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Abstract

Over the past few months, the spread of the current COVID-19 epidemic has caused tre-

mendous damage worldwide, and unstable many countries economically. Detailed scientific

analysis of this event is currently underway to come. However, it is very important to have

the right facts and figures to take all possible actions that are needed to avoid COVID-19. In

the practice and application of big data sciences, it is always of interest to provide the best

description of the data under consideration. The recent studies have shown the potential of

statistical distributions in modeling data in applied sciences, especially in medical science.

In this article, we continue to carry this area of research, and introduce a new statistical

model called the arcsine modified Weibull distribution. The proposed model is introduced

using the modified Weibull distribution with the arcsine-X approach which is based on the

trigonometric strategy. The maximum likelihood estimators of the parameters of the new

model are obtained and the performance these estimators are assessed by conducting a

Monte Carlo simulation study. Finally, the effectiveness and utility of the arcsine modified

Weibull distribution are demonstrated by modeling COVID-19 patients data. The data set

represents the survival times of fifty-three patients taken from a hospital in China. The practi-

cal application shows that the proposed model out-classed the competitive models and can

be chosen as a good candidate distribution for modeling COVID-19, and other related data

sets.

1 Introduction

The first outbreak of the current COVID-19 epidemic was first seen in the popular seafood

market in the Chinese city of Wuhan, where large numbers of people come to buy or sell sea-

food. As of December 31, 2019, a total of 27 cases of COVD-19 epidemic were reported by the
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WMHC (Wuhan Municipal Health Commission). After highly effecting some Chines cities

and provinces, this pandemic transmitted to other countries via air routes [1].

Almost every country around the globe has paid a huge price in terms of financial and

human loss, and yet, some countries are paying and in sacrifice process. The countries having

large population densities and low health facilities have higher chances of being in critical situ-

ations during this pandemic [2].

The main serious and common symptoms attributed to COVID-19 are sore throat (13.9%),

dry cough (67.7%), Fever (87.9%), shortness of breath (18.6%), headache (13.6%), fatigue

(38.1%), sputum production (33.4%), muscle pain (14.8%), nausea (5.0%), nasal congestion

(4.8%), haemoptysis (0.9%) and conjunctival congestion (0.8%). For more detail about the

symptoms of COVID-19 pandemic; see [3]. The % of symptoms are displayed in Fig 1.

The comparison of COVID-19 epidemic between different countries is worth of

studies and is of great concern. In this regard, researchers are devoting great efforts to make

comparisons between different countries. For some previous attempts to compare this epi-

demic in Italy and China; see [4] for details. Comparison of COVID-19 in Europe, USA,

and South Korea is provided in [5]. The COVID-19 pandemic in Australia has been dis-

cussed in [6].

Modeling the spread of COVID-19 in Lebanon is provided in [7]. A case study form Spain

has been studied in [8]. Mathematical analysis of COVID-19 in Mexico is provided in [9]. A

case study form Brazil is discussed in [10]. The progress of COVID-19 epidemic in Pakistan is

studied by [11]. A mathematical model for COVID-19 transmission dynamics in India is pro-

vided by [12]. Al-Babtain et al. [13] introduced two case studies in Saudi Arabia, the first one

about COVID-19 infections from 24 March to 12 April, 2020 and the second about numbers

of daily recover patients in the same period of time. Comparison of COVID-19 events in Asian

countries has been carried out in [14]. The comparison between Iran and mainland China has

appeared in [15]. The comparison between the two neighbour countries Iran and Pakistan has

appeared in [16]. A case of the COVID-19 pandemic in Indonesia has been discussed in [17].

For more information, reader can refer to [18–27].

Fig 1. Graphical display for the percentage of the symptoms of COVID-19.

https://doi.org/10.1371/journal.pone.0254999.g001
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In the current situation, it is of great interest to study more about COVID-19 to make com-

parison between different countries. In the domain and practice of big data science, to provide

the best description of the data under consideration is a prominent research topic. The recent

studies have pointed out the applicability of statistical models to provide the best description

of the random phenomena. In this article, we focus on this research area of distribution theory,

and introduce a new statistical model to provide the best fit to data in linked with COVID-19

and other related events.

The modified Weibull distribution is one of the most prominent modifications of the Wei-

bull distribution which is introduced to improve the fitting power of the exponential, Rayleigh,

linear failure rate and Weibull distributions; see [28]. We further carry this area of distribution

theory and introduce a new prominent version of the modified Weibull distribution to

improve its fitting power. A random variable X, is said to follow the modified Weibull distribu-

tion with shape parameter α and scale parameters κ1 and κ2, if its cdf (cumulative distribution

function) denoted F(x;X), is given by

Fðx;XÞ ¼ 1 � e� k1xa � k2x; x � 0; a;k1; k2 > 0; ð1Þ

where X = (α, κ1, κ2). The pdf (probability density function) corresponding to expression Eq 1

is

f ðx;XÞ ¼ ðak1xa� 1 þ k2Þe� k1xa � k2x; x > 0:

