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Abstract
Functional magnetic resonance imaging (fMRI) studies have been used extensively to investigate the brain areas that are 
recruited during the Tower of London (ToL) task. Nevertheless, little research has been devoted to study the neural cor-
relates of the ToL task using a network approach. Here we investigated the association between functional connectivity and 
network topology during resting-state fMRI and ToL task performance, that was performed outside the scanner. Sixty-two 
(62) healthy subjects (21–74 years) underwent eyes-closed rsfMRI and performed the task on a laptop. We studied global 
(whole-brain) and within subnetwork resting-state topology as well as functional connectivity between subnetworks, with a 
focus on the default-mode, fronto-parietal and dorsal and ventral attention networks. Efficiency and clustering coefficient were 
calculated to measure network integration and segregation, respectively, at both the global and subnetwork level. Our main 
finding was that higher global efficiency was associated with slower performance (β = 0.22, Pbca = 0.04) and this association 
seemed mainly driven by inter-individual differences in default-mode network connectivity. The reported results were inde-
pendent of age, sex, education-level and motion. Although this finding is contrary to earlier findings on general cognition, 
we tentatively hypothesize that the reported association may indicate that individuals with a more integrated brain during 
the resting-state are less able to further increase network efficiency when transitioning from a rest to task state, leading to 
slower responses. This study also adds to a growing body of literature supporting a central role for the default-mode network 
in individual differences in cognitive performance.
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Introduction

Executive functions are a set of mental processes that enable 
us to plan, focus attention, remember instructions and handle 
several tasks at once (Diamond 2013). Functional magnetic 

resonance imaging (fMRI) studies have shown that these 
functions are associated with functional connectivity (FC) 
of certain resting-state networks (RSN) (Rabinovici et al. 
2015; Funahashi and Andreau 2013; Nowrangi et al. 2014). 
Various RSN have been shown to be involved in executive 
functions, including the default mode network (DMN) which 
is active during rest and deactivates during task performance 
(Buckner et al. 2008; Mak et al. 2017; Anticevic et al. 2012). 
Other relevant RSN for cognition are the frontoparietal net-
work (FPN) (Cole et al. 2012, 2014b) and the dorsal and 
ventral attention networks (DAN and VAN, respectively) 
(Fortenbaugh et al. 2018). Although the utility of RSN in 
cognitive neuroscience and understanding of the neural 
correlates of cognition has been debated (Campbell and 
Schacter 2017; Davis et al. 2017; Iordan and Reuter-Lorenz 
2017), resting-state FC patterns show good correspondence 
with task-based FC patterns (Krienen et al. 2014), are fun-
damentally stable (Gratton et al. 2018) and may act as an 
intrinsic network architecture that shapes FC when evoked 
by a cognitive task (Cole et al. 2014a; Ito et al. 2017).
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The architecture or topology of the brain can be stud-
ied using graph analysis, where the brain is simplified to 
a graph of nodes (i.e., different brain regions) and edges 
(i.e., connections between brain regions) (Wang et al. 2010; 
Bullmore and Sporns 2009). Different properties of the brain 
network can be calculated using this graph. For example, 
efficiency and clustering describe the ability of a network to 
integrate and segregate information, respectively (Cohen and 
D’Esposito 2016; Lord et al. 2017). The brain balances its 
ability to integrate and easily transmit information through-
out the network, and to segregate information processing 
in clusters of highly interconnected (specialized) neighbor-
ing nodes (Bullmore and Sporns 2009). This ability of the 
brain for integration and segregation is vital for cognitive 
processes (Cohen and D’Esposito 2016) and higher intel-
ligence has been associated with a more efficient network 
topology (Langer et al. 2012; van den Heuvel et al. 2009). 
Conversely, dementia and cognitive impairments in the light 
of brain disorders generally show dysfunction in the brain’s 
ability to functionally integrate and segregate information 
(Dai et al. 2019; Lopes et al. 2017; Rocca et al. 2016). Nev-
ertheless, studies on the associations between network topol-
ogy and inter-individual differences in cognitive functions 
in healthy subjects are relatively scarce, (e.g., Cohen and 
D’Esposito 2016; Sheffield et al. 2017), and to the best of 
our knowledge, no study has yet focused on the association 
between network topology and planning capacity. Planning 
is the ability to think ahead to achieve a goal via a series 
of intermediate steps (Owen 1997) and is a vital function 
in daily life that we here operationalize in the form of the 
Tower of London (ToL) task. In this study, we investigated 
the association between RSN topology and planning per-
formance, using a graph-based approach. Based on prior 
research (Langer et al. 2012; van den Heuvel et al. 2009; 
Sheffield et al. 2017), we hypothesized a positive relation-
ship between network topology measured during resting-
state and cognitive planning ability, measured using the ToL 
task performed outside of the scanner.

