
Translational Oncology 20 (2022) 101422

1936-5233/© 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Quantitative proteomic profiling of hepatocellular carcinoma at different 
serum alpha-fetoprotein level 

Xuyong Wei a,d,1, Renyi Su c,1, Mengfan Yang c, Binhua Pan c, Jun Lu a, Hanchao Lin a, 
Wenzhi Shu a, Rui Wang a, Xiao Xu a,b,d,* 

a Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First 
People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China 
b Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China 
c Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, 
China 
d Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China   

A R T I C L E  I N F O   

Keywords: 
Adjacent noncancerous tissue 
Alpha-fetoprotein 
HCC 
Quantitative proteomics 
Prognosis biomarker 

A B S T R A C T   

Purpose: Hepatocellular carcinoma (HCC) is characterized by a poor long-term prognosis and high mortality rate. 
Serum alpha-fetoprotein (AFP) levels show great prognostic value in patients undergoing hepatectomy. This 
study aims to explore proteomic profiling in HCC samples based on AFP subgroups and identify potential key 
targets involved in HCC progression. 
Methods: Twelve paired tumor and adjacent noncancerous tissue samples were collected from patients with HCC 
who underwent primary curative resection from January 2012 to December 2013. Clinical information was 
curated from four tissue microarrays to conduct survival analysis based on serum AFP levels. TMT-based 
quantitative proteomic analyses and bioinformatics analyses were performed to comprehensively profile mo-
lecular features. Immunohistochemistry was carried out to validate protein expression of identified targets. 
Kaplan-Meier survival analysis was performed to assess the overall survival and recurrence-free survival based on 
protein expressions. 
Results: AFP (400 ng/mL) was a turning point in prognosis, metabolic- and invasion-associated pathways. The 
mass spectrometry analysis yielded a total of 5573 identified proteins. Annotations of 151 differentially 
expressed proteins in tumors and 95 proteins in paracancerous tissues (1.2-fold) showed similarities in biological 
processes, cellular components, molecular functions. Furthermore, differentially expressed hub proteins with five 
innovatively nominated druggable targets (C1QBP, HSPE1, GLUD2 for tumors and CHDH, ITGAL for para-
cancerous tissues), of which four (C1QBP, HSPE1, CHDH, ITGAL) targets were associated with poor overall 
survival (all Log-rank P < 0.05). 
Conclusions: Our quantitative proteomics analyses identified four key prognostic biomarkers in HCC and provide 
opportunities for translational medicine and new treatment.   

Introduction 

Hepatocellular carcinoma (HCC) is one of the prevailing tumors 
featuring a poor long-term prognosis and high mortality rate [1]. 
Despite recent progress in treatment options and regimens, HCC is still a 
disease with a 5-year survival rate of only 20% [2]. Hepatitis B virus 
(HBV) infection is the main etiology of HCC with a significant global 

health burden, and approximately 257 million people are chronically 
infected with HBV, as estimated by the World Health Organization [3]. 

Alpha fetoprotein (AFP), a secreted 70 kD glycoprotein, is mainly 
produced in the fetal yolk sac and liver during pregnancy. Since the 
discovery of tumor-associated biological characteristics in the mid- 
1960s, AFP has become the most widely tested biomarker for HCC in 
the clinical setting [4]. Clinically, AFP has been identified as a promising 
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biomarker for screening and surveillance, prognosis stratification, pre-
dicting the therapy response and selecting an ideal beneficiary popula-
tion [5]. Based on completed phase 3 trials, including SHARP, REFLECT, 
and RESORCE, baseline serum AFP levels may provide clear prognostic 
information to guide therapy [6–8]. Mechanistically, increasing evi-
dence shows the complexity of AFP-mediated mechanisms, including 
PI3K/AKT-mediated proliferation and invasion, Fas/FADD-mediated 
apoptosis, and modulation of the antitumor immune response [9–12]. 
However, the precise functions of AFP in carcinogenesis and progression 
and the associated mechanisms underlying differences in the prognosis 
of patients stratified into AFP subgroups remain incompletely 
understood. 

Mass spectrometry-based quantitative proteomic profiling has been 
an effective approach for elucidating the molecular subtypes, interactive 
networks and associated pathway features that might be missed when 
analyzing other omics data [13]. Therefore, in-depth mining of proteins, 
the main executors of physiological and pathological functions, will 
facilitate a comprehensive understanding of the underlying mechanisms 
of HBV-related HCC and the identification of new therapeutic targets. 