In this article, we focus on proposing a new modification of the modified Weibull distribu-

tion called the arcsine modified Weibull (ASM-Weibull) distribution. The ASM-Weibull dis-

tribution is introduced by adopting the approach of the arcsine-X distributions of [29], which

can be obtained as a sub-case of [30]. The cdf and pdf of the arcsine-X distributions are given,

respectively, by

GðxÞ ¼
2

p
arcsineðFðx;XÞÞ; x 2 R: ð2Þ

where F(x;X) is cdf of the baseline random variable. The respective pdf is

gðxÞ ¼
2

p

f ðx;XÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � Fðx;XÞ2
q ; x 2 R:

The cdf of the proposed ASM-Weibull distribution is obtained by using the expression 1 in

2. The flexibility and applicability of the ASM-Weibull distribution are examined via an appli-

cation to the survival times of the COVID-19 patient data.

2 The arcsine-modified weibull model

In this section, we introduce the ASM-Weibull distribution. A random variable X, is said to

follow the ASM-Weibull distribution, if its cdf is given by

GðxÞ ¼
2

p
arcsineð1 � e� k1xa � k2xÞ; x � 0; a;k1; k2 > 0: ð3Þ
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The density function corresponding to 3 is given by

gðxÞ ¼
2

p

ðak1xa� 1 þ k2Þe� k1xa � k2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ð1 � e� k1xa � k2xÞ
2

q ; x > 0: ð4Þ

Some possible behaviors of the pdf of the ASM-Weibull distribution are shown in Fig 2.

The plots in the right panel of Fig 2, are sketched for α = 6.5, κ1 = 1.5, κ2 = 0.5 (red-line), α =

5.4, κ1 = 0.5, κ2 = 0.9 (green-line), α = 4.6, κ1 = 1.5, κ2 = 1.5 (black-line), α = 3.8, κ1 = 1.5, κ2 =

2.5 (blue-line). Whereas, the plots in the left panel of Fig 2, are presented for α = 0.5, κ1 = 1.5,

κ2 = 1.5 (red-line), α = 2.5, κ1 = 2.5, κ2 = 0.1 (green-line), α = 1.6, κ1 = 1.2, κ2 = 0.5 (black-

line), α = 2.8, κ1 = 1.8, κ2 = 1.2 (blue-line).

Some possible behaviors of the hazard rate function (hrf) h(x) of the ASM-Weibull distribu-

tion are shown in Fig 3. The plots provided in Fig 3, are sketched for α = 0.5, κ1 = 0.5, κ2 = 1

(red-line), α = 1.5, κ1 = 0.8, κ2 = 0.5 (green-line), α = 1.5, κ1 = 2.1, κ2 = 1.5 (blue-line),α = 1.2,

κ1 = 0.9, κ2 = 1.2 (gold-line), α = 2.4, κ1 = 0.5, κ2 = 1.8 (black-line). From the plots provided in

Fig 3, we can see that the proposed model captures different important behaviours of the hrf

such as increasing, decreasing, unimodal also called upside down bathtub, modified unimodal

and most importantly bathtub shapes.

3 Basic mathematical properties

This section deals with the computation of some statistical properties of the ASM-Weibull

distribution.

Fig 2. Different density plots of the ASM-Weibull distribution.

https://doi.org/10.1371/journal.pone.0254999.g002
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Fig 3. Different hrf plots of the ASM-Weibull distribution.

https://doi.org/10.1371/journal.pone.0254999.g003
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3.1 Quantile function

Let X denote the ASM-Weibull random variable with cdf 3, then the qf (quantile function) of

X, denoted Q(u), is given by

QðuÞ ¼ k1xa þ k2xþ log 1 � sin
p

2
u

� �� �
: ð5Þ

where u has the uniform distribution on the interval (0,1).

3.2 Moments

This subsection deals with the computation of rth moment of the ASM-Weibull distribu-

tionthat can be further used to obtain important characteristics. It is often employed in com-

puting the main properties and characteristics of the distribution (as an example of this

characteristics skewness, central tendency, dispersion, and kurtosis). In this section, we derive

the rth moment of the ASM-Weibull distribution as follows

m0r ¼
2

p

Z1

0

xr
ðak1xa� 1 þ k2Þe� k1xa � k2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ð1 � e� k1xa � k2xÞ
2

q dx: ð6Þ

Using binomial series that is convergent when |t|< 1 (see, https://socratic.org/questions/

how-do-you-use-the-binomial-series-to-expand-f-x-1-sqrt-1-x-2), we have

1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � t2
p ¼

X1

n¼0

1� 3� 5� . . .� ð2n � 1Þ

n!2n
t2n: ð7Þ

Using 7, we have

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ð1 � e� k1xa� k2xÞ
2

q ¼
X1

n¼0

1� 3� 5� . . .� ð2n � 1Þ

n!2n
ð1 � e� k1xa � k2xÞ

2n
: ð8Þ

The expression 8 can also be written as

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ð1 � e� k1xa � k2xÞ
2

q ¼
X1

n¼0

X2n

i¼0

2n

i

 !