Methods

Subjects and measurements

Data of healthy adult controls from two previous case–con-
trol studies (Gerrits et al. 2015; de Wit et al. 2012) were 
pooled for the current study. Exclusion criteria for all healthy 
subjects were the use of psychoactive medication, current 
or past psychiatric diagnosis, a history of a major physical 
or neurological illness, MRI contraindications or a history 
of alcohol abuse. Further exclusion criteria for the current 
study were: no available data on the ToL task, extreme 
behavioral scores (≥ 2 SD from the mean), a time-interval 

of more than 21 days between resting-state fMRI (rs-fMRI) 
and performing the ToL task, or pathological incidental find-
ings on the structural MRI scan. Written informed consent 
was provided by all participants according to the Declaration 
of Helsinki and the studies were approved by the Medical 
Ethical Committee of the VU University Medical Centre 
(Amsterdam, The Netherlands).

The participants performed a computerized version of 
the ToL task as a measure of planning (Phillips et al. 2001; 
Shallice 1982). Details of the ToL task are provided in the 
study by (van den Heuvel et al. 2003). In short, the partici-
pants saw two configurations (“begin” and “goal” position) 
of three colored beads on vertical posts of different heights. 
The purpose of the task is to determine the minimum num-
ber of moves (1, 2, 3, 4, or 5) needed to match the configu-
ration of the goal position. Participants responded via the 
matching keyboard-button. The first post can hold all three 
beads, the second two, and the third post one. Only one bead 
can be moved at a time and only if there is no other bead on 
top of it. Prior to the experiment, participants were provided 
verbal and written explanation and performed a practice run. 
Performance on the ToL task was indicated by the mean 
accuracy and mean reaction time on correct trials across all 
five difficulty levels (Kaller et al. 2016). Intelligence scores 
were approximated by the Dutch Adult Reading test (NLV; 
(Schmand et al. 1991). We scored education level according 
to the Dutch Verhage scale (Verhage 1964) that ranges from 
1—primary school not finished, to 7—university or higher. 
Handedness was assessed using the Edinburgh Handedness 
Inventory (Oldfield 1971).

MR image acquisition

MR images were acquired at Amsterdam UMC, location 
VUmc (Amsterdam, The Netherlands) on a GE Signa HDxt 
3 T MRI scanner (General Electric, Milwaukee, WI, USA) 
with an eight-channel head coil. The participant’s head was 
immobilized using foam pads to reduce motion artifacts. 
Participants were told to lie still, keep their eyes closed and 
not fall asleep during the acquisition of the rs-fMRI scan 
(duration: 5.9 min). T2*-weighted echo-planar (EPI) images 
were acquired with TR = 1.8 s, TE = 35 ms, 64 × 64 matrix, 
field of view = 24 cm and flip angle = 80° and 40 ascending 
slices per volume (3.75 × 3.75 mm in plane resolution; slice 
thickness = 2.8 mm; interslice gap = 0.2 mm). Structural 
scanning encompassed a sagittal three-dimensional gradi-
ent-echo T1-weighted sequence (256 × 256 matrix; voxel 
size = 1 × 0.977 × 0.977 mm; 172 slices).