In this study, the focus was to explore the molecular mechanisms 
underlying differences in the prognosis of AFP subgroups. Hence, we 
performed a TMT-based quantitative proteomic analyses, and compre-
hensive bioinformatics analyses were performed on 12 patients with 
hepatitis B virus-related HCC, and tumor and paracancerous tissues were 
analyzed separately after stratification into AFP subgroups. The prog-
nostic analysis revealed a shorter survival for patients with a serum AFP 
level > 400 ng/mL than in those with an AFP level < 400 ng/mL. Gene 
set variation analysis (GSVA) and gene set enrichment analysis (GSEA) 
revealed that tumors and adjacent noncancerous tissues presented 
distinct patterns in pathways, both with a cutoff value of 400 ng/mL for 
serum AFP levels. Integrative annotation analyses indicated similarities 
in the molecular features of tumor and adjacent noncancerous tissues in 
an AFP-dependent manner. Moreover, we constructed protein–protein 
interaction networks and innovatively identified three druggable targets 
in tumors and two in adjacent noncancerous tissues, of which four 
(C1QBP, HSPE1, CHDH, ITGAL) out of five (C1QBP, HSPE1, GLUD2, 
CHDH, ITGAL) were validated as prognostic markers and potential 
therapeutic targets, suggesting tailored treatment strategies for different 
tissue types in patients with HBV-related HCC. 

Materials and methods 

Clinical sample and information acquisition 

Paired tumor and adjacent non-cancerous tissues were collected 
from 12 HBV-related HCC patients, resulting in a total of 24 samples. All 
of patients underwent primary curative resection from January 2012 to 
December 2013 at the First Affiliated Hospital of Zhejiang University 
without previous anticancer treatments. Tissue specimens were snap- 
frozen using liquid nitrogen within 30 min after surgery. The median 
age of the patients was 56, ranging from 43 to 68, with 10 males and 2 
females. Histologic grades were defined as well differentiated, moder-
ately differentiated and poorly. Detailed clinical information were 
summarized in Table S1. The tissue microarrays (Microarray Number: 
Zl-LVC1606; Zl-LVC1607) were purchased from Shanghai Zhuolibiotech 
company Co., Ltd. (Shanghai, China). Each tissue microarray contained 
80 paired HCC samples and adjacent noncancerous tissues. Another 
tissue microarray (Microarray Number: HLivH180Su17) was purchased 
from Shanghai Outdo Biotech Co., Ltd (Shanghai, China) containing 88 
paired tumor and adjacent noncancerous tissues and 4 more tumor tis-
sues. Additional information of tissue microarray (Microarray Number: 
HLivH180Su06; HLivH180Su17) were downloaded from the website of 
Shanghai Outdo Biotech Co., Ltd (http://www.superchip.com.cn/bi 
ology/tissue.html).The merged clinical information was summarized 
in Table S2. The transcriptional expression matrix of five identified 
proteins and information of serum AFP level were curated from the 

UCSC Xena (https://xenabrowser.net/) using the following steps: (I) 
Select “GDC TCGA Liver Cancer (LIHC)” study (II) Choose “fetoprotei-
n_outcome_value” in “Phenotypic” module (III) Choose gene expression 
RNA sequencing data of five identified proteins in FPKM format using 
“Genomic” module. Data were processed using GDC pipeline with de-
tails deposited in website (https://docs.gdc.cancer.gov/Data/Bioinfor 
matics_Pipelines/Expression_mRNA_Pipeline). The study was approved 
by the Research Ethics Committee of The First Affiliated Hospital, 
Zhejiang University School of Medicine, and written informed consent 
was obtained from each patient. The study protocol conforms to the 
ethical guidelines of the 1975 Declaration of Helsinki (6th revision, 
2008) as reflected in a priori approval by the institution’s human 
research committee. 

Tissue microarray construction and immunohistochemistry 

Tissue microarrays were constructed by Shanghai Zhuoli Biotech-
nology Co., Ltd (Zuoli Biotechnology Co, Shanghai, China). The con-
struction workflow was mainly based on previously published methods 
[14,15]. In brief, hematoxylin–eosin was used to validate the pathologic 
diagnoses of tissue paraffin blocks collected form test and validation 
cohorts with fixed points marked under microscope to present typical 
histological characteristics. For each case, 1.5 mm diameter was adopted 
to divert cores in point-to-point arrangement from donor block into 
recipient block microarray and then 4 μm thick sections from recipient 
paraffin tissue blocks were transferred to glass slides by adhesive tape 
transfer system, aiming to perform ultraviolet cross linkage. 