ð� 1Þ
i 1� 3� 5� . . .� ð2n � 1Þ

n!2n

�e� ik1xa � ik2x:

ð9Þ

Using expression 9 in 6, we have

m0r ¼
2

p

X1

n¼0

X2n

i¼0

2n

i

 !

ð� 1Þ
i 1� 3� 5� . . .� ð2n � 1Þ

n!2n

�

Z1

0

xrðak1x
a� 1 þ k2Þe

� k1xaðiþ1Þ� k2xðiþ1Þdx:

ð10Þ

Using the series e−t, we have

e� t ¼
X1

j¼0

ð� 1Þ
j

j!
tj: ð11Þ
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Let t = κ1(i + 1)xα, then using the expression 11, we get

e� k1ðiþ1Þxa ¼
X1

j¼0

ð� 1Þ
j
ðiþ 1Þ

j
k
j
1

j!
xja: ð12Þ

Using expression 12 in 10, we get

m0r ¼
2

p

X1

n¼0

X2n

i¼0

2n

i

 !

ð� 1Þ
iþj
ðiþ 1Þ

j
k
j
1

1� 3� 5� . . .� ð2n � 1Þ

n!2n

�

Z1

0

xrþjaðak1x
a� 1 þ k2Þe

� k2xðiþ1Þdx;

m0r ¼
2

p

X1

n¼0

X2n

i¼0

2n

i

 !

ð� 1Þ
iþj
ðiþ 1Þ

j
k
j
1

1� 3� 5� . . .� ð2n � 1Þ

n!2n

� ak1

Z1

0

xrþaðjþ1Þ� 1e� k2ðiþ1Þxdxþ k2

Z1

0

xrþjae� k2ðiþ1Þxdx

2

4

3

5;

m0r ¼
2

p

X1

n¼0

X2n

i¼0

2n

i

 !

ð� 1Þ
iþj
ðiþ 1Þ

j
k
j
1

1� 3� 5� . . .� ð2n � 1Þ

n!2n

� ak1

Gðr þ aðjþ 1ÞÞ

ðk2ðiþ 1ÞÞ
rþaðjþ1Þ

þ k2

Gðr þ jaþ 1Þ

ðk2ðiþ 1ÞÞ
rþjaþ1

" #

:

For different values of α and κ2, and fixed value of κ1, the plots of mean, variance, skewness,

and kurtosis of the ASM-Weibull distribution are presented in Figs 4 and 5.

Furthermore, the mgf (moment generating function) of the ASM-Weibull distribution

denoted byMX(t) has the form

MXðtÞ ¼
2

p

X1

r;n¼0

X2n

i¼0

2n

i

 !

ð� 1Þ
i 1� 3� 5� . . .� ð2n � 1Þtr

r!n!2n
Zr;i;a;k1 ;k2

:

4 Maximum likelihood estimation

Here, we derive the maximum likelihood estimators (MLEs) of the ASM-Weibull distribution

parameters based on the complete samples only. Let x1, x2, . . ., xn represent the observed values

from the ASM-Weibull distribution with parameters α, κ1 and κ2. Corresponding to Eq 4, the

total log-likelihood function ℓ(α, κ1, κ2) is given by

‘ða; k1; k2Þ ¼ n log
2

p

� �

þ
Xn

i¼1

log ak1x
a� 1

i þ k2

� �
�
Xn

i¼1

k1x
a

i �
Xn

i¼1

k2xi

�
1

2

Xn

i¼1

1 � ð1 � e� k1xai � k2xiÞ
2

� �
:

ð13Þ

The numerical maximization of ℓ(α, κ1, κ2) can be done either by using the computer soft-

ware or via differentiation on behalf of α, κ1 and κ2. Corresponding to Eq 13, the partial
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Fig 4. Plots of the mean, variance, skewness and kurtosis for κ1 = 1.2 and different values of α and κ2.

https://doi.org/10.1371/journal.pone.0254999.g004
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Fig 5. Plots of the mean, variance, skewness and kurtosis for κ1 = 0.5 and different values of α and κ2.

https://doi.org/10.1371/journal.pone.0254999.g005
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derivatives are as follows

@

@a
‘ða; k1; k2Þ ¼ k1

Xn

i¼1

xai ð log xiÞe
� k1xai ð1 � e� k1xai � k2xiÞ

ð1 � ð1 � e� k1xai � k2xiÞ
2
Þ

� k1

Xn

i¼1

xai log xið Þ

þk1

Xn

i¼1

xa� 1
i ½að log xiÞ þ 1�

ðak1xa� 1 þ k2Þ
;

