differ in data size and structure; thus, it could better verify the perfor-

mance of each algorithm in different scenarios. Because the dimension of real-world datasets

is very high, the picture can not well show the characteristics of the datasets so that this paper

will introduce each dataset in detail.

WDBC dataset shows the nuclear digital information of 569 breast masses. Each mass has

30 attributes, and clustering can be used to detect whether the breast mass is benign or malig-

nant [55].

Ecoli dataset consists of 336 protein data of Escherichia coli. It has a total of eight attributes,

of which the first attribute is the sequence number, and the remaining seven attributes are

Fig 10. Results obtained on the Aggregation dataset.

https://doi.org/10.1371/journal.pone.0239406.g010
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calculated from the protein amino acid sequence. The data set can be divided into cp (cyto-

plasm), im (inner membrane without signal sequence), pp (perisplasm), imU (inner mem-

brane, uncleavable signal sequence), om (outer membrane), omL (outer membrane

lipoprotein), imL (inner membrane lipoprotein), imS (inner membrane, cleavable signal

sequence) by clustering.

Seeds dataset consists of 210 wheat kernels. Its seven attributes are area A, perimeter

P, compactness C, length of kernel, width of kernel, asymmetry coefficient and length of kernel

groove. The dataset can be divided into three categories by clustering.

Dermatology dataset consists of 366 records of patients with skin diseases. Its 33 attributes

are the characteristics of clinical evaluation and skin sample evaluation. Through clustering,

the dataset can be divided into six categories, which represent different skin diseases.

Fig 11. Results obtained on Spiral dataset.

https://doi.org/10.1371/journal.pone.0239406.g011
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Parkinsons dataset is composed of a range of biomedical voice measurements from 31 peo-

ple, 23 with Parkinson’s disease, and each attribute is a particular voice measure. Healthy peo-

ple and patients with parkinson’s disease can be identified by clustering.

Optical Recognition dataset consists of 5620 handwritten digital images, its 64 attributes are

all integers between 0–16, and the data can be classified into ten types of numbers from 0 to 9

through clustering.

Waveform dataset consists of 5000 sound waveform data, it has 21 attributes with continu-

ous values between 0 and 6, and the dataset can be divided into three categories by clustering.

Wine dataset contains 178 wine records of three different origins, its 13 attributes are the 13

chemical components of wine. Wine of different origins can be classified by clustering.

Table 4. Clustering results on real-world datasets.

