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Introduction: The application of magnetic resonance imaging (MRI) to acquire detailed

descriptions of the brain morphology in vivo is a driving force in brain mapping research.

Most atlases are based on parametric statistics, however, the empirical results indicate

that the population brain tissue distributions do not exhibit exactly a Gaussian shape.

Our aim was to verify the population voxel-wise distribution of three main tissue

classes: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), and to

construct the brain templates for the Polish (Upper Silesian) healthy population with the

associated non-parametric tissue probability maps (TPMs) taking into account the sex

and age influence.

Material and Methods: The voxel-wise distributions of these tissues were analyzed

using the Shapiro-Wilk test. The non-parametric atlases were generated from 96 brains

of the ethnically homogeneous, neurologically healthy, and radiologically verified group

examined in a 3-Tesla MRI system. The standard parametric tissue proportion maps were

also calculated for the sake of comparison. Themaps were compared using theWilcoxon

signed-rank test and Kolmogorov-Smirnov test. The volumetric results segmented with

the parametric and non-parametric templates were also analyzed.

Results: The results confirmed that in each brain structure (regardless of the studied

sub-population) the data distribution is skewed and apparently not Gaussian. The

determined non-parametric and parametric templates were statistically compared, and

significant differences were found between the maps obtained using both measures

(the maps of GM, WM, and CSF). The impacts of applying the parametric and

non-parametric TPMs on the segmentation process were also compared. The GM

volumes are significantly greater when using the non-parametric atlas in the segmentation

procedure, while the CSF volumes are smaller.

Discussion and Conclusion: To determine the population atlases the parametric

measures are uncritically and widely used. However, our findings suggest that the

mean and parametric measures of such skewed distribution may not be the most

appropriate summary statistic to find the best spatial representations of the structures in

a standard space. The non-parametric methodology is more relevant and universal than

the parametric approach in constructing the MRI brain atlases.

Keywords: sub-population brain template, non-parametric atlases, statistical parametric mapping, MRI, tissue

probability maps
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1. INTRODUCTION

The application of magnetic resonance imaging (MRI) to acquire
detailed descriptions of the brain morphology in vivo is a driving
force in brain mapping research. The terms brain atlas and brain
template are used interchangeably in the corresponding literature
to date, and while they may have different meanings in some
situations, many papers do not make this clear. Additionally,
the term: registration target as the element representing a
standard space in the image specified modalities obtained for
some population can be used (Dickie et al., 2017). Atlas may
also contain the datasets with the tissue proportion maps.
These maps show the spatial distribution of tissue probability
in the standard space. Brain atlases are constructed with
the use of parametric or non-parametric statistics. Parametric
statistics are based on a probability theory that relies on many
assumptions, such as a parametric distribution at each spatial
location. Thus, the parametric approach provides a set of
parameters (simple and easy to interpret); for example, the
mean plus/minus double standard deviation is used to estimate
the 95 percent limit of each voxel value (Dickie et al., 2015).
The non-parametric approach avoids making hard to verify
assumptions, requires only minimal assumptions for validity,
deals with the multiple comparisons problem, and can be applied
when the assumption of normality is untenable. Non-parametric
permutation tests are exact, distribution-free, and adaptive to
underlying correlation patterns in the data (Pantazis et al.,
2004).

Widely adopted methodology used in the MRI atlas creation
process relies on the Gaussian assumptions for representing the
underlying population distributions of cerebrospinal fluid (CSF),
gray matter (GM), and white matter (WM)—thus, most available
atlases are based on the parametric statistics (mean and standard
deviation), being designed to provide a standard space for voxel-
wise analyses or to support tissue/ROI volume segmentation
(Dickie et al., 2017). However, the empirical results indicate that
the brain tissue content distributions do not exhibit exactly a
Gaussian shape (Dickie et al., 2015). The non-parametric data
distribution is much more common in the field of MRI data
analysis (Despotović et al., 2015; Dickie et al., 2015, 2017; Kim
et al., 2016; Dadar and Collins, 2021), but there are, in fact, its
two aspects:

• The non-parametric pixel intensity distribution in different
MR images—it relates to the classification process in the
image segmentation algorithms (modeling the class intensities
based on either parametric or non-parametric finite mixtures)
(Avants et al., 2011; Dadar and Collins, 2021). This issue is
essentially concerned with the intensity distribution of a single
subject (image).

• The non-parametric population distributions of the
structure content data (the population information on
the tissue content) in the standardized space—these issues
relate to the template creation process (usually by simply
averaging the segmented tissue maps from the population
to obtain the representations of the structures in a standard
space) (Dickie et al., 2015, 2017).

In both cases, the applicability of the non-parametric
methodologies is being investigated (Cocosco et al., 2003; Lee
et al., 2009; Dickie et al., 2017). The Gaussian mixtures models
seem to fail to represent the MRI data in the segmentation
process (Lee et al., 2009); therefore, other approaches have
been developed. For instance, Cocosco et al. (2003) have
presented a non-parametric method to segment the brain images
contaminated by the partial volume effects, whereas Ashburner
and Friston (2005) have assigned multiple Gaussians for each
pure tissue class to fit the non-Gaussian intensity distribution of
the pure tissue class.