ð14Þ

@

@k1

‘ða; k1; k2Þ ¼
Xn

i¼1

xai e
� k1xai ð1 � e� k1xai � k2xiÞ

ð1 � ð1 � e� k1xai � k2xiÞ
2
Þ
�
Xn

i¼1

xai þ
Xn

i¼1

axa� 1
i

ðak1xa� 1 þ k2Þ
; ð15Þ

@

@k2

‘ða; k1; k2Þ ¼
Xn

i¼1

xie� k2xið1 � e� k1xai � k2xiÞ

ð1 � ð1 � e� k1xai � k2xiÞ
2
Þ
�
Xn

i¼1

xi þ
Xn

i¼1

1

ðak1xa� 1 þ k2Þ
: ð16Þ

Solving @

@a
‘ða; k1; k2Þ ¼

@

@k1
‘ða; k1; k2Þ ¼

@

@k2
‘ða; k1; k2Þ ¼ 0, yield the MLEs ðâ; k̂1 ; k̂2Þ of

(α, κ1, κ2). For more information and extensive reading about MLEs, we refer to [31–34].

5 Simulation study

In this section of the paper, we provide a brief Monte Carlo simulation study to evaluate the

MLEs of the ASM-Weibull distribution parameters. The ASM-Weibull distribution is easily

simulated by inverting the expression 3. Let U has a uniform distribution U(0,1), then the non-

linear equation by inverting Eq 3 is

k1xa þ k2xþ log 1 � sin
p

2
u

� �� �
: ð17Þ

The simulation is performed for two different sets of parameters (i) α = 0.7, κ1 = 1, κ2 = 0.5,

and (ii) α = 1.2, κ1 = 1.4, κ2 = 0.5.

The random number generation is obtained via the inverse cdf. The inverse process and

simulation results are obtained via a statistical software R using (rootSolve) library with

command mle. The sample size selected as n = 10, 20, . . ., 500 and the Monte Carlo replica-

tions made was 500 times. For the maximization of the expression 13, the algorithm

“LBFGS-B” is used with optim(). For i = 1, 2, . . ., 500, the MLEs ðâ; k̂1 ; k̂2Þ of (α, κ1, κ2)

are obtained for each set of simulated data. The assessing tools such as biases and mean square

errors (MSEs) are considered. These quantities are calculated as follows

Bias Yð Þ ¼
1

500

X500

i¼1

Ŷ � Y
� �

;

and

MSE Yð Þ ¼
1

500

X500

i¼1

ðŶ � YÞ
2
;

where Θ = (α, κ1, κ2). The coverage probabilities (CPs) are calculated at the 95% confidence

interval (C.I).

The summary measures of the simulated data presented in Table 1 and the box plots are

provided in Fig 6.

For the simulated data set 1, (i) the histogram and Kernel density estimator are presented in

Fig 7, (ii) the fitted pdf and cdf are sketched in Fig 8, and (iii) the Kaplan-Meier survival and

PLOS ONE Modeling the survival times of the COVID-19 patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0254999 July 26, 2021 10 / 31

https://doi.org/10.1371/journal.pone.0254999


QQ (quantile-quantile) plots are provided in Fig 9. Corresponding to the first set of parameters

values, the simulations results are provided in Table 2.

For the simulated data set 2, (i) the histogram and Kernel density estimator are presented in

Fig 10, (ii) the fitted pdf and cdf are sketched in Fig 11, and (iii) the Kaplan-Meier survival and

QQ (quantile-quantile) plots are provided in Fig 12. Whereas, the corresponding simulation

results are given in Table 3.

6 Applications to COVID-19 data sets

The main interest of the derivation of the ASM-Weibull distribution is its use in data analysis

objectives, which makes it useful in many fields, particularly, in the fields dealing with lifetime

analysis. Here, this feature is illustrated via taking two sets of data related to COVID-19 epi-

demic events.

We illustrate the best fitting power of the ASM-Weibull as compared with the other two

parameters, three parameters and four parameters well-known lifetime competitive distribu-

tions namely: inverse Weibull (IW), extend odd Weibull exponential (ETOWE), Kumaras-

wamy Weibull (Ku-W), odd log-logistic modified Weibull (OLL-MW), and Frechet Weibull

(FW) distributions. The pdfs of the competitive models are

• Ku-W distribution

f ðxÞ ¼ abak1xa� 1e� k1xað1 � e� k1xaÞ
a� 1
½1 � ð1 � e� k1xaÞ

a
�
b� 1
; x > 0:

Table 1. The summary measures of the simulated data sets.

Simulated Data Min. 1st Qu. Median Mean 3rd Qu. Max.