The immunohistochemistry (IHC) was performed according to a two- 
step protocol as previously described [16]. Briefly, tissue microarrays 
were firstly subjected to antigen retrieval using EDTA buffer (PH 6.0) at 
high temperature. Then, the sections were incubated with primary 
antibody and secondary antibody. The primary antibodies included 
C1QBP (1:1000, Cell Signaling TECHNOLOGY, 6502S), GLUD2 (1:600, 
Proteintech, 14462-1-AP), HSPE1 (1:10000, SANTA CRUZ BIOTECH-
NOLOGY, sc-376313), CHDH (1:900, Proteintech, 17356-1-AP) and 
ITGAL (1:200, Proteintech, 15574-1-AP). After incubated with primary 
antibody at 4 ◦C overnight, the microarrays were then incubated with an 
HRP-labeled anti-mouse secondary antibody (DAKO). The IHC staining 
process was performed under the manufacturer’s instructions. Followed 
by washing in PBS and visualization with diaminobenzidine and he-
matoxylin counterstain, the microarrays were observed and analyzed 
under microscope. 

The protein levels of five identified molecules in tissue microarrays 
were semi-quantified by two experienced pathologists. When disagree-
ments existed, a third reviewer would be required and made final de-
cisions. The staining intensity scores were defined as 0 (no staining), 1 
(weak positive), 2 (moderate positive), and 3 (strong positive). The 
immunoreactive scores were evaluated according to the percentage of 
positive cells: 0 (negative), 1 (1–25%), 2 (26–50%), 3 (51–75%), and 4 
(76–100%). The final combined scores (0–12 point) for each patient 
were decided, where the scores<8 point were defined as low expression 
group and scores≥8 point were defined as high expression group, thus 
utilized for subsequent analyses. 

TMT labeling and LC-MS/MS analysis 

For TMT Labeling and LC-MS/MS analysis, the workflow was mainly 
based on previously published methods [17]. Briefly, the proteins were 
denatured and reduced at 95 ◦C for 5 min. After centrifugation, the 
remained supernatant was used for following experiment. For protein 
digestion, the workflow was mainly based on filter-aided sample prep-
aration (FASP) procedure [18]. Briefly, proteins were alkylated and then 
digested by trypsin. The concentration of peptides was determined by 
BCA protein quantification kit. For each sample, 100 μg peptides were 
used for the following TMT labeling experiment. All tumor and adjacent 
noncancerous tissues were used and mixed to equal protein amount as 
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internal reference, and then divided into 100 μg per tube for labeling 
experiment. The TMT labeling experiment was performed by using Mass 
Tagging Kits and Reagents (90064, USA) according to the TMT kit in-
structions. The mixed peptides were labeled by TMT-126 as internal 
reference, and 12 pairs tumor and adjacent noncancerous tissues were 
labeled by other channels (Tumors labeled by 127T, 128T, 129T, 130T 
and 131T; adjacent noncancerous tissues labeled by 127C, 128C, 129C, 
130C and 131C). Equal amount of Sample T and Sample C were com-
bined, separated into 15 components by high-performance liquid chro-
matography, and subjected to following LC-MS/MS analysis. 

All mass spectrometric data were analyzed using Proteome Discov-
erer software (Thermo Fisher Scientific) against the National Center for 
Biotechnology Information (NCBI) database. The false discovery rates 
(FDR) thresholds for both peptide and protein were set at 0.01. The 
quantitative proteomic data was summarized in Table S3 

Data normalization 

Proteomic data were normalized according to previous paper [17]. 
Log2 (TMT-ratio value) should be centered at zero after normalization. 
The Refseq IDs were then converted to standard symbol IDs by R 
package clusterProfiler (v3.18.1) [19]. 

Missing value manipulation 

To obtain robust molecule features of specimens, no imputation but 
deletion was used for any missing value, considering the relatively small 
sample size that may disturbed by imputation. 

Data quality analysis for proteomic data 

The quality of proteomics data was evaluated by heatmap analysis, 
principal component analysis (PCA) analysis, relative standard devia-
tion analysis and normalized expression analysis performed in R soft-
ware (4.0.3). 