However, the bias introduced by the population distributions
of the tissue content maps in the process of determining the
atlases is still poorly covered and explained (Dickie et al., 2017),
though expected (LeWinn et al., 2017). Dickie et al. (2015, 2017)
have presented the first non-parametric brain MRI atlas and have
shown clearly, that the voxel-wise proportions of GM in older
subjects - healthy and with the neurodegenerative diseases, do
not follow a Gaussian distribution and that the statistical method
used for the construction of brain MRI atlases should be selected
taking into account the population.

The human brain is highly variable among the phenotypically
different groups (i.e., race) with fundamental genetic and
environmental disparities in brain morphology and micro-
structure (e.g., shape, size, and volume) (Takahashi et al., 2011;
Liang et al., 2015; Skorupa et al., 2017; Kijonka et al., 2020).
Thus, the brain atlases created for a specific population cannot be
used in other populations, because the genotypic and phenotypic
differences may cause inaccurate measurements, comparisons,
and interpretations of the results (Tang et al., 2010). Because the
Polish population is one of the most ethnically homogeneous
in Europe (its haplogroup composition, though similar to other
European populations, has, however, some statistically significant
differences reflecting the genetic regional specificities and the
migration history, Grzybowski et al., 2007; Grochowalski et al.,
2020), the disturbances from the ethnic factor can be avoided.

The aim of this study was to verify the population voxel-
wise distribution of three main morphological classes (GM,WM,
and CSF) and to construct the brain templates for the Polish
(Upper Silesian) population with the associated non-parametric
tissue probability maps (TPMs) taking into account the sex and
age influence. The non-parametric atlases were generated from
96 brains of the ethnically homogeneous, neurologically healthy,
and radiologically verified group examined in a 3-Tesla MRI
system. The validity of using the parametric statistics in the
mapping of the high-resolution stereotaxic tissue proportions
maps in the atlas determination process has been discussed.

2. MATERIALS

2.1. Human Subjects
The study sample was drawn from a database of 100 volunteers
selected as the control group (homogeneous in terms of its
ethnicity—Caucasian cohort) from the Upper Silesia region in
Poland. All participants underwent full brain MRI examinations
in the Radiology and Diagnostic Imaging Department of Maria
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Sklodowska-Curie National Research Institute of Oncology,
Gliwice branch, between 2013 and 2014. The MR images were
validated for the lack of pathology by an experienced radiologist.
The inclusion criteria to the studied sub-population involved
the age above 18 and a good health status, i.e., the absence of
acute or chronic diseases (no neurological disorders or surgical
history) and no pathologies in the central nervous system in the
MR images. Four subjects were excluded from the investigation
due to the presence of the silent gross brain lesions (three
cases) and due to the image artifacts (1 case), resulting in a final
sample of 96 subjects, aged from 20 to 66 years (median age
37.0 years, 25th percentile 29.0 years, 75th percentile 50.0 years).
Although the subjects were randomly chosen among the Polish
population, the age and sex distributions were found to reflect
the characteristics of the whole population (groups description
is presented in Table 1), as revealed from the Statistical Atlas of
Slaskie Voivodeship edited by Central Statistical Office of Poland
(http://stat.gov.pl/en/topics/other-studies/cities-voivodship/
statistical-atlas-of-slaskie-voivodship). The studied group was
divided into the following sub-groups—two of both sexes (nM
= 42 males and nF = 54 females) and two age-related: the
younger sub-group, aged 20–35 (nY= 46 subjects) and the older
one, aged 36–66 (nO = 50). According to these divisions, the
appropriate templates were obtained—for the studied group and
for the sub-groups—and presented in Table 1.

The validation T1-weighted data (3D spoiled gradient-echo
sequence) was also collected to be suitable for the objective and
unbiased comparison of the segmentation process. The validation
group included 75 volunteers with the range of 18–65 years
(median age 27 years; 25th percentile 23.0 years, 75th percentile
: 38.5 years); the female to male ratio was 53:22. The ethnicity
of the validation group and the scanner used for the study were
consistent with the main data. The obtained examinations were
reviewed for exclusion of pathology in the central nervous system
in the MR images.

2.2. Data Acquisition
A Philips 3T Achieva MRI scanner (Radiology and Diagnostic
Imaging Department, Maria Sklodowska-Curie National
Research Institute of Oncology, Gliwice branch Poland) with
a dedicated, 8 channel head coil was used for data collection.
A 3D spoiled gradient-echo sequence was applied (T1-FFE)
with TR/TE/flip angle of 20 ms/2.9 ms/20 deg and the SENSE
technique of parallel imaging with a sensitivity encoding. The
acquisition matrix was 256 × 256 in the x and y dimensions
yielding a voxel of 1 × 1 mm. The images were acquired using
spacing between the slices of 1 mm, and at a slice thickness of 2
mm. To obtain a T2-weighted scan, a 2D turbo spin-echo (TSE)
SENSE sequence with TE = 80 ms was employed. TR varied,
depending on the number of slices, but always it was longer than
2,500 ms. The acquisition matrix was adjusted to the brain size;
however, the voxel size of 1× 1× 1 mm was always maintained.