Set 1 0.001 1.013 2.710 4.736 6.232 59.042

Set 2 0.0000 0.0738 0.4550 1.9608 1.5947 46.0600

https://doi.org/10.1371/journal.pone.0254999.t001

Fig 6. Box plots of the simulated data set 1 (red color) and set 2 (blue color).

https://doi.org/10.1371/journal.pone.0254999.g006
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Fig 7. The histogram and Kernel density estimator of the simulated data set 1.

https://doi.org/10.1371/journal.pone.0254999.g007
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Fig 8. The fitted pdf and cdf of the ASM-Weibull model for the simulated data set 1.

https://doi.org/10.1371/journal.pone.0254999.g008
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Fig 9. The QQ and Kaplan-Meier survival plots of the ASM-Weibull model for the simulated data set 1.

https://doi.org/10.1371/journal.pone.0254999.g009
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• OLL-MW

f xð Þ ¼
aðak1xa� 1 þ k2Þe� ak1xa � ak2xð1 � e� k1xa � k2xÞ

a� 1

ðe� ak1xa � ak2x þ ð1 � e� k1xa � k2xÞ
a
Þ

2
x > 0:

• FW

f xð Þ ¼
aaba k1

x

� �aae� b
a k1

xð Þ
aa

x
; x > 0:

• IW

f xð Þ ¼ babx� b� 1e�
a
xð Þ
b

; x > 0:

• ETOWE

f xð Þ ¼ alelxðelx � 1Þ
a� 1
ðbðelx � 1Þ

a
þ 1Þ

� bþ1
b ; x > 0:

We show that the ASM-Weibull distribution provides the best fit to the lifetime data related

to the COVID-19 epidemic. The term “best fit” is used in the sense that the proposed

model has smaller values of the criterion selected for comparison. These criterion consist of

some discrimination measures. These measures are

• The AIC (Akaike information criterion)

AIC ¼ 2k � 2‘;

Table 2. The Monte Carlo simulation results of the ASM-Weibull distribution.

Set 1: α = 0.7, κ1 = 1, κ2 = 0.5

n Par. MLE MSEs Biases Confidence Interval CPs Variances

10 α 0.95163 0.30983 0.24163 (0.30356, 1.47970) 0.982 0.90602

κ1 1.41624 2.97415 0.41624 (-4.62888, 3.46137) 0.990 1.56130

κ2 0.81004 0.41880 0.21004 (-1.73901, 3.15911) 0.884 2.92010

20 α 0.90693 0.27431 0.20693 (0.40446, 1.20940) 0.978 0.84216

κ1 1.39378 2.18688 0.35937 (-2.39180, 3.19793) 0.976 1.20960

κ2 0.79625 0.37974 0.19625 (-1.41940, 2.89190) 0.890 2.71498

100 α 0.86174 0.21262 0.14174 (0.54005, 0.94342) 0.906 0.61058

κ1 1.36827 1.41030 0.29827 (-1.11438, 3.06107) 0.956 0.98438

κ2 0.73479 0.29131 0.15479 (-0.41042, 1.68002) 0.912 1.45309

200 α 0.83339 0.15829 0.10339 (0.56393, 0.90399) 0.926 0.47525

κ1 1.32276 0.60629 0.16276 (-0.41898, 2.54452) 0.950 0.17330

κ2 0.63017 0.14327 0.13017 (-0.18576, 1.44611) 0.908 0.57153

300 α 0.79676 0.10642 0.09676 (0.58486, 0.86866) 0.903 0.15241

κ1 1.21962 0.39405 0.10962 (-0.15800, 2.19726) 0.924 0.11109

κ2 0.60906 0.11851 0.10906 (-0.04422, 1.26235) 0.958 0.36099

400 α 0.76610 0.07600 0.05610 (0.59241, 0.83979) 0.924 0.03982

κ1 1.15222 0.29089 0.09222 (0.04500, 2.17945) 0.934 0.07579

κ2 0.57035 0.09127 0.07035 (0.03073, 1.10997) 0.948 0.29648

500 α 0.71224 0.00547 0.02224 (0.60464, 0.83984) 0.940 0.00359

κ1 1.08212 0.12997 0.03212 (0.01549, 1.99875) 0.937 0.07283

κ2 0.52466 0.06617 0.02664 (0.06971, 1.12761) 0.929 0.24828

https://doi.org/10.1371/journal.pone.0254999.t002
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Fig 10. The histogram and Kernel density estimator of the simulated data set 2.

https://doi.org/10.1371/journal.pone.0254999.g010
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Fig 11. The fitted pdf and cdf of the ASM-Weibull model for the simulated data set 2.

https://doi.org/10.1371/journal.pone.0254999.g011
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Fig 12. The QQ and Kaplan-Meier survival plots of the ASM-Weibull model for the simulated data set 2.

https://doi.org/10.1371/journal.pone.0254999.g012
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• The CAIC (Corrected Akaike information criterion)

CAIC ¼
2nk

n � k � 1
� 2‘;

• The BIC (Bayesian information criterion)

BIC ¼ k log ðnÞ � 2‘;

• The HQIC (Hannan-Quinn information criterion)

HQIC ¼ 2k log ð log ðnÞÞ � 2‘;

where ℓ is the value of the log-likelihood function under the MLE, k refers to the number of

parameters of the model, and n is the sample size.

In addition to these measures, we also consider other important goodness of fit measures

including the Anderson-Darling (AD) statistic, Cramer-von Mises (CM) statistic and the Kol-

mogorov-Smirnov (KS) statistic with p-value, for detail information about these measures see

[35]. A model with the lowest values of the above mentioned measures could be chosen as the

best model for the real data set.

Table 3. The Monte Carlo simulation results of the ASM-Weibull distribution.