Integrative bioinformatics analyses 

The proteomic data with a minimal number of 3 identified peptides 
but without missing values (n = 2264 proteins) was used as input for 
following bioinformatics analysis. Molecular Signature Database 
(MsigDB, http://software.broadinstitute.org/gsea/msigdb/) website 
was used to download pathway related gene sets (c2.cp.v7.4.symbols. 
gmt) for GSVA and GSEA analysis [20,21]. Gene sets were filtered with a 
minimal size of 10 to consolidate results. Significant expression changes 
were determined for GSVA and GSEA at both P-value (p < 0.05) and 
fold change (FC) (FC > 1.5-fold or FC < 1/1.5-fold). GSVA analysis was 
based on GSVA R package (1.38.2) and GSEA was based on GSEABase R 
package (1.52.1). To meticulously identify proteins that were differen-
tially expressed (limma R package, 3.46.0) within different sample 
types, enlarged thresholds were adopted at P-value (p < 0.05) and fold 
change (FC) (FC > 1.2-fold or FC < 1/1.2-fold). Gene Ontology (GO) 
annotation was performed using clusterProfiler R package (v3.18.1) and 
visualized by GOplot R package (1.0.2). The Clusters of orthologous 
groups for EuKaryotic Orthologous Groups (KOG) annotation data was 
downloaded from NCBI and visualized by ggplot2 R package (3.3.3). 
The wolfpsort software (v.0.2) was used to predict subcellular locali-
zation of identified significant differential proteins. To further explore 
gene interactions and functional molecules at protein level, 
co-expression protein-protein interaction (PPI) networks were con-
structed by STRING website (https://www.string-db.org/) and all of 
settings were set as default. Interaction network form STRING was 
downloaded and visualized by R package “networkD3” (0.4). The 
downloaded STRING data were as input to extract hub proteins using 
Mcode plugin in Cytoscape software (3.8.2). 

Drug target analysis 

Stringent criteria, set to maximize prediction power of potential drug 
targets, were as follows: 1. Hub proteins without reported previously in 
HCC by searching PubMed (https://pubmed.ncbi.nlm.nih.gov/) with 
combination of key words “HCC”, “liver cancer” and hub proteins. 2. 
Drug targets either approved by US Food and Drug Administration 
(FDA) or under clinical trials were obtarined from Drugbank Online 
(version 5.1.8, released 2021-01-03) (https://www.drugbank.ca/). The 
3D structures of identified potential drug targets for tumor and adjacent 
noncancerous tissues were obtained from AlphaFold Protein Structure 
Database (https://alphafold.ebi.ac.uk/) and visualized in PyMOL 
(2.5.2) [22]. 

Quantification and statistical analysis 

Statistical tests used in the study included Student’s t test, Wilcoxon 
rank sum test and Log-rank test. Unpaired two-tailed Student’s t tests 
were used to compare relative standard deviation. Two-tailed Wilcoxon 
rank sum tests were used to compare mRNA and protein expression 
levels of the five identified proteins. Kaplan–Meier plots were used to 
describe overall survival. All statistical tests were considered statistical 
significant when P-value < 0.05. All of statistical analyses were per-
formed using R language software (version 4.0.3) and Prism software 
(version 9.1.1, GraphPad Software, LLC, USA). 

Results 

Association between AFP levels and clinical prognosis 

We meticulously explored the clinical prognostic value of serum AFP 
levels by classifying patients into 4 groups (Group A, AFP level<20; 
Group B, 20≤AFP level<100; Group C, 100≤AFP level<400; Group D, 
AFP level≥400, ng/mL) [23–25]. A survival analysis was performed on 
329 patients with HCC using clinical information from a previously 
prepared tissue microarray (Table S2). Significant differences were 
observed between Group A and Group D (P value = 9E-04, Fig. S1A), as 
well as Group B and Group D (P value = 0.04, Fig. S1A). In contrast, no 
differences in survival were observed between Group C and Group A (P 
value = 0.3, Fig. S1A) or between Group C and Group B (P value = 0.7, 
Fig. S1A). A subsequent survival analysis showed that an AFP level equal 
to 400 ng/mL was an important turning point that was significantly 
correlated with overall survival (P value = 0.00051, Fig. S1B). 

Discrepancy in the pattern between tumor and nontumor tissues from 
patients with HCC 

A TMT-quantitative proteomics approach was employed using 12 
paired tumor and nontumor tissues from patients with pathologically 
diagnosed HCC related to HBV infection to elucidate the discrepancy in 
the pattern between tumor and nontumor tissues from patients with 
HCC. The mass spectrometry analysis yielded 5573 identified proteins. 
The heatmap analysis showed a clear discrimination between tumor and 
adjacent noncancerous tissues at the protein level (Fig. 1A), which 
indicated a high discrepancy feature that underpinned our subsequent 
comparison analysis. The quality control of samples showed a similar 
significant discrepancy in the pattern that was corroborated by principal 
component analysis (Fig. 1B) and a comparison of the relative standard 
deviation value (Pvalue < 0.0001, Fig. 1C). A jittered boxplot showed 
the comparability of specimens at the protein level after normalization 
(Fig. 1D). Intriguingly, a paired review of samples showed opposite 
trends (AFP cutoff of 20 ng/mL), of which the number of identified 
proteins was higher in tumors from patients with an AFP level>20 ng/ 
mL than in the paired noncancerous samples but opposite in the patients 
with AFP levels<20 ng/mL (Fig. 1E). 
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Proteomic pathway analysis of HCC samples in AFP subgroups 