An experienced certified radiologist evaluated all MR images
to identify the image artifacts and exclude the presence of
morphological pathologies (silent gross brain lesions). The
original MR images encoded in DICOM were converted to the
NIfTI format supported by all major software packages, like FSL

(Jenkinson et al., 2012), SPM (Friston et al., 2007), ANTs (Avants
et al., 2008, 2011, 2014), and many other brain imaging tools.

3. METHODS

A short description of the methodology adopted in the present
study is shown in Figure 1.

3.1. Image Pre-processing
Image Denoising
To increase the quality and performance of the applied methods,
the MR images were denoised using the Smallest Univalue
Segment Assimilating Nucleus (SUSAN) 3D noise reduction tool
(Smith and Brady, 1997) available in FSL (Jenkinson et al., 2012),
thus using the same method as in our previous study (Kijonka
et al., 2020). The DICOM data files were processed in a full 3D
mode taking into account the brightness threshold differences
separately for each image and each volunteer. The image filtering
procedure was performed by the SNR (signal-to-noise ratio)
and CNR (contrast-to-noise ratio) values determination. The
brightness threshold was optimized to be higher than the noise
level and less than the contrast of the underlying image. The
Gaussian mask was set to a default size of 3× 3× 3.

Nonuniform Intensity Correction
The N3 method was used to correct intensity non-uniformity
in both T1- and T2-weighted images. The non-parametric non-
uniform intensity normalization (N3) (Sled et al., 1998) with
the parameters (the maximum number of iterations equal 100,
the stopping of 0.0001 and the kernel full-width, half maximum
(FWHM) of 0.1 to sharpen the histogram) using the nu_correct
tool from the MINC package was applied (Collins et al., 1994).
This part of the data pre-processing was done according to the
methodology of Fonov et al. (2011).

Intensity Normalization
To obtain the same distribution and the range of the intensity
histogram of the MR images as for the MNI-ICBM 152 template
(Fonov et al., 2011), a linear normalization of the intensity (a
single linear histogram scaling) was applied for each DICOM
data set. Such intensity normalization is based on the method
proposed by Nyúl and Udupa (1999). It offers a simple way of
transforming the images non-linearly so that there is a significant
gain in the similarity of the resulting images. In a training stage,
executed only once for a given protocol and a body region, the
parameters of the standard scale are determined. Thus, certain
landmarks of a standard histogram (for the head region and the
protocol under consideration) are estimated from a given set of
volume images. This procedure is followed by a transformation
stage (for each given volume image) to map the candidate
volumes’ histograms onto the standard histogram scale. In other
words, it means that the actual intensity transformation from
the intensity scale of the input volume image to the standard
scale is computed by mapping the landmarks determined
from the histogram of a given volume image to those of the
standard histogram.
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TABLE 1 | Subpopulation templates names, description, and cardinality.

Sub-atlas description Cardinality Median Age percentiles Range

[volunteers] [Age] (25th; 75th) [Age]

All volunteers (All) 96 37.0 29.0; 50.0 [20–66]

Females from all volunteers (Women) 54 38.5 29.3; 50.0 [24–66]

Males from all volunteers (Men) 42 36.0 29.0; 43.0 [20–58]

Old (>35 years old) group (Old) 50 49.0 40.0; 53.5 [36–66]

Young (<=35 years old) group (Young) 46 29.0 25.0; 32.0 [20–35]

3.2. Segmentation of the Tissue Proportion
Maps
The unified segmentation procedure was applied in Statistical
Parameter Mapping (SPM) software (Wellcome Department,
University College, London, UK) (Ashburner and Friston, 2005).
The two-channel (T1- and T2-weighted) segmentation mode was
used and the classification parameters were optimized in a similar
manner as in our previous work (Kijonka et al., 2020). The SPM
steps were adopted in the present study, and the GM, WM, and
CSF proportion maps were determined for all subjects in the
common brain MRI processing pipeline.

3.3. Registration Targets (Standard Spaces)
The subjects selected as normal (in terms of the inclusion criteria)
were used to create the T1-weighted registration targets [Polish
(Upper Silesian) standard spaces] according to the methodology
by Dickie et al. (2015). Five registration standard spaces were
obtained: one from all subjects, two from the sex sub-groups,
and two from the age sub-groups (see section 2.1). Moreover, the
standard spaces for the T2-weighted were also generated.

To spatially normalize all subjects to our standard T1-
weighted registration target, we devised a “non-linear surface”
spatial normalization as described by Dickie et al. (2015)
as “Nsurf” using ANTs (version 2.3.2) SyN diffeomorphic
registration method (Avants et al., 2008, 2011). The critically
important aspect in the voxel-wise tissue distribution analysis
is to preserve the variance of the data by performing the
appropriate spatial normalization. A linear spatial normalization
maintains within the brain variance, e.g., the ventricle size,
between the subjects but does not always adequately account
for the head size. On the other hand, the nonlinear spatial
normalization generally accounts for the head size differences but
removes the brain variance between the subjects. “Nsurf” spatial
normalization fully accounts for the head size differences while
also maintains the within brain variance of interest, for example,
the size of lateral ventricle and cortical thickness (Dickie et al.,
2015). The transformation matrices obtained in the appropriate
normalization procedure (to the T1-weighted registration target)
were applied to the T2 modality to spatial positioning within a
single subject.