Image (pre)processing

RS-fMRI and T1-weighted images were preprocessed with 
FMRIB’s Software Library version 5.0.10 (FSL; (Smith 
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et al. 2004)). The first four volumes were discarded to reach 
steady-state magnetization. Non-brain tissue was removed 
using BET and the structural image was segmented into gray 
(GM), white matter (WM) and cerebrospinal fluid (CSF) 
using FAST. Functional images were re-aligned using McF-
LIRT and the resulting six rigid-body parameters were used 
to calculate the motion parameters. Functional images were 
spatially smoothed with a 5 mm full width at half maximum 
(FWHM) kernel. Subjects with significant motion during 
scanning, defined as a mean relative root mean squared dis-
placement (RMS) > 0.2 mm, or > 20 volumes with frame-
wise relative RMS displacement > 0.25 mm, were excluded 
(Ciric et al. 2017). Because rs-fMRI is exceptionally sensi-
tive to motion artefacts (Power et al. 2015), we additionally 
performed ICA-AROMA (Pruim et al. 2015). ICA-AROMA 
is a single-subject denoising strategy based on independ-
ent component analysis (ICA) that automatically identifies 
motion-related components in the functional data based on 
their high-frequency content, correlation with the motion 
parameters and edge and CSF fraction and removes their 
variance from the data (Pruim et al. 2015). ICA-AROMA 
has been shown to provide a good trade-off between reduc-
ing noise and preserving BOLD signal (Ciric et al. 2017; 
Pruim et al. 2015; Parkes et al. 2018). After ICA-AROMA, 
additional nuisance regression was performed by removing 
signal from the WM and CSF and functional images were 
high-pass filtered (100 s cut-off).

The functional scan was registered to the anatomical 
T1-scans using boundary-based registration (FSL epi_reg). 
The anatomical image was parcellated into 225 nodes; 210 
cortical nodes were defined based on the Brainnetome Atlas 
(Fan et al. 2016), 14 subcortical nodes were individually 
segmented using FSL FIRST (Patenaude et al. 2011) and one 
cerebellar node was defined based on the FSL’s cerebellar 
atlas (Diedrichsen et al. 2009). EPI distortions during fMRI 
can lead to signal drop-out. To account for signal dropout 
near air/tissue boundaries during scanning, we applied a 
mask to the functional scan to exclude voxels with signal 
intensities in the lowest quartile of the robust range (Meijer 
et al. 2017). Nodes were discarded if they comprised less 
than four signal-containing voxels. This rendered a total of 
194 common brain regions across all subjects. Time-series 
were extracted from each node. The cortical nodes were 
subdivided into four RSN: the DMN, FPN, DAN and VAN 
based on the functional subdivision by Yeo et al. (2011); see 
supplementary Table 1.

Functional connectivity matrices

To measure FC and construct connectivity matrices we 
applied wavelet coherence on the time-series of each pos-
sible pair of the 194 brain regions within the frequency 
range 0.06 and 0.12 Hz (Chang and Glover 2010). Wavelet 

coherence has several advantages over Pearson’s correla-
tions, including denoising properties and robustness to 
outliers (Gu et al. 2017; Fadili and Bullmore 2004; Achard 
et al. 2006). The 0.06–0.12 Hz frequency range was chosen 
because it has been suggested to be a reliable and robust 
range that is associated with cognitive performance (Zhang 
et al. 2016; Bassett et al. 2013). We applied wavelet coher-
ence to the entire rs-fMRI scan to calculate the network 
measures (see below). An overview of the (pre)processing 
pipeline is provided in Fig. 1.

Network measures

At the global level, we calculated global efficiency and 
global clustering coefficient (Gcc). Global efficiency is the 
inverse of the average path length (i.e., the maximum con-
nectivity between each pair of nodes), with high efficiency 
meaning that information can rapidly travel through the 
whole network (Latora and Marchiori 2001). Gcc is equiva-
lent to the proportion of the actual number of edges between 
the nearest neighbors of a node to all possible edges and 
signifies the tendency of the whole network to segregate into 
locally interconnected triplets that function as a specialized 
subunit (Rubinov and Sporns 2010). Test–retest reliability 
of global efficiency and Gcc are fair-to-good (Welton et al. 
2015). At the subnetwork level, we calculated efficiency and 
clustering coefficient for each of the four RSNs (DMN, FPN, 
DAN and VAN). In addition, we determined the mean FC 
between each of the four RSNs (resulting in six between-
network mean FC values). Test–retest reliability of these 
measures at the subnetwork level is unknown.