Analyses were performed independently for different sample types to 
obtain general insights into aberrant pathways altered in cancer and 
adjacent noncancerous tissues that accounted for differences in the 

prognosis of diverse AFP groups. Intriguingly, GSVA revealed clearly 
separated patterns both for tumors and adjacent noncancerous tissues at 
a cutoff value of 400 ng/mL for serum AFP levels (Fig. 2A, C), indicating 
the biological activity-dependent behaviors of adjacent noncancerous 
tissues. However, relatively diminished activities of multiple 

Fig. 1. Systemic quality control of TMT-based quantitative proteomic data. (A) Heatmap analysis of differential proteins. The rows indicate protein and columns 
indicate samples. (B) Principal components analysis of proteomic data across 12 paired tumor and adjacent noncancerous tissues. (C) Comparison of RSD between 
tumor and adjacent noncancerous tissues. ****p value < 0.0001, ***p value < 0.001, **p value < 0.01, *p value < 0.05. P < 0.05 was considered statistical sig-
nificant. (D) Boxplot of log2 transformed normalized proteomic data. (E) Overview of number of quantified proteins in HBV-related HCC based on AFP subgroups. 
AFP, alpha-fetoprotein; HBV, hepatitis B virus; HCC, Hepatocellular carcinoma; RSD, relative standard deviation. 
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metabolism-related pathways were observed in adjacent noncancerous 
tissues, such as glycogen and histidine metabolism, whereas the oppo-
site trend was observed in tumor tissues (Fig. 2A, C). Similarly, we found 
relatively increased activities of invasion-related pathways in tumors, 
such as tight junctions, vascular smooth muscle contraction, collagen 
biosynthesis and modifying enzymes and regulation of the MAPK 
pathway, but the opposite results were obtained for adjacent noncan-
cerous tissues (Fig. 2A, C). Since an AFP level equal to 400 ng/mL was 
pivotal in distinguishing the clinical prognosis and pathway activities, 
further investigation was performed by stratifying patients into dichot-
omous categories based on the turning point. Likewise, GSEA revealed 
the activation of diverse metabolism-related pathways but decreased 
activity of invasion-related pathways in tumors from patients with a 
serum AFP level>400 ng/mL (Fig. 2B), whereas opposite patterns for 
metabolism- and invasion-related pathways were observed in adjacent 

noncancerous tissues (Fig. 2D). Altogether, adjacent noncancerous tis-
sues also presented with tumor-related biological activity-dependent 
behaviors in diverse metabolic and invasion-associated pathways. 

Integrative analyses of HCC samples from AFP subgroups 

Integrative bioinformatics analyses were performed to explore the 
molecular features of tumor and adjacent noncancerous tissues at the cut 
point value of 400 ng/mL for serum AFP levels. A volcano plot showed 
151 significantly altered proteins, with 103 upregulated and 48 down-
regulated proteins in tumors based on the cutoff point of 400 ng/mL 
(Fig. 3A), while 95 significantly altered proteins, with 41 upregulated 
and 54 downregulated proteins, were observed in adjacent noncan-
cerous tissues at the cutoff point of 400 ng/mL (Fig. 3B). Detailed in-
formation is summarized in Tables S4 and S5. Notably, the GO analysis 