3.4. Voxel-Wise Distributions of the WM,
GM, and CSF Data
After the spatial normalization of the WM, GM, and CSF
proportion maps for all sub-groups, the data distributions of the

three-dimensional tissue maps were tested using the Shapiro-
Wilk test (Ghasemi and Zahediasl, 2012; Dickie et al., 2015).
This test determines whether or not the data derived from
the analyzed population reveal a Gaussian distribution, and the
parametric measures are appropriate to describe it. The results
of the Shapiro-Wilk test were presented as a three-dimensional
matrix showing the results at each voxel in a standard space for
each structure (GM,WM, and CSF). Moreover, we calculated the
maps of kurtosis and skewness to check the central and outer
appearance of the data distribution and the data symmetry in the
WM, GM, and CSF voxels (Dickie et al., 2015). The kurtosis was
calculated using the Fisher’s definition (Dorić et al., 2007):

K =

1
n

∑n
i=1(xi − µ)4

σ 4
− 3 (1)

where xi are the values of the variable x, µ is the mean of the
variable x, n is the number of data points, and σ is the standard
deviation of the variable x. Then, the value 3.0 is subtracted from
the result to give 0.0 in case of the normal distribution. The
skewness is calculated using the equation:

S =
1
n

∑n
i=1(xi − µ)3

σ 3
(2)

where µ is the mean, and σ is the standard deviation, and n
is the number of data points. In computing the skewness, σ is
computed with n in the denominator rather than (n− 1).

3.5. The WM, GM, and CSF Proportions for
the Parametric and Non-parametric
Atlases
The WM, GM, and CSF proportion images from the analyzed
sub-groups (described in section 2.1) selected as the normal
subjects (in terms of the inclusion criteria) were used to create the
order-based non-parametric atlases. The example of the different
levels of percentile maps for GM atlas is presented in Figure 2.

The percentile ranks (tth percentile) were calculated as follows
(3) (Dickie et al., 2015):

n(t/100) = j+ g

y =
1

2
(xj + xj+1) if g = 0

y = xj+1 if g > 0

(3)

Frontiers in Neuroinformatics | www.frontiersin.org 4 October 2021 | Volume 15 | Article 684759

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Borys et al. Non-parametric MRI Brain Atlas

FIGURE 1 | The flow chart of the whole methodology starting from T1-weighted and T2-weighted maps (3D) through the preprocessing, spatial normalization, and

segmentation steps to obtain WM, GM, and CSF 3D maps. Having 96 human subjects we obtain 4D maps which are used to perform voxel-wise distributions of

skewness, kurtosis, and SW test p-values.

where n is the number of subjects, j is the integer part of the
left hand side of the first equation, g is the fractional part of
the left hand side of the first equation, y is the tth percentile,
and x1, x2, ..., xn are the ordered values of each brain volume.
The atlases were generated for the three investigated classes:
WM, GM, and CSF. Moreover, we calculated the atlases for all
investigated subjects and for the sex and age sub-populations.

The non-parametric approaches more commonly rely on
rank or order statistics being the percentiles of a distribution.
Percentile indicates the percent of a distribution that is equal
to or below it. Their calculation is not based on the arithmetic
mean, which should not be used for the skewed data. They (and
therefore also the percentile rank classes) offer an alternative to
mean-based quotients. Generally speaking, percentiles are not
as strongly influenced by extreme values of the distribution as
the mean value. The tth percentile is a value, such that at most
t% of the ordered measurements are less than this value, and at
most (100 − t)% are greater (Hyndman and Fan, 1996). Thus,
instead of a mean value, the median or the 50th percentile is
used, whereas the difference between the upper quartile (75th
percentile) and the lower quartile (25th percentile) is called the
interquartile range and is the non-parametric alternative to the
standard deviation for describing the spread.

We also calculated the parametric (mean) tissue proportion
maps for the investigated sub-groups. The mean and median
(non-parametric 50th percentile) tissue proportion maps were
compared using the percentage differences in the structure
content. The percentage difference comparisons were presented
as matrices for each structure (GM, WM, and CSF) TPMs.

The TPMs volumes of GM, WM, and CSF were calculated
by counting the probability in the voxels for the sex- and
age-related TPMs.

To test the TPMs against the null hypothesis that the two
images have the same content mean ranks we used the Wilcoxon
signed-rank test (Demidenko, 2004; Rey and Neuhäuser, 2011;
Thor et al., 2013). The Wilcoxon test is a paired difference non-
parametric statistical test in which the null hypothesis assumes
that the difference between the paired data (the TPMs voxels
for each structure) follows a symmetric distribution around zero
(Rey and Neuhäuser, 2011).

Moreover, to compare the TPMs under the null hypothesis
that two tissue maps have the same distribution of the structure
content we used the Kolmogorov-Smirnov test (Demidenko,
2004). This group test reduces to a comparison of only two
groups of gray level distributions and it does not use the content
or structural information in the images.

The p < 0.05, a predetermined significance level, were
accepted as indicating that the observed result would be highly
unlikely under the null hypothesis.