Data analysis

Statistical analyses were performed using SPSS version 25 
(IBM Corp, Armonk, NY, USA). We describe demographi-
cal characteristics and performance on the ToL task using 
means and standard deviations unless indicated otherwise. 
Pearson’s (r) or Spearman’s rho (rs) correlations were per-
formed between demographic and performance measures, 
depending on the distribution. We performed bootstrapped 
hierarchal multiple regression analysis to investigate the 
association between network measures (predictors) and 
accuracy and reaction time on the ToL task (outcome meas-
ures). Because age was correlated with performance, age 
was entered in the first block of all models. The network 
measure of interest and mean RMS displacement, as a meas-
ure for motion, were entered in the second and third block, 
respectively. As a sensitivity analysis, we entered sex or edu-
cation level to the fourth block of the model. The regression 
models were bootstrapped using 2000 iterations. We report 
bias and accelerated (BCa) confidence intervals and the 
accompanying P values (Pbca) as they account for bias and 
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skewness in the data and provide a more robust estimate of 
the association that is less reliant on the distribution of the 
variable. All assumptions of multiple regression analyses, 
including homoscedasticity of residuals, were assessed and 
met. We performed separate analyses for the network meas-
ures on the global level and on the subnetwork level. On 
the subnetwork level, type I errors due to multiple compari-
sons were minimized using the False Discovery Rate [FDR, 
q < 0.05 (Benjamini and Hochberg 1995)]. Statistical signifi-
cance was set to P < 0.05 for all analyses. No formal power 
analysis was conducted prior to the execution of this study.

Results

Sample characteristics and behavioral results

Of the 69 participants with an available ToL task and rs-
fMRI data, seven had to be excluded (see Fig. 2), which 

Fig. 1   Outline of the processing pipeline. (A) Resting-state fMRI 
data were collected and (B) pre-processed. The brain was (C) parcel-
lated into separate brain regions (nodes). There were 194 nodes com-
mon to all subjects with enough signal to (D) construct connectivity 

matrices (see text) using wavelet coherence. (E) network measures 
were calculated from each connectivity matrix on the global and sub-
network level. (F) multiple regression analyses were applied to relate 
performance on the Tower of London (ToL) task to network measures

Fig. 2   Flowchart of participant exclusion
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resulted in a total sample size of 62 participants, aged 
between 21 and 74 years old (Mage = 48.1 ± 13.9, 33 males). 
The time between performing the ToL task and the rs-
fMRI was on average 6.2 ± 4.6 (range 0–21) days. See 
Table 1 for the sample characteristics. Age showed a posi-
tive correlation with reaction time (r = 0.498, P < 0.001) 
but only a trend-level negative correlation with accuracy 
(r = − 0.243, P = 0.057) indicating that older participants 
tended to respond slower and slightly less accurately. The 
average motion during rs-fMRI (expressed as mean rela-
tive RMS framewise displacement) was 0.068 ± 0.029 
(range 0.027–0.17) and was positively correlated with 
age (rs = 0.34, P = 0.007) but not performance on the ToL 
(reaction time: rs = 0.06, P = 0.66; accuracy: rs = − 0.18, 
P = 0.12).

Global topology

Global efficiency (β = 0.22, Pbca = 0.04) but not Gcc 
(β = − 0.09, Pbca = 0.57) was positively associated with 
reaction time above and beyond the effects of age (see 
Table 2 and Fig. 3). There were no significant associations 
with accuracy. Adding sex or education level as a nuisance 
covariate to the model had no effect on these results.

Subnetwork topology

Both efficiency and clustering of the DMN (efficiency: 
β = 0.25, Pbca = 0.018; clustering: β = 0.23, Pbca = 0.039) 
but not the other subnetworks (see supplemental Table 2) 
were positively related to reaction time. These associa-
tions did not, however, survive the multiple comparison 
correction (DMN efficiency Pfdr = 0.072; DMN clustering: 
Pfdr = 0.077). Adding sex or education level as additional 
nuisance covariate to the model had no effect on the results. 
Consistent with the results on the global level, there were 
no significant associations with the accuracy of task perfor-
mance (Supplemental Table 3).