Fig. 2. Proteomic pathway analysis of HCC samples in AFP subgroups. Heatmaps of enriched pathways by GSVA analyses based on APF subgroups in tumors (A) and 
adjacent noncancerous tissues (C). The rows indicate enriched pathways and columns indicate samples. Bar plots of pathway alterations by GSEA analyses at the cut- 
off value of 400 ng/mL for AFP in tumors (B) and adjacent noncancerous tissues (D). Up-regulated and down-regulated pathways are annotated in orange and green, 
separately. AFP, alpha-fetoprotein; HCC, Hepatocellular carcinoma; GSEA, gene set enrichment analysis; GSVA, Gene set variation analysis. 
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Fig. 3. Integrated functional annotations of differential proteins from AFP >400 and AFP <400 ng/mL groups. Volcano plots of proteomic data in tumor (A) and 
adjacent noncancerous tissues (B). The top 10 most significant up-regulated and down-regulated proteins were labeled. Circle plots of GO clusters significantly 
enriched in tumor (C) and adjacent noncancerous tissues (D). Bar plots of differential proteins mapped onto KOG categories in tumors (E) and adjacent noncancerous 
tissues (F). Windrose plotting of subcellular location in tumor (G) and adjacent noncancerous tissues (H). AFP, alpha-fetoprotein; GO, gene ontology; KOG, 
EuKaryotic Orthologous Groups. 
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showed a relatively consistent pattern of differentially expressed pro-
teins in tumor and adjacent noncancerous tissues (Fig. 3C, D). Specif-
ically, we observed univocal significantly enriched GO items, such as 
multiple common catabolic and metabolic processes in biological pro-
cesses, congruent mitochondrial-related components in cellular com-
ponents and coherent molecule binding- and activity-related functions 
in molecular function modules (Fig. 3C, D). Among the 25 KOG classi-
fications, the differentially expressed proteins in tumors were mainly 
enriched in energy production and conversion, followed by post-
translational modification, protein turnover, and chaperones (Fig. 3E), 
while the counterparts of adjacent noncancerous tissues were congru-
ently enriched in energy production and conversion (Fig. 3F). Addi-
tionally, an analysis of the subcellular locations of differentially 
expressed proteins annotated by WoLF PSORT software revealed similar 
compositions but at different proportions for the top 3 subcellular lo-
cations “cytoplasm”, “mitochondria” and “nucleus” in tumor and adja-
cent noncancerous tissues (36.42% vs. 36.8%, 26.49% vs. 21.1% 
13.91% vs. 11.6%, respectively). Collectively, these data indicated 
similarities in the molecular features of tumor and adjacent noncan-
cerous tissues in an AFP-dependent manner. 

Identification of potential drug targets 

We used differentially expressed proteins to obtain information on 
the PPI networks and better understand the regulatory networks 
responsible for the differences in survival at a cutoff point of 400 ng/mL 
for serum AFP levels (Fig. 4A, B). Three hundred sixty-five interactions 
were identified in tumors with the highest combined score residing in 
AMT-GLDC (0.999), while 104 interactions were identified in adjacent 
noncancerous tissues with the highest combined score residing in TAP1- 
TAP2 (0.998). Detailed PPI information is summarized in Tables S6 and 
S7. The hub protein module identified by the Mcode plugin in Cytoscape 
revealed 18 genes for tumors (Fig. 4C) and 8 genes for adjacent 
noncancerous tissues (Fig. 4D). 

A literature search was performed on the hub proteins to search for 
potential drug targets in HCC that have not previously been reported in 
HCC, and we identified five candidates either approved by the US FDA 
or undergoing clinical trials, including C1QBP, HSPE1, and GLUD2 for 
tumors and CHDH and ITGAL for adjacent noncancerous tissues. We 
further illustrated the transcriptome features of the five candidates by 
curating and analyzing mRNA data from TCGA, resulting in four sig-
nificant genes (Fig. S2A-C, E) with three (C1QBP, HSPE1, GLUD2) 
consistent with our proteome data (Fig. S2A-C, Table S4) but the 
opposite result was obtained for ITGAL expression (Fig. S2E, Table S5). 
The 3D structures of the five proteins were determined using AlphaFold 
to facilitate potential drug development, and the results may provide a 
deeper understanding of human health and tumor features (Fig. 4E-I). 

Expressions of identified proteins were correlated with prognosis in HCC 

To further study the clinical translational value of five identified hub 
proteins as potential treatment targets, we purchased another five tissue 
microarrays (comprising of 88 paired tumor and adjacent normal tissues 
and four additional tumor tissues) and compare the protein expression 
level between tumor and paired paracancerous tissues. IHC results 
showed C1QBP, HSPE1 and GLUD2 were significantly up-regulated in 
tumors (All P value < 0.05, Fig. 5A, 5C, 5E), while CHDH and ITGAL 
were significantly down-regulated in tumors at the protein level (All P 
value < 0.05, Fig. 5B, 5D), respectively. 

To further explore whether these identified proteins could be utilized 
as potential prognosis biomarkers in HCC, we conducted survival anal-
ysis based on subgroups categorized by expression level (Figs. 6, S3). 
Largely consistent to our previous results, the results of IHC showed four 
(C1QBP, HSPE1, CHDH, ITGAL) out of five identified proteins (C1QBP, 
HSPE1, GLUD2, CHDH, ITGAL) could significantly distinguish the 
overall survival of HCC patients (Log-rank P value were 0.028, 0.043, 

0.013 and 0.014, respectively; Fig. 6A, C-E). Intriguingly, despite none 
of these identified proteins reached statistical significance, there was a 
relatively clear trend that the high expressions of HSPE1 in tumor and 
CHDH in adjacent noncancerous tissues were presented with worse 
recurrence-free survival (Log-rank P value were 0.086 and 0.052, 
respectively; Fig. S3C-D). 