3.6. Comparison Between the
Classification Results Using Parametric
and Non-parametric Atlases
We also compared the volumetric features (the volumes of GM,
WM, and CSF) calculated using the non-parametric and standard
parametric templates in the SPM segmentation procedure. For
each subject in the validation cohort, the volumes of GM,
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FIGURE 2 | Presentation of different levels of percentile maps for GM atlas (top) and comparison with one individual subject (bottom).

WM, and CSF were obtained by counting the probability in
the voxels segmented using different templates. The volumetric
parameters segmented using the parametric and non-parametric
Polish atlases were compared using a paired-sample Wilcoxon’s
signed-rank test.

4. RESULTS

4.1. Voxel-Wise Distribution of WM, GM,
and CSF
The examples of the axial slices for the median maps of
the gray matter, the white matter, and CSF are shown in
Figures 3–5. The randomly selected examples of the population
distributions of the structure content in the regions of GM
(Figure 3: left caudate nucleus, left putamen, left accumbens,
insula, and left hipocampus), WM (Figure 4: anterior limb of
the internal capsule and genu of corpus callosum) and CSF
(Figure 5: anterior horn of lateral ventricle) are also shown. As
seen, the example histograms of the structure proportions are
composed of the asymmetrical left skewed (Skewness < 0)
and leptokurtic distributions (Kurtosis > 0) that are markedly
non-Gaussian (Figures 3–5). The Gaussian estimations of the
histograms are also added as the red curves (Figures 3–5) for
the sake of comparison. The values of the kurtosis and the
skewness for a normal distribution equal to 0. The Shapiro-Wilk
test confirms the non-Gaussian distributions observed in the
presented histograms (p < 0.05; Figures 3–5).

To assess the WM, GM, and CSF distributions quantitatively
throughout the brain, we calculated the voxel-based 3D maps
of the kurtosis, skewness, and a Shapiro-Wilk test for the
studied population. The previously presented coordinates for
the axial slices have also been applied to these maps in

each structure to show the example of spatial variability in
the structure distributions (Figure 6). The obtained images
(skewness, kurtosis, p-value, proportion maps) were masked
using the threshold at 5% of the structure content to present
the results only in those areas where the structures exist spatially
significantly. The kurtosis and skewness maps peripherally reveal
in the analyzed structure a right-skewed platokurtic distribution,
whereas the left-skewed leptokurtic distribution is observed in
the internal part of the structure. The voxels located between
these areas are of a symmetrical distribution with the kurtosis
values close to 0. Only the regions at the border of the tissue
proportion maps show a normal population distribution with a
Shapiro-Wilk test p > 0.05 (Figure 6).

Moreover, Table 2 collects the middle values (medians) of
skewness and kurtosis as well as the p-values (Shapiro-Wilk
test) for the investigated tissue maps. These median values
indicate that in each brain structure (regardless of the studied
subpopulation), the data distribution is leptokurtic (Table 2).
The distribution is right-skewed for GM and CSF, while in WM
it is left-skewed. The p-values of the Shapiro-Wilk test for the
distributions of the WM, GM, and CSF proportions indicate that
the observed results would be highly unlikely under the null
hypothesis and are generally non-Gaussian (Table 2).

To visualize the full distribution of the data (kurtosis,
skewness, and p-values) across the entire brain, the violin plots
were calculated (Figure 7). The violin plots estimate the data
distribution by using a kernel density function (Weissgerber
et al., 2017). The kurtosis values are stretched toward the values
for the leptokurtotic distributions (Figure 7, left). The voxels
skewness for GM is slightly shifted to the negative side, whereas
for WM and CSF the positive shift is seen (Figure 7, middle).
Finally, the p-values are clustered around 0 for all structures
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FIGURE 3 | Axial slice (z = 72) for the median gray matter map. The histograms with the skewness (S), kurtosis (K), and Shapiro-Wilk test p-values (p*) for the left

Caudate Nucleus, left Putamen, left Accumbens Area, left Hippocampus and Insula.

FIGURE 4 | Axial slice (z = 83) for the median white matter map. The histograms with the skewness (S), kurtosis (K), and Shapiro-Wilk test p-values (p*) for the

anterior limb of the internal capsule and genu of the corpus callosum.
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FIGURE 5 | Axial slice (z = 82) for the median CSF map. The histograms with the skewness (S), kurtosis (K), and Shapiro-Wilk test p-values (p*) for the anterior horn

of the lateral ventricle.

(Figure 7, right). Thus, these results are consistent with the data
from Table 2.

4.2. Parametric and Non-parametric
Atlases
The examples of the axial slices for the non-parametric (order-
based 50th percentile) atlases of the tissue proportions maps
in the appropriate sex- and age-related sub-groups for the
healthy Polish population are shown in Figure 8. The standard
parametric (mean) tissue proportion maps for the investigated
sub-groups were also calculated to compare the results obtained
by the different measures in the atlas calculation process.

The TPMs volumes of GM, WM, and CSF for the sex- and
age-related sub-populations were also calculated and Table 3

shows the results obtained for the parametric and non-
parametric maps. The median and mean (tissue proportions)
maps were compared using the Wilcoxon signed-rank test
and the results of the comparisons are also in Table 3. The
statistically significant differences were found between the maps
obtained using the different statistical measures (p < 0.05,
Table 3). For all subgroups, the GM volumes calculated from
the tissue probability maps (TPMs) obtained with the non-
parametric measure were higher than the values estimated with
the parametric methods. On the other hand, the TPM volumes of
WM and CSF gotten by the non-parametric methods were lower,
regardless of the analyzed sub-population.