Between‑subnetwork connectivity

FC between the DMN and FPN (β = 0.23, Pbca = 0.04), 
the DAN (β = 0.21, Pbca = 0.04) and the VAN (β = 0.20, 
Pbca = 0.04) were all positively associated with reaction time. 
These associations did not survive the FDR correction for 
multiple comparisons (all Pfdr = 0.09; supplemental Tables 4 
and 5).

Table 1   Sample characteristics

a Missing for two subjects
b Missing for one subject

N subjects (% female) 62 (46.8)
Age (years) 48.1 ± 13.9
Education level (in %)a

 3 1.6
 4 48
 5 29.0
 6 43.5
 7 17.7

Handedness (R/L)b 54/7
ToL accuracy (%) 87.7 ± 7.5
ToL reaction time (s) 10.1 ± 2.1
Mean relative RMS 0.07 ± 0.03

Table 2   Associations between 
TOL performance and global 
network measures

For each analysis, age was entered in model 1, the network measure in model 2 and motion parameters in 
model 3. Only the results of model 3 are shown here. P values are bootstrapped using 2000 permutations
TOL Tower of London task, RT reaction time, ACC​ accuracy, SE standard error, CI confidence interval, 
BCa Bias corrected and accelerated, GE global efficiency, Gcc global clustering coefficient

TOL Model B (SE) 95% CI (BCa) Beta PbCa R2

RT Age 0.09 (0.015) 0.06, 0.12 0.595 < 0.001
GE 9.79 (4.72) 0.84, 19.8 0.219 0.039 0.293
Motion − 16.46 (6.53) − 30.6, − 5.7 − 0.230 0.008
Age 0.08 (0.017) 0.04, 0.11 0.531 < 0.001
Gcc − 32.88 (53.72) − 133.9, 68.8 − 0.089 0.567 0.252
Motion − 12.03 (7.69) − 26.6, 2.3 − 0.168 0.113

ACC​ Age − 0.131 (.073) − 0.28, − 0.009 − 0.241 0.079
GE − 31.1 (21.57) − 76.3, 9.6 − 0.194 0.156 0.06
Motion − 21.62 (29.23) − 69.0, 43.1 − 0.084 0.450
Age − 0.09 (.075) − 0.24, 0.05 − 0.164 0.249
Gcc 206.28 (155.46) − 79.3, 515.3 0.154 0.187 0.05
Motion − 41.39 (27.02) − 89.5, 13.3 − 0.161 0.117



370	 Brain Structure and Function (2020) 225:365–374

1 3

Post‑hoc analyses

Because of possible floor/ceiling effects during the less 
demanding 1, 2 and 3 step trials of the ToL task, we re-ran 
the regression models using only the mean accuracy rates 
and reaction times during ToL steps 4 and 5. These post-hoc 
analyses showed that at the global level reaction time—but 
not accuracy—was still associated with global efficiency 
(β = 0.27, Pbca = 0.04), not Gcc (β = − 0.09, Pbca = 0.59). 
At the subnetwork level, efficiency of the DMN (β = 0.41, 
Pfdr = 0.001) and FPN (β = 0.32, Pfdr = 0.045), clustering of 
the DMN (β = 0.33, Pfdr = 0.05) and FC between the DMN 
and FPN (β = 0.38, Pfdr = 0.02) were all positively associ-
ated with reaction time, after FDR correction for multiple 
comparisons.

Discussion

In this study in 62 healthy adults with a wide age range 
we investigated the association between network topology 
during a rs-fMRI session and cognitive planning ability dur-
ing a ToL task that was performed outside the scanner. We 
observed that global (whole-brain) efficiency was associated 
with reduced planning speed and that this effect was mainly 
driven by the FC of the DMN. The results were independent 
from inter-individual differences in age, gender, education 
level and motion during rs-fMRI. Post-hoc analyses showed 
that our results were strongest when focusing on the higher 
task load trials of the ToL task (four and five step trials).