Set 1: α = 0.5, κ1 = 1.2, κ2 = 1

n Par. MLE MSEs Biases Confidence Interval CPs Variances

10 α 0.66582 0.53651 0.48321 (0.21252, 0.95390) 0.980 0.13576

κ1 1.40571 1.36161 0.50571 (0.74426, 2.15565) 0.932 1.37804

κ2 1.38516 0.56682 0.38516 (0.47090, 2.24122) 0.986 1.13841

20 α 0.63265 0.47684 0.43265 (0.28860, 0.77669) 0.958 0.10550

κ1 1.38657 1.25844 0.46576 (0.69955, 1.83109) 0.912 1.26905

κ2 1.31583 0.96998 0.35837 (0.20597, 1.98737) 0.958 1.06494

100 α 0.61496 0.43314 0.38556 (0.36773, 0.72455) 0.926 0.09422

κ1 1.32931 1.21851 0.40310 (0.40705, 2.39326) 0.910 1.17722

κ2 1.27044 0.94830 0.27044 (0.13789, 2.89926) 0.978 1.10603

200 α 0.58326 0.37053 0.31410 (0.39251, 0.69401) 0.912 0.05642

κ1 1.30819 1.09100 0.35819 (-0.80415, 2.00575) 0.924 1.09821

κ2 1.21057 0.76538 0.21057 (-1.2665r, 2.17690) 0.872 1.01865

300 α 0.56773 0.27831 0.12262 (0.40840, 0.65870) 0.918 0.02077

κ1 1.27689 0.97988 0.16786 (-0.70062, 1.96376) 0.908 0.92467

κ2 1.16786 0.71312 0.20786 (-0.78556, 2.10588) 0.900 0.83218

400 α 0.53587 0.10437 0.04126 (0.40902, 0.58272) 0.904 0.00996

κ1 1.23966 0.68606 0.10673 (-0.53937, 1.67285) 0.920 0.59047

κ2 1.10152 0.79517 0.14525 (-0.53139, 1.96108) 0.896 0.68642

500 α 0.51290 0.00171 0.00706 (0.42042, 0.56538) 0.966 0.00136

κ1 1.21124 0.39390 0.04124 (-0.31099, 1.43478) 0.978 0.47598

κ2 1.08239 0.47754 0.09392 (-0.27358, 1.86431) 0.976 0.56431

https://doi.org/10.1371/journal.pone.0254999.t003

Table 4. The summary measures of the first COVID-19 data.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.054 0.704 3.079 4.787 6.743 20.083

https://doi.org/10.1371/journal.pone.0254999.t004
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Fig 13. Histogram and TTT plot of the COVID-19 data 1.

https://doi.org/10.1371/journal.pone.0254999.g013
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For the computation of the numerical results, we use the Newton-Raphson iteration proce-

dure with optim() R-function with the argument method =“BFGS” to estimate the model

parameters. The numerical estimates of the unknown parameters of the ASM-Weibull and

other fitted distributions are obtained using the R-script AdequacyModel with the

“BFGS” algorithm.

6.1 Survival times of the COVID-19 patients data

In this subsection, we consider the survival times of patients suffering from the COVID-19 epi-

demic in China. The considered data set representing the survival times of patients from the

time admitted to the hospital until death. Among them, a group of fifty-three (53) COVID-19

patients were found in critical condition in hospital from January to February 2020.

Among them, 37 patients (70%) were men and 16 women (30%). 40 patients (75%) were

diagnosed with chronic diseases, especially including high blood pressure, and diabetes. 47

patients (88%) had common clinical symptoms of the flu, 42 patients (81%) were coughing, 37

(69%) were short of breath, and 28 patients (53%) had fatigue. 50 (95%) patients had bilateral

Table 5. Corresponding to the first COVID-19 data, the estimated values of the parameters of the fitted distributions.

Model α̂ κ̂1 κ̂2 σ̂ â b̂ λ̂

ASM-Weibull 0.8290 0.5332 0.0156

MOW 0.7046 0.4404 1.4888

Ku-W 0.7968 3.2500 1.0967 0.0959

T-MW 0.7864 0.2709 0.0227 0.1145

B-MW 0.4432 2.9385 0.0288 2.8855 0.2178

OLL-MW 0.7846 0.7693 0.0970 1.9086

FW 0.5196 0.5045 1.1804 1.9838

https://doi.org/10.1371/journal.pone.0254999.t005

Table 6. Corresponding to the first COVID-19 data, the discrimination measures of the fitted models.

Model AIC CAIC BIC HQIC

ASM-Weibull 272.3406 272.8304 278.2515 274.6136

MOW 273.3886 273.8784 279.2994 275.6616

Ku-W 274.1946 275.0279 282.0757 277.2253

T-MW 274.7410 275.5743 282.6222 277.7717

B-MW 274.0107 275.2873 283.8622 277.7991

OLL-MW 275.1094 275.9765 284.4875 278.0921

FW 292.8950 293.7280 300.7760 295.9260

https://doi.org/10.1371/journal.pone.0254999.t006

Table 7. Corresponding to the first COVID-19 data, the goodness of fit measures of the fitted models.