The Sex and Age subgroups’ non-parametric TPMs were
also compared using the Kolmogorov-Smirnov test to find the
differences resulting from the specificity of the investigated
subpopulation. The results (Tables 4, 5) show that the maps for
the sub-populations differ significantly and the TMPs volumes

differences are even stronger than the impact of the applied
statistical measure (Table 3).

The examples of axial slices for the percentage differences
in the structure content between the mean and median (non-
parametric 50th percentile) tissue proportion maps are shown
in Figure 9. In the border regions of the analyzed structures,
the percentage differences calculated with the application of
the different statistical methods are the greatest (Figure 9). The
maximum values of the percentage differences in the structure’s
content reach 528.5, 499.8, and 359.6%, respectively, for the GM,
WM, and CSF TPMs.

4.3. Comparison of the Segmentation
Algorithms Using Parametric and
Non-parametric Tissue Probability Maps
In order to compare the impact of the application of the
parametric or non-parametric TPM in the segmentation process,
the volumetric determinants (the volumes of GM,WM, and CSF)
of the brain were subjected to statistical analysis. The unified
segmentation procedure was applied in Statistical Parameter
Mapping (SPM) software. The volumes of GM, WM, and
CSF were obtained by counting the probability in the voxels
segmented using different templates. The analysis was performed
in the validation cohort. The Wilcoxon signed-rank test was
applied and the results are presented inTable 6 and Figure 10. As
seen from the comparison, the statistically significant differences
between the segmented volumes are observed for CSF and GM.
The GM volumes are greater when using the non-parametric
atlas in the segmentation procedure, while the CSF volumes are
smaller (Table 6 and Figure 10).

Frontiers in Neuroinformatics | www.frontiersin.org 8 October 2021 | Volume 15 | Article 684759

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Borys et al. Non-parametric MRI Brain Atlas

FIGURE 6 | Axial slices of the kurtosis, the skewness and the Shapiro-Wilk test p-value map for GM (top), WM (middle), and CSF (bottom).

5. DISCUSSION

The morphological features of brain ageing, to be captured
effectively, require specific non-parametric brain MRI atlases
(Dickie et al., 2015). The vast majority of the currently
available atlases (Dickie et al., 2017) were, however, derived

using parametric statistics. Our intention was to check the
validity of the parametric approach in the Polish (Upper
Silesian) healthy and ethnically homogeneous population. Our
work provides the specific brain atlases with the associated
non-parametric tissue probability maps (TPMs) for three
morphological classes (GM, WM, and CSF) constructed for
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TABLE 2 | The medians of the Kurtosis, Skewness, and Shapiro-Wilk test p-values (p*) for GM, WM, and CSF (in columns) for the studied groups (All, Men, Women,

Young, and Old).

Gray matter White matter Cerebrospinal fluid

Group Kurtosis Skewness p* Kurtosis Skewness p* Kurtosis Skewness p*

All 1.029 −0.091 3.0E-09 3.921 0.602 1.0E-11 7.894 2.652 6.4E-13

Men 0.748 −0.059 6.7E-13 2.842 0.582 5.4E-14 5.014 2.243 4.1E-15

Women 0.873 −0.106 8.0E-12 3.205 0.597 1.7E-13 6.095 2.404 1.9E-14

Young 0.890 −0.164 1.5E-12 2.907 0.616 8.2E-14 5.728 2.382 5.6E-15

Old 0.756 −0.012 4.3E-12 3.146 0.556 1.4E-13 5.350 2.262 1.6E-14

FIGURE 7 | The violin plots of the data distribution (left: kurtosis, middle: skewness, right: Shapiro-Wilk test p-values) across the entire brain (GM, WM, and CSF).

the sex and age sub-groups. We found that the order based
(non-parametric) concept of the tissue templates is correct not
only for the maps of GM in normal older subjects (Dickie
et al., 2015) but for all investigated classes, regardless of age
or sex.

The data distributions of the three-dimensional tissue maps
(WM, GM, and CSF) were tested using the Shapiro-Wilk test.
Moreover, we calculated the maps of kurtosis and skewness to
check the central and outer appearance of the data distribution
in the voxels. The results confirmed that in each brain structure
(regardless of the studied sub-population) the data distribution is
complex, skewed and leptokurtic, and apparently not Gaussian.
The largest deviations from the Gaussian distribution were
observed in the internal and peripheral parts of the structures.
Only the regions at the border of the tissue proportion maps
showed a normal population distribution.

When the assumptions for the parametric statistics are
not fulfilled, choosing an inappropriate method to construct
the atlas may result in masking the disease- or age-related
differences in the brain structures. In consequence, this leads to
a misclassification of the abnormal voxels as normal, especially
in older subjects or in those with neurodegenerative diseases
(Dickie et al., 2015). The largest deviations from the Gaussian
distribution have been observed in the temporal and frontal
regions, which are affected early in dementia (Dickie et al., 2015).
In such cases, the non-parametric distributional representations
of the brain are required (Dickie et al., 2015, 2017).