Global efficiency provides a measure of how well-inte-
grated a network is and how easily information can travel 
from one node to another on the other side of the network, 

while the clustering coefficient is a measure of how well-
connected nodes are locally into segregated triangles of 
neighboring nodes. Both measures are often used to describe 
the characteristics of a network and abnormalities in these 
network measures are commonly observed in the structural 
and functional networks of patients with a brain disorder 
(Bullmore and Sporns 2012; Griffa et al. 2013; Worbe 2015; 
Lord et al. 2017). Here we observed that subjects with a 
higher global efficiency show slower planning performance 
on the ToL task. This finding is at odds with our hypothesis 
and previous studies that observed that higher global effi-
ciency is associated with higher global intelligence (van den 
Heuvel et al. 2009; Sheffield et al. 2017) and performance on 
working memory tasks (Cohen and D’Esposito 2016; Shef-
field et al. 2015). One other study has also previously found 
that a higher global efficiency was associated with worse 
performance on a working memory task, but only in older 
adults and only when focusing on task-based FC (Stanley 
et al. 2015). This is the first study, however, to investigate 
planning ability. One possible, albeit less plausible, explana-
tion might, therefore, be that planning requires a different 
whole-brain network organization than working memory 
tasks or general intelligence. Alternatively, the higher global 
efficiency in individuals with slower performance on the 
ToL task may also point towards a more random network 
(Ajilore et al. 2014). As there was no association between 
ToL task speed and lower global clustering (a characteristic 
feature of random networks), this explanation is also less 
viable.

Studies have shown that, although the resting-state pro-
vides a core and intrinsic network architecture that highly 
overlaps with the network topology of task-states (Cole et al. 
2010; Krienen et al. 2014), significant reorganization does 
take place during the execution of tasks, and the magnitude 
and spatial redistribution depends on the task and its load 
(Cohen and D’Esposito 2016; Davison et al. 2015). Fur-
thermore, the ease with which a network can reconfigure 
from rest to task-states correlates with task performance and 
general cognition (Braun et al. 2015; Bassett et al. 2011; 
Telesford et al. 2016; Hearne et al. 2017). Transitions of rest 
to (demanding) task-states have generally been associated 
with an increase in global efficiency, signifying a better inte-
grated network (Cohen and D’Esposito 2016; Hearne et al. 
2017; Shine et al. 2016; see Shine and Poldrack 2018 for a 
review). This increase in network integration is, however, 
not unconstrained, as a fully integrated functional network 
would lead to epileptic seizures and violates the principles 
of cost-efficiency (Shine and Poldrack 2018; Bullmore and 
Sporns 2012). Assuming that in our subjects network inte-
gration would similarly increase from the resting-state to 
task-state, i.e., execution of the ToL task, it is conceivable 
that global efficiency could not increase sufficiently in those 
subjects with an already highly integrated network during 

Fig. 3   Partial correlation plot of the association between reaction 
time on the Tower of London task and Global (whole-brain) effi-
ciency. ToL Tower of London, RMS disp. mean root-mean-squared 
framewise displacement
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the resting-state to meet task demands, leading to a slower 
behavioral response. This concept is schematically depicted 
in Fig. 4. Although this hypothesis receives indirect support 
from multiple previous studies on dynamic network recon-
figurations (Shine and Poldrack 2018), we unfortunately 
did not acquire fMRI scans during the execution of the 
ToL task and, therefore, this explanation currently remains 
speculative. Because the slower responses were not associ-
ated with lower accuracy (rs = − 0.19, P = 0.13) and we did 
not observe an association between network topology and 
accuracy, our results may not be specific for planning perfor-
mance but may also be related to an overall slower informa-
tion processing speed. Why we did not find an association 
with task accuracy is currently unclear.

At the subnetwork level, we showed that our global results 
were mainly driven by inter-individual differences in FC of 
the DMN; both the topology of the DMN and FC between 
the DMN and the other RSNs (mainly the FPN) were associ-
ated with slower task performance. Because closer inspec-
tion showed that efficiency and clustering of the DMN were 
highly correlated (r = 0.84), the observed positive associa-
tions should instead be interpreted as an association between 
slower performance and increased within DMN FC. Indeed, 
when looking at total FC within the DMN, we observed a 
positive association (β = 0.25, Pbca = 0.02) with ToL reaction 
time. It is generally accepted that activity within the DMN is 
high when a subject is not engaged in any specific task and 
its activity is suppressed when external stimuli demand cog-
nitive engagement (Anticevic et al. 2012). Heightened DMN 
activity and higher FC between the DMN and other RSNs 
are also commonly associated with reduced cognitive perfor-
mance in brain disorder-related deficits (Putcha et al. 2016; 
Esposito et al. 2018; Anticevic et al. 2012). Our associations 