Model CM AD KS p-value

ASM-Weibull 0.0723 0.4555 0.1226 0.4022

MOW 0.0772 0.4957 0.1290 0.3405

Ku-W 0.0740 0.4640 0.1386 0.2600

T-MW 0.0756 0.4750 0.1240 0.3885

B-MW 0.0797 0.4976 0.1435 0.3024

OLL-MW 0.0814 0.5209 0.1506 0.2815

FW 0.2473 1.6930 0.1435 0.2250

https://doi.org/10.1371/journal.pone.0254999.t007
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pneumonia showed by the chest computed tomographic scans. The data set can be retrieved

from https://www.worldometers.info/coronavirus/ and is given by: 0.054, 0.064, 0.704, 0.816,

0.235, 0.976, 0.865, 0.364, 0.479, 0.568, 0.352, 0.978, 0.787, 0.976, 0.087, 0.548, 0.796, 0.458,

0.087, 0.437, 0.421, 1.978, 1.756, 2.089, 2.643, 2.869, 3.867, 3.890, 3.543, 3.079, 3.646, 3.348,

4.093, 4.092, 4.190, 4.237, 5.028, 5.083, 6.174, 6.743, 7.274, 7.058, 8.273, 9.324, 10.827, 11.282,

13.324, 14.278, 15.287, 16.978, 17.209, 19.092, 20.083.

Fig 14. The estimated pdf, cdf, PP and Kaplan-Meier survival plots of the ASM-Weibull distribution for the COVID-19 data.

https://doi.org/10.1371/journal.pone.0254999.g014
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The summary measures of the first data are provided in Table 4. Whereas, The histogram

of COVID-19 data along with the total time test (TTT) plot are sketched in Fig 13, shows that

the data set is right-skewed (histogram).

The MLEs of the ASM-Weibull and other models are provided in Table 5. The discrimina-

tion measures of the fitted distributions are provided in Table 6, and the goodness of fit mea-

sures are provided in Table 7.

From the values of the criteria provided in Tables 6 and 7, we see that the ASM-Weibull

model is far from the concurrence. Indeed, for the COVID-19 lifetime data, for instance, it sat-

isfies smaller values of the AIC, CAIC, BIC, HQIC, CM, AD, KS and high p-value against the

AIC, CAIC, BIC, HQIC, CM, AD, KS and high p-value for the second-best distribution.

Furthermore, for the COVID-19 lifetime data, a graphical check of the fit of the ASM-Wei-

bull model are presented in Fig 14. For this purpose, we consider the curves of the estimated

pdf, cdf, PP (probability-probability) and Kaplan-Meier survival plots of the ASM-Weibull dis-

tribution. For the ASM-Weibull model, the estimated cdf and pdf are given by Gðx; â; k̂1 ; k̂2Þ

and gðx; â; k̂1 ; k̂2Þ, respectively, where G(x;α, κ1, κ2) is defined by Eq 3, g(x;α, κ1, κ2) is defined

by Eq 4, and ðâ; k̂1 ; k̂2Þ are the obtained MLEs for (α, κ1, κ2). For instance, based on Eq 3, the

second row of Table 5, and the plot of the ASM-Weibull distribution in Fig 14 representing the

estimated cdf is given by

GðxÞ ¼
2

p
arcsineð1 � e� 0:5332x0:8290 � 0:0156xÞ; x � 0;

Fig 15. This figure indicates the existences of the log likelihood function as each curve intersect the x-axis at one point.

https://doi.org/10.1371/journal.pone.0254999.g015
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with estimated pdf

gðxÞ ¼
2

p

ð0:4420x0:8290� 1 þ 0:0156Þe� 0:5332x0:8290 � 0:0156x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ð1 � e� 0:5332x0:8290� 0:0156xÞ
2

q ; x > 0:

From the plots sketched in Fig 14, we see that the ASM-Weibull curves are closer to the

corresponding empirical objects. The above practical results show that the ASM-Weibull dis-

tribution is an efficient model to adjust the considered survival times of the COVID-19’s

patients in China.

Furthermore, graphical display of the existence and uniqueness of the MLEs are shown in

Figs 15 and 16, respectively. Fig 15 confirms the existence of MLEs as the log-likelihood func-

tion intersects the x-axis at one point. Furthermore, Fig 16 shows that the MLEs are unique as

the log-likelihood function has global maximum roots.

Fig 16. This figure indicates that the log likelihood roots are global maximum.

https://doi.org/10.1371/journal.pone.0254999.g016

Table 8. The summary measures of the second COVID-19 data set.