Discussion 

AFP levels showed great prognostic value in patients with HCC to 
guide therapy based on completed phase 3 trials [6–8]. However, the 
phenomenon of differential prognosis of AFP subgroups remains unclear 
at molecular level. In this study, TMT-based quantitative proteomic 
analyses were performed on 12 patients with hepatitis B virus-related 
HCC, and tumor and paracancerous tissues were analyzed separately 
after patient were stratified into AFP subgroups. We found that an AFP 
level equal to 400 ng/mL was a pivotal turning point with a distinct 
difference in survival, congruent with previous studies [24,26]. The 
pathway enrichment analyses revealed that metabolic and invasion 
pathways were mainly altered in tumors. Notably, multiple metabolic 
pathways were enhanced in tumors from patients with AFP levels > 400 
ng/mL compared with those with AFP levels < 400 ng/mL, indicating 
compensatory increases in metabolism to meet energetic demand that 
were potentially associated with HCC aggressiveness. Recently, studies 
have documented aberrant expression patterns among patients with 
diverse gastrointestinal cancers, including gastric cancer and colorectal 
cancer [27–29]. Here, we showed that adjacent noncancerous tissues 
also presented with aberrations in patients with HCC. Specifically, 
diverse metabolism-associated pathways (e.g., glycine, serine and 
threonine metabolism and phenylalanine metabolism) presented the 
opposite pattern in activity at a cutoff point of an AFP level equal to 400 
ng/mL. This result may be explained by the potential benefits of tumors 
in energy utilization to remodel the utilization modes of adjacent 
noncancerous tissues. Considering the tight correlations between cancer 
metabolism, tumor proliferation and survival, as well as the discrep-
ancies in metabolic reprogramming patterns in tumor and adjacent 
noncancerous tissues, tailored treatment strategies may be useful for 
different tissue types in patients with HBV-related HCC. Integrative 
annotation analyses of differentially expressed proteins, GO terms, KOG 
classifications and subcellular locations further indicated similarities in 
the molecular features of tumor and adjacent noncancerous tissues in an 
AFP-dependent manner, indicating that adjacent noncancerous tissues 
per se possessed tumor features. 

Our work identified three potential druggable targets in tumors and 
two in adjacent noncancerous tissues that were enriched in a metabolic- 
centered manner but were not previously reported in HCC. All of the 
targets were reported to be correlated with tumor formation and/or 
progression. Specifically, C1QBP, a ubiquitous evolutionarily conserved 
acidic protein, was initially identified as a complement component C1q- 
binding protein [30]. Recent studies have shown that C1QBP is pivotal 
for diverse phenotypes, including the immune response, apoptosis and 
DNA damage repair [31–33]. HSPE1 mainly functions as a chaperone 
mediating protein folding with HSPD1 [34]. Surprisingly, HSPE1 not 
only engages in modulating the proapoptotic phenotype and cell 
signaling network but also promotes human Treg cell differentiation in a 
Treg subtype-dependent manner, suggesting potential 
immune-oncology therapeutic efficacy [35–37]. GLUD2, which was 
originally identified as a glutamate dehydrogenase (GDH)-coding gene, 
was deemed an evolutionarily novel version of GLUD1 [38]. Generally, 
GLUD2 mainly modulates glucose homeostasis by tuning fasting serum 
insulin levels and acts on the tricarboxylic acid cycle, potentially facil-
itating lipid biosynthesis [39,40]. However, a recent study revealed an 
ammonia-centered recycling mode mediated by tuning GDH to promote 
proliferation in breast cancer, which indicated multiple potential tumor 
metabolic-modulating roles of the GLUD2 protein [41]. CHDH is known 
to catalyze the dehydrogenation of choline in mitochondria. Preclinical 
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Fig. 4. Identification of potential drug targets in HBV-related HCC. PPI network of differentially expressed proteins in tumor (A) and adjacent noncancerous tissues 
(B) at cut-off value of 400 ng/mL for AFP with node size representing fold changes. Hub proteins of the PPI by Mcode plugin in tumor (C) and adjacent noncancerous 
tissues (D). Predicted three-dimensional structures of CHDH (E), ITGAL (F) in adjacent noncancerous tissues and C1QBP (G), HSPE1 (H), GLUD2 (I) in tumor tissues 
predicted by AlphaFold. AFP, alpha-fetoprotein; HBV, hepatitis B virus; HCC, Hepatocellular carcinoma; PPI, protein-protein interaction. 
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research showed a crucial role for CHDH in the mitophagy phenotype, 
while clinical studies confirmed the predictive power of CHDH for the 
tamoxifen monotherapy response and recurrence in patients with breast 
cancer [42–44]. ITGAL, the gene encoding CD11a, interacts with the 
beta 2 chain (ITGB2) to form integrin lymphocyte function-associated 
antigen-1, which regulates the intercellular adhesion phenotype and 
lymphocyte costimulatory signaling [45]. According to mechanistic 
studies, T cells modulate the function of ITGAL by altering DNA 
methylation in the promoter region, which indicated a general function 
in cellular and humoral immunity [46]. Additionally, the ITGAL-based 
six-gene model showed a remarkable degree of discrimination in pa-
tients with castration-resistant prostate cancer [47]. 