Algorithm AMI ARI FMI Parameter AMI ARI FMI Parameter

WDBC Ecoli

PFD-DPC 0.7433 0.8438 0.9274 30/2 0.6458 0.7481 0.8252 14/1

SNN-DPC 0.7350 0.8373 0.9244 30 0.5463 0.6794 0.7840 25

FKNN-DPC 0.3560 0.4009 0.7658 9 0.4755 0.5535 0.6919 9

DPC 0.0007 -0.0028 0.7257 1.3 0.4978 0.4465 0.5775 0.4

DBSCAN 0.3581 0.4786 0.7570 0.46/38 0.4516 0.5255 0.6623 0.20/22

OPTICS 0.0856 0.4305 0.6767 0.51/65 0.4260 0.6642 0.7515 0.23/29

AP 0.5936 0.1322 0.7879 262 0.5339 0.4907 0.6134 -0.86

K-Means 0.6110 0.7302 0.8770 2 0.5051 0.4190 0.5542 8

Seeds Dermatology

PFD-DPC 0.7600 0.8093 0.8723 38/1 0.9286 0.9278 0.9422 25/1

SNN-DPC 0.7574 0.7987 0.8653 6 0.8749 0.8689 0.9021 19

FKNN-DPC 0.6971 0.7422 0.8276 9 0.8355 0.8127 0.8504 35

DPC 0.7299 0.7670 0.8444 0.7 0.7470 0.6893 0.7512 2.2

DBSCAN 0.5302 0.5291 0.6711 0.24/16 0.5721 0.4165 0.5395 0.99/3

OPTICS 0.3802 0.4190 0.6350 0.81/5 0.2934 0.3430 0.4563 0.99/1

AP 0.4465 0.3936 0.6933 -2.07 0.6898 0.5935 0.6766 -0.84

K-Means 0.6705 0.7049 0.8026 3 0.8748 0.7426 0.7947 6

Parkinsons Waveform

PFD-DPC 0.1772 0.2686 0.8140 43/3 0.3821 0.3016 0.5356 4/3

SNN-DPC 0.2127 0.1187 0.6150 21 0.3983 0.4176 0.6164 7

FKNN-DPC 0.1336 0.1601 0.6582 7 0.0774 0.0086 0.5050 6

DPC 0.2478 0.1256 0.6187 1.2 0.3261 0.2698 0.5292 0.1

DBSCAN 0.0071 0.0252 0.5775 0.50/17 0.0856 0.0097 0.4813 0.38/5

OPTICS 0.0368 0.0986 0.5049 0.45/9 0.0286 0.0918 0.2661 0.47/48

AP 0.1098 0.0343 0.2246 0.23 0.2891 0.3014 0.5178 -2.20

K-Means 0.2129 0.0520 0.5957 2 0.3630 0.2536 0.5037 3

Optical Recognition Wine

PFD-DPC 0.8751 0.8146 0.8350 31/3 0.9081 0.9295 0.9532 36/1

SNN-DPC 0.8514 0.7916 0.8140 28 0.8928 0.9121 0.9417 38

FKNN-DPC 0.6195 0.6026 0.6452 10 0.8038 0.7990 0.8667 9

DPC 0.8182 0.7612 0.7920 0.3 0.7065 0.6724 0.7835 2.0

DBSCAN 0.5254 0.1817 0.3318 0.99/3 0.5484 0.5292 0.7121 0.50/21

OPTICS 0.2358 0.3741 0.4983 0.99/1 0.3698 0.4119 0.6296 0.59/7

AP 0.6566 0.5829 0.6365 -212.92 0.3330 0.3170 0.6126 -2.02

K-Means 0.7475 0.6712 0.7070 10 0.8473 0.8685 0.9126 3

https://doi.org/10.1371/journal.pone.0239406.t004
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Table 4 shows the clustering effect of each algorithm on real-world datasets. It can be seen

that the PFD-DPC algorithm still performs better than other clustering algorithms on real-

world datasets. This is because, on the one hand, the PFD-DPC algorithm introduces the con-

cept of potential field diffusion, comprehensively considering the distance between the data

point and its high order neighbors and the nearest higher density point, to determine the clus-

tering center more reasonably; On the other hand, The PFD-DPC algorithm introduces the

concept of similar points and adopts a two-step allocation strategy. In the first step, data points

are allocated according to similar points. In the second step, the KNN majority voting strategy

is used to allocate data points, making the allocation of data points less prone to the attached

errors. Therefore, the clustering effect of the PFD-DPC algorithm on real-world datasets is

superior to other clustering algorithms, proving the superiority of the PFD-DPC algorithm.

According to the clustering effect of the PFD-DPC algorithm on real-world datasets, it can

be concluded that the PFD-DPC algorithm can be applied to recognize the handwritten digits,

diseases, wine and so on.

By comparing the synthetic datasets with the real-world datasets, it can be found that all the

clustering algorithms in this paper are less effective on the real-world datasets than on the syn-

thetic datasets, because the real-world datasets often have a very high dimension. However,

when authors calculate the distance matrix of data points, they often use Euclidean distance.

According to [56], high-dimensional Euclidean distance loses almost all its meaning, so the

clustering effects of clustering algorithms on real datasets are often worse than those on syn-

thetic datasets.

6. Discussion

In this part, this paper analyzes the parameter sensitivity, data sequence sensitivity and run-

ning time of the PFD-DPC algorithm.

6.1 Parameter sensitivity analysis

In this section, this paper analyzes the parameter sensitivity of the PFD-DPC algorithm.

The PFD-DPC algorithm has two input parameters, K and k, where K represents the near-

est neighbor, and k represents the number of diffusion layers. The experimental part above has

given the optimal parameters of the PFD-DPC algorithm on each dataset. The authors select

some representative datasets and change the value of K to carry on the experiment when the k

value is determined to be the optimal value.