We created the order based atlases for the entire study
sample and for the sex and age subgroups. The parametric
atlases were also obtained for the sake of comparison.

The non-parametric and parametric templates (their central
measures) were compared using the paired sample Wilcoxon’s
signed-rank test to explore the influence of the chosen statistical
method on the template maps. The source data with a symmetric
distribution should give comparable results for the central
measures (mean and median) of the content maps. However,
statistically significant differences were found between the maps
obtained using both measures (the maps of GM, WM, and
CSF). The GM volume estimates gotten from TPM with the
order-based methods were higher than when obtained with the
parametric methods for all subgroups. Furthermore, the volumes
of the WM and CSF TPMs calculated in the non-parametric
templates were lower, regardless of the analyzed sub-population.
These relationships are consistent with the skewness results
from the analysis of the voxel-wise distribution, as in fact, the
skewness is directly connected to it (Delucchi and Bostrom,
2004; McCluskey and Lalkhen, 2007; Limpert and Stahel, 2011;
Manikandan, 2011). The regional analysis of the tissue content
maps showed that the percentage differences calculated with
both statistical methods are the greatest in the border regions
of the analyzed structures. A strong spatial blurring of the
cerebrospinal fluid in the population is visible in the form of
a significantly high value of this structure content skewness
(Figure 7, middle) with the long tail to the higher values of
the skewness. This situation leads to an overestimation of the
parametric estimators of the CSF probability maps at the expense
of the volume of the gray matter structures (Delucchi and
Bostrom, 2004; Limpert and Stahel, 2011; Dickie et al., 2015).
Moreover, our results confirm the well known fact (Koolschijn
and Crone, 2013; Kijonka et al., 2020) that the sub-population
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specific TPMs (Tables 4, 5) differ significantly but in fact the
TMPs volumes differences are even stronger than the impact
of the applied statistical measure (Table 3). The gray matter
volume decreases with age, and this is accompanied by the
cerebrospinal fluid volume increase (Koolschijn and Crone,
2013). In addition, a larger ratio of GM/WM in the females
than in the males was observed by Koolschijn and Crone (2013).
Our findings are consistent with these results as presented in
the Tables 4, 5.

FIGURE 8 | The templates in the columns: All, Men, Women, Young, and Old.

In the rows: the registration targets of T1 and T2 and the templates for GM,

WM, and CSF.

There are numerous examples where the description by the
parametric measures is clearly misleading. This becomes obvious
whenever the variable limits exist and the data that cannot

TABLE 4 | The results of the Kolmogorov-Smirnov test p-values of the

comparisons of the Sex subgroups’ non-parametric TPMs.

Volume [ml]

Women TPMs Men TPMs p-value

Gray matter 978.21 954.01 7.7E-179

White matter 671.70 680.56 3.9E-221

Cerebrospinal fluid 297.31 285.64 2.4E-101

The TPM volumes of GM, WM and CSF obtained for the Women and Men non-parametric

TPMs.

TABLE 5 | The results of the Kolmogorov-Smirnov test p-values of the

comparisons of the Age subgroups’ non-parametric TPMs.

Volume [ml]

Young TPMs Old TPMs p-value

Gray matter 1008.8 929.29 ≈0

White matter 665.92 685.36 1.8E-192

Cerebrospinal fluid 270.91 312.07 6.6E-165

The TPM volumes of GM, WM and CSF obtained for the Young and Old non-parametric

TPMs.

TABLE 6 | The differences in the volumetric values when using the parametric or

non-parametric atlas in the segmentation algorithm.

Volume [ml]

Parametric TPM Non-parametric TPM p-value

Gray matter 679.7 748.2 2.5e-06

White matter 417.5 414.3 0.3066

Cerebrospinal fluid 259.4 159.7 4.0e-20

The rows present the median volumes for each structure (GM/WM/CSF). The

segmentation was performed with the use of the parametric and non-parametric TPMs in

the validation cohort. The Wilcoxon test p-value is added in the last column.

TABLE 3 | The results of the Wilcoxon signed-rank test p-values (p*) of the parametric and non-parametric TPMs comparison.

Gray matter White matter Cerebrospinal fluid

Volume [ml] Volume [ml] Volume [ml]

Group Median Mean p* Median Mean p* Median Mean p*

All 968.21 946.22 1.4E-309 674.69 699.66 ≈0 290.24 334.38 ≈0

Men 954.01 933.75 2.6E-219 680.56 704.84 ≈0 285.64 327.91 ≈0

Women 978.21 956.42 ≈0 671.70 695.54 ≈0 297.31 340.36 ≈0

Young 1008.8 983.5 ≈0 665.92 691.11 ≈0 270.91 313.68 ≈0

Old 929.29 912.37 5.5E-71 685.36 707.99 ≈0 312.07 354.02 ≈0

The TPM volumes of GM, WM and CSF obtained for the parametric (mean) and non-parametric (median) methods. The rows present the values for each group (All, Men, Women,

Young and Old).
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FIGURE 9 | The percentage differences in GM (left), WM (middle), and CSF (right).