Intriguingly, the profiles of five candidates at the transcriptional 
level showed largely consistent mRNA and protein expression (C1QBP, 
HSPE1, and GLUD2), but the opposite results were obtained for ITGAL 
expression, which might be partially explained by potential post-
transcriptional modification mechanisms. In the background of preci-
sion and translational medicine, we further explored the prognostic 
value of five identified protein targets. Four (C1QBP, HSPE1, CHDH and 
ITGAL) out of five (C1QBP, HSPE1, GLUD2, CHDH and ITGAL) differ-
entially expressed proteins were significantly and negatively correlated 
with overall survival rate, while high expressions of HSPE1 in tumor and 
CHDH in paracancerous tissues showed trend of shorter recurrence-free 
survival, indicating great potential as prognostic biomarkers. However, 

Fig. 5. Differential expression levels of five identified hub proteins by immunohistochemistry. The upper and lower in left panel were magnified by 5x and 20x, 
separately. The left and right in left panel were representative immunohistochemistry results of tumor and adjacent noncancerous tissues. The right panels displayed 
comparison results of relative immunohistochemistry scores between tumor and adjacent noncancerous tissues in HCC tissue microarrays at protein level for C1QBP 
(A), CHDH (B), GLUD2(C), ITGAL (D) and HSPE1 (E), separately. Scale bar, 100 μm. Wilcoxon rank sum test was used for comparison statistics. *P < 0.05, **P <
0.01, *** P < 0.001, and ****p < 0.0001. P < 0.05 was considered statistical significant. Scale bar 100 µm. HCC, Hepatocellular carcinoma; Immunohistochem-
istry, IHC. 
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additional multi-center, prospective, large sample cohorts are warrant to 
verify the prognostic efficacy. Taken together, these results indicated the 
great therapeutic potential of the four candidates in HCC. 

The present study has some limitations. First, this study was con-
ducted at a single center with a relatively small sample size (twelve 
paired tumor and adjacent noncancerous tissues) due to difficulties in 
sample collection that may lead to possible sample bias and diminish the 

reliability of the conclusions. Second, the study design was mainly based 
on a proteomics technique with limited consideration of molecular al-
ternations at other omics levels (e.g., single-cell sequencing technology 
that possesses single-cell resolution to characterize the functional state 
over traditional bulk sequencing analysis technologies) [48,49]. Further 
multicenter studies using multiomics techniques to investigate larger 
samples are required to validate our findings. Despite the 

Fig. 6. Kaplan–Meier analysis of OS in patients with low and high protein level in HCC tissue microarray according to IHC scores. Log-rank P < 0.05 was considered 
statistical significant. HCC, Hepatocellular carcinoma; OS, overall survival; Immunohistochemistry, IHC. 
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aforementioned limitations, our results challenged the biological plau-
sibility of describing adjacent noncancerous tissues as biologically 
normal components at the protein level in patients with HBV-related 
HCC. 

In summary, our current study provides a new understanding of the 
aberrant expression pattern in adjacent noncancerous tissues from pa-
tients with HCC based on AFP subgroups. We revealed that a serum AFP 
level equal to 400 ng/mL was a pivotal turning point in biological 
functions both in tumor and adjacent noncancerous tissues. Our study 
identified four druggable targets utilized as prognostic markers and 
potential therapeutic targets that were mainly involved in metabolism 
and immunity and may provide opportunities for exploring innovative 
treatment targets on the background of precision and translational 
medicine. 
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