Fig 12. AMI (a), ARI (b), FMI (c) of PFD-DPC algorithm under different K values.

https://doi.org/10.1371/journal.pone.0239406.g012
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The AMI, ARI and FMI values of the PFD-DPC algorithm under different K values are

shown in Fig 12. It can be seen that the three measures fluctuate greatly when the value of K is

small, but with the increase of the value of K, the values of the three measures are gradually sta-

ble. For most datasets, the values of AMI, ARI, and FMI will be vigorously jittered before

K = 33, and then they will stabilize. Therefore, in order to obtain a relatively stable clustering

effect, when selecting the K value, a value greater than or equal to 33 can be selected to ensure

that the PFD-DPC algorithm is robust.

6.2 Data sequence sensitivity analysis

In this section, this paper analyzes the data sequence sensitivity of the PFD-DPC algorithm.

The authors selected several representative datasets and let the PFD-DPC algorithm cluster

each dataset under the optimal parameters. Before each clustering, the authors randomly dis-

rupts the data sequence of each dataset and carries out 20 experiments for each dataset. The

values of AMI, ARI and FMI of the PFD-DPC algorithm in random data sequence are shown

in Fig 13. It can be seen that the three measures of the algorithm tend to be stable on most

datasets, and only the measures of individual experiments will fluctuate, but there is no sharp

Table 5. Running time of the algorithms on different datasets (in seconds).

Dataset PFD-DPC DPC

Aggregation 0.5491 0.0642

Spiral 0.0754 0.0500

Jain 0.1303 0.0221

DIM512 4.2478 3.4751

Pathbased 0.0667 0.0101

R15 0.2958 0.0251

WDBC 2.7401 2.6005

Ecoli 1.3955 1.4497

Seeds 0.8393 0.8773

Dermatology 1.6414 1.4608

Parkinsons 0.8127 0.7495

Waveform 40.1716 29.2842

Optical Recognition 61.0278 49.8040

Wine 0.7281 0.6761

https://doi.org/10.1371/journal.pone.0239406.t005

Fig 13. AMI (a), ARI (b) and FMI (c) of PFD-DPC algorithm under random data sequence.

https://doi.org/10.1371/journal.pone.0239406.g013
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fluctuation. Therefore, it can be concluded that the PFD-DPC algorithm is not sensitive to the

sequence of data.

6.3 Running time

The running time of the algorithm is an important criterion to evaluate the quality of the algo-

rithm. In this section, this paper will compare the running time of the PFD-DPC algorithm

with the traditional DPC algorithm. According to [18], the time complexity of the DPC algo-

rithm is O(n2). And this paper has calculated that the time complexity of the PFD-DPC algo-

rithm is O(Mn2). Although the time complexity of PFD-DPC is M times that of the DPC

algorithm, the actual running time of the algorithm does not have such a big gap.

This paper compares the running time of the PFD-DPC algorithm and the DPC algorithm

on each dataset. In order to reduce the errors of the experiment, this paper runs the two

algorithms 50 times under the optimal parameters, and compares the average time required

for the algorithm to run once. The results are shown in Table 5. It can be seen that on most

datasets, the running time of the PFD-DPC algorithm and DPC algorithm is not much differ-

ent, but the clustering effect of the PFD-DPC algorithm on most datasets is better than DPC

algorithm.

7. Conclusion

Considering the shortcomings of the DPC algorithm, this study proposed the PFD-DPC algo-

rithm that defines a new density measure based on the diffusion of the potential field, render-

ing the selection of clustering centers more reasonable and enabling a more accurate

determination of the cluster centers. In addition, the algorithm redefines the judgment condi-

tions of similar point, improves the reliability of data allocation, and prevents the occurrence

of attached errors during data point allocation; thus, serious clustering errors can be avoided.

The experimental results obtained on both synthetic and real-world datasets demonstrate that

the proposed PFD-DPC algorithm can be applied to a dataset with significant density differ-

ence, cross winding, and high feature latitude between clusters.

In the future, the authors plan to focus on three aspects. First, they will examine how the

proposed PFD-DPC algorithm can automatically, quickly, and accurately determine cluster

centers rather than artificially specifying the number of clusters. Second, they plan to investi-

gate how to adaptively determine the layer of diffusion of the potential field and automatically

determine reasonable layers for clusters with different structures as well as reduce the time and

space costs while ensuring sufficient clustering accuracy. Third, they will investigate methods

to reduce the computational complexity of the proposed PFD-DPC algorithm while maintain-

ing its superior clustering effect.
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