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.516 2.789 3.178 3.282 3.637 6.869

https://doi.org/10.1371/journal.pone.0254999.t008
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Fig 17. Histogram and TTT plot of the second COVID-19 data set.

https://doi.org/10.1371/journal.pone.0254999.g017
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6.2 Second real data set

The second data set represents the mortality rate of the COVID-19 patients in Canada. This

data set is available at https://covid19.who.int/, and given by: 3.1091, 3.3825, 3.1444, 3.2135,

2.4946, 3.5146, 4.9274, 3.3769, 6.8686, 3.0914, 4.9378, 3.1091, 3.2823, 3.8594, 4.0480, 4.1685,

3.6426, 3.2110, 2.8636, 3.2218, 2.9078, 3.6346, 2.7957, 4.2781, 4.2202, 1.5157, 2.6029, 3.3592,

2.8349, 3.1348, 2.5261, 1.5806, 2.7704, 2.1901, 2.4141, 1.9048.

Corresponding to this data set, the summary measures are provided in Table 8. Whereas,

the histogram and TTT plots are sketched in Fig 17.

For the second data set, the MLEs of the ASM-Weibull and other models are provided in

Table 9. The discrimination and goodness of fit measures are provided in Tables 10 and 11,

respectively.

From the values of the selected criteria reported in Tables 10 and 11, we see that the ASM-

Weibull model is a better model as it has the smaller values of the AIC, CAIC, BIC, HQIC,

CM, AD, KS and high p-value against the AIC, CAIC, BIC, HQIC, CM, AD, KS and high p-

value for the second-best distribution.

Table 9. Corresponding to the second COVID-19 data, the estimated values of the parameters of the fitted distributions.

Model α̂ κ̂1 κ̂2 â b̂ λ̂

ASM-Weibull 3.47668 0.020029 0.000918

Ku-W 2.63782 0.448372 1.52414 0.525173

OLL-MW 4.56716 6.99444× 10−29 0.001007 0.606009

FW 1.40346 1.7383 2.25808 2.11702

IW 2.70436 3.16912

ETOWE 1.07377 5.84409 × 108 1.65812 × 108

https://doi.org/10.1371/journal.pone.0254999.t009

Table 10. Corresponding to the second COVID-19 data, the discrimination measures of the fitted models.

Model AIC CAIC BIC HQIC

ASM-Weibull 109.437 110.187 114.188 111.095

Ku-W 119.739 121.03 126.074 121.95

OLL-MW 151.286 152.576 157.62 153.497

FW 113.84 115.13 120.174 116.051

IW 109.84 110.204 113.007 110.946

ETOWE 163.56 164.31 168.31 165.218

https://doi.org/10.1371/journal.pone.0254999.t010

Table 11. Corresponding to the second COVID-19 data, the goodness of fit measures of the fitted models.

Model CM AD KS p-value

ASM-Weibull 1.21231 0.212535 0.154695 0.355032

Ku-W 3.52584 0.703955 0.265631 0.0124359

OLL-MW 8.81608 1.96755 0.397571 0.000022

FW 1.61803 0.274479 0.173757 0.227156

IW 1.61803 0.274479 0.173757 0.227156

ETOWE 8.94624 1.86779 0.40961 0.000011

https://doi.org/10.1371/journal.pone.0254999.t011
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Furthermore, for the second COVID-19 data, the graphical display of the pdf, cdf, PP

(probability-probability) and Kaplan-Meier survival plots of the ASM-Weibull distribution are

presented in Fig 18. The graphs sketched in Fig 18, show that the ASM-Weibull distribution

provide the best description to the COVID-19 mortality rate data. For the second data set, the

likelihood function is plotted in Figs 19 and 20, which confirms the existence and uniqueness

properties of the MLEs, respectively.

7 Concluding remarks

The two-parameter Weibull model has shown great applicability in the practice of statistical

sciences particularly, reliability engineering, biomedical and financial sciences. In this

Fig 18. The estimated pdf, cdf, PP and Kaplan-Meier survival plots of the ASM-Weibull distribution for the second COVID-19 data.

https://doi.org/10.1371/journal.pone.0254999.g018
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study, a new modification of the Weibull model is introduced using the modified Weibull

distribution with the “Arcsine strategy”. The proposed model is called the arcsine modified

Weibull distribution. The maximum likelihood estimators of the ASM-Weibull parameters

are obtained and a Monte Carlo simulation study is conducted. To show the applicability of

the ASM-Weibull model, two real-life data sets related to COVID-19 events are considered.

The comparison of the proposed model is made with the other well-known competitors.

To figure out the close fitting of the fitted distributions, certain analytical tools including

four discrimination measures and three goodness of fit measures as well as the p-value are

considered. Based on these analytical measures, we showed that the ASM-Weibull model

provides a better fit than the other competitors, supported by graphical sketching and

numerical tools. Furthermore, corresponding to COVID-19 data sets, the log-likelihood

function is also plotted confirming the existence and uniqueness properties of the MLEs.

We hope that beyond the scope of this paper, the ASM-Weibull can be applied to analyze

other forms of the COVID-19 data.

Fig 19. This figure indicates the existences of the log likelihood function as each curve intersect the x-axis at one point for the second data set.

https://doi.org/10.1371/journal.pone.0254999.g019
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