between slower ToL performance and increased within 
DMN FC and increased connectivity between the DMN 
and the other RSNs is therefore in line with these findings 
and adds to the growing body of literature that shows that 
inter-individual differences in FC of the DMN is associated 
with cognitive performance, even in normally functioning 
healthy subjects. It must be noted that these associations did 
not survive the multiple comparison correction, although the 
reported associations between performance speed at higher 
task load and within DMN FC and FC between DMN and 
FPN in our post-hoc analysis did pass the FDR correction.

In recent years, scientific awareness has increased for the 
low reproducibility of neuroimaging findings (Nichols et al. 
2017). Test–retest reliability is often used as a measure for 
reproducibility and generalizability. Although graph meas-
ures, such as global efficiency and Gcc, show fair-to-good 
test–retest reliability (Welton et al. 2015), a recent meta-
analysis showed that edges within a functional connectivity 
matrix—on the basis of which graph measures are calcu-
lated—show poor test–retest reliability (Noble et al. 2019). 
This low test–retest reliability influences statistical power 
and necessitates the inclusion of larger samples to reach the 
effect size of interest (Matheson 2019; Zuo et al. 2019). It 
is, however, important to note that test–retest reliability is 
not the same as validity and the meta-analysis showed that 
one of the main factors that influenced test–retest reliability 
was artefact correction (Noble et al. 2019); a necessary step 
during preprocessing to remove motion and other non-neural 
physiological noise from the data and avoid spurious results 
(Parkes et al. 2018). Moreover, although absolute values of 
intra-individual edges show low reproducibility (Noble et al. 
2019), inter-individual differences in the functional connec-
tome are stable across, days, months and even years (Horien 
et al. 2019; Finn et al. 2015; Miranda-Dominguez et al. 
2014), and its characteristics are uniquely associated with a 
particular individual across time (Horien et al. 2019). This 
provides justification for predicting a person’s phenotype, 
including cognitive functioning, on the basis of between-
subject variability of the functional connectome. Another 
part of reproducibility is transparent and complete report-
ing of the methods and results. To that end, we report the 
COBIDAS checklist in the supplementary material (Nichols 
et al. 2017). We will make the here reported data available 
to researchers upon reasonable request.

A limitation of this study is that we exclusively looked 
at resting-state FC to predict performance on the ToL and 
not—at task-based FC, i.e. during the execution of the ToL 
itself. This would have allowed us to look directly at the 
network characteristics associated with performance and 
to test our hypothesis of reduced ability to network inte-
gration when transitioning from rest to task. Furthermore, 
although conscious state may alter network topology, we 
did not include an objective measure to ensure wakefulness 

Fig. 4   Schematic representation of rest-to-task reconfiguration 
hypothesis. The figure shows three fictional subjects that transition 
from a resting-state to task state and show a concomitant increase in 
(global) efficiency. The top two subjects, already have such a high 
efficiency during resting-state that when the brain network needs to 
reconfigure to a more integrated state to meet task demands, effi-
ciency cannot surpass the ceiling (horizontal dotted lines) and leads 
to slower responses
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during the eyes-closed resting-state scan. A strength of this 
study is that we retrospectively recruited a relatively large 
number of healthy subjects and used stringent control for 
(micro)motion by excluding subjects with > 0.2 mm mean 
RMS displacement, denoising rs-fMRI for motion-related 
artifacts with ICA-AROMA, employing wavelet coherence 
to construct the connectivity matrices and adding RMS dis-
placement to the regression model.

In conclusion, we showed that higher global efficiency 
during rest and higher FC of the DMN with other RSNs and 
within itself is associated with slower planning performance. 
We tentatively postulate that due to ceiling effects individu-
als with a higher integrative network state during rest are 
less able to reconfigure to a more integrated state during 
task execution, leading to slower exchange across the brain 
network and slower behavioral responses.
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