FIGURE 10 | The boxplots of the volumes obtained with the parametric (mean) and non-parametric (median) TPM in the segmentation algorithm. The GM volumes

are shown on the (left), the WM values in the (middle), and those for CSF on the (right) site.

exceed the specified range of the values (e.g., the probability
cannot be negative or >1). Obviously, such data will be
skewed, and the obtained parametric measures, compared to the
order based estimates, will be shifted, thus hiding the skewed
nature of the data (Delucchi and Bostrom, 2004; Limpert and
Stahel, 2011). In turn, the phenomena influencing the image
segmentation process are even more difficult to be described,
due to the problem of the non-parametric data distribution
disturbed by: the partial volume effect, random noise, and the
B1 field inhomogeneities (Stanisz et al., 2005; Awate et al.,
2007; Yamashiro et al., 2019). However, in this paper, we
address only the non-parametric methodology in the MRI atlas
creation procedure.

We also compared the impacts of applying the parametric
and non-parametric TPMs on the segmentation process.
The obtained volumes of GM, WM, and CSF were
subjected to statistical analysis. It was performed in the
validation cohort to be suitable for the objective and
unbiased comparison. The Wilcoxon signed-ranks test
was applied, and the results confirmed the statistically
significant differences of the segmented volumes of CSF

and GM obtained for different TPMs. The GM volumes
are greater when using the non-parametric atlas in the
segmentation procedure, while the CSF volumes are
smaller. These results are consistent with the volumes of
the probability maps themselves assessed before proceeding
to check the impact on the classification process in the
segmentation procedure.

The main limitation of the study appears to be the medium
(96) sample size. However, the majority of the published
atlases are mostly of modest size (the median subject number
= 43) (Dickie et al., 2017). The most popular atlas, widely
used in the voxel-wise analyses or support of the tissue/ROI
volume segmentation—ICMB152—includes 152 healthy cases.
Moreover, the available atlases are usually developed with
restricted image sequences for specific processing purposes and
with the underrepresented youngest and elderly populations. On
the other hand, the main advantage of our study is the structure
of the studied group—ethnically homogeneous, neurologically
healthy, and radiologically verified. We believe that having a
non-parametric group representative template, as increasing
the accuracy of alignment, improving statistics, and decreasing
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distortions (as well as potential biases), is necessary to investigate
the differences between the populations, as shown by Yang
et al.—they compared two demographically matched templates,
the Caucasian and Chinese standard brain atlases, and found,
particularly within the language-related areas, the dramatic
differences (Yang et al., 2020). It may be, thus, concluded that
the combination of such factors as inherent structural variability,
multi-ethnic composition, and differences in genetic influences
and environmental exposures introduces a large amount of
inherent variability evident in the brain morphology even in
the case of the templates that are representative for age and
sex (Dickie et al., 2013; Ritchie et al., 2015; Miller et al.,
2016; Skorupa et al., 2017; Holla et al., 2020). Classification
results obtained using parametric and non-parametric atlases
do not exhaust the full prove the superiority of non-parametric
methods. For example, brain age prediction is another issue
worth examining. However, the atlas-based methods in brain age
prediction models have not been studied until now. Especially
with the use of non-parametric templates (Sajedi and Pardakhti,
2019). Therefore, the comparison of both approaches can
be employed in future research to find precise brain age
estimation methods with higher accuracy and thus to identify the
proper statistics.

Finally, our findings for the healthy Polish (Upper Silesian)
population as well as for its sex- and age-specific sub-
populations suggest that the non-parametric methodology is
more relevant and universal than the parametric approach. The
non-parametric methods are clearly the correct choice when
the assumption of normality is clearly violated, but when the
parametric methods are selected, all assumptions should be
satisfied. If this is not the case, it is more valid to use the
non-parametric methods because they are “always valid, but
not always efficient,” while the parametric ones are “always
efficient, but not always valid” (Nahm, 2016). Altogether, the
general conclusion is that there is no single atlas for the
human brain, and there is a continuous need for age-, sex-
, ethnic-, and disease-specific development of non-parametric
brain representation.
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Despotović, I., Goossens, B., and Philips, W. (2015). MRI segmentation of the

human brain: challenges, methods, and applications. Comput. Math. Methods

Med. 2015:450341. doi: 10.1155/2015/450341

Dickie, D. A., Job, D. E., Gonzalez, D. R., Shenkin, S. D., Ahearn, T. S.,

Murray, A. D., et al. (2013). Variance in brain volume with advancing

age: implications for defining the limits of normality. PLoS ONE 8:e84093.

doi: 10.1371/journal.pone.0084093

Dickie, D. A., Job, D. E., Gonzalez, D. R., Shenkin, S. D., and Wardlaw, J.

M. (2015). Use of brain MRI atlases to determine boundaries of age-related

pathology: the importance of statistical method. PLoS ONE 10:e0127939.

doi: 10.1371/journal.pone.0127939

Dickie, D. A., Shenkin, S. D., Anblagan, D., Lee, J., Blesa Cabez, M., Rodriguez,

D., et al. (2017). Whole Brain Magnetic Resonance Image atlases: A systematic

review of existing atlases and caveats for use in population imaging. Front.

Neuroinformatics 11:1. doi: 10.3389/fninf.2017.00001
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