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Unexpected Postprandial
Energy Expenditure and
Fuel Oxidation Responses
to Meals with Different
Macronutrient
Compositions
Dear Editor:

Xiong et al. (1) addressed the question of whether postprandial
profiles in energy expenditure (EE), substrate oxidation, and
plasma metabolites vary following isocaloric meals of differing
macronutrient distribution consumed by men classified as
normal weight (NW) or overweight/obese (OW). They also
tested the effect of exercise performed 90 min after the meals.
Their conclusion that many of the variables measured with
indirect calorimetry did not differ among meal types or between
NW and OW men contradicts several prior studies, which is
surprisingly overlooked in the discussion. Several of the cited
references report different patterns of postprandial EE and
substrate oxidation than what Xiong et al. found, but this is
not acknowledged. There are 5 specific concerns.

1. On the resting day trials, EE values following all
3 meals (high carbohydrate, high fat, high protein)
followed a similar 16–19% increase beginning immedi-
ately after meal consumption and persisting at the same
magnitude each hour for 3 h. According to the protocol,
EE was measured immediately before and after the 20-
min meal consumption period. How the postprandial
EE at “time 0” increased so quickly, when digestion
and absorption had presumably just begun, is hard to
explain. Perhaps the participants were stressed due to
blood collection or other testing performed? Additionally,
postprandial EE typically rises over the first hour and then
begins to return toward baseline over the next 2–3 h when
participants remain quietly resting (2–7), but it is unclear
why Xiong et al. (1) observed a rapid, prolonged step
change in EE.

2. Patterns for postprandial substrate oxidation did not
differ between meals, which disagrees with prior studies.
High-carbohydrate meals typically promote a transient
(1–3 h) increase in carbohydrate oxidation rate (with
corresponding reduction in fat oxidation), whereas after
a high-fat meal, carbohydrate oxidation typically declines
and fat oxidation remains stable or increases over 2–
4 h (2, 3, 5–9). Xiong et al. (1) report that after all
3 meal types, the respiratory exchange ratio (RER)
declined for both NW and OW participants, falling
progressively lower over time. At the 3-h measurement
on the resting trials, the mean value for RER for the OW
group was 0.70–0.72, which is unusually low under the
conditions described. A decline in RER would be expected

following the high-fat meal, but for the high-carbohydrate
meal, the reported results are opposite of what is expected.
The larger increase in serum insulin at 2 h after the high-
carbohydrate meal compared with the high-fat meal is
consistent with prior studies, but an increase in insulin
has been shown to suppress lipolysis and fat utilization
(10) rather than promote the increase in fat oxidation as
reported by Xiong et al. (1).

3. The EE values do not follow patterns expected for people
of different body sizes and are not internally consistent.
In the absence of endocrine or inflammatory conditions,
absolute EE in adults is positively correlated with body
size, particularly lean mass (7). However, on all 3 resting
trials, the NW and OW groups are reported to have the
same absolute EE values (kJ/h) even though they differ
by ∼20 kg in body mass and ∼8 kg in fat-free mass. In
contrast, on each of the 3 exercise trials, absolute resting
EE is ∼20% higher for the OW group compared with the
NW group. It is very difficult to reconcile how the groups
could be so consistent across the resting or the exercise
trials but different between those trial types, especially
given the order of trials.

4. The reported values for carbohydrate and fat oxidation
(g/h, Tables 2 and 3) appear incorrect. For example,
there is a 12–13% difference between the NW and OW
groups for baseline rates of substrate oxidation on the
resting day high-carbohydrate trial, yet the groups have
the same RER and their EE values differ only by 1 kJ/h.
These calculations are not congruent. Likewise, using the
equations cited in the article, the reported EE and RER
values can be used to determine the required rates of
VO2 (oxygen consumption) and VCO2 (carbon dioxide
production) and the corresponding rates of fat and
carbohydrate oxidation. For the NW group on the resting
high-carbohydrate trial, the baseline EE and RER are
reported as 313 kJ/h and 0.84, respectively. The estimated
VO2 and VCO2 to achieve those values would be 0.258
and 0.217 L/min, respectively. The corresponding rates
of fat and carbohydrate oxidation would therefore be
4.14 and 9.62 g/h, which are much different from what
is reported in Table 2. This pattern of mismatched results
persists throughout Tables 2 and 3. In Table 3, there are
clear rounding errors because the EE values at rest and
exercise do not agree with the corresponding delta values,
and converting the substrate oxidation delta values to
energy equivalents yields results that do not match the
reported delta EE values.

5. A minor but common occurrence is misstating the findings
of cited studies. For example, in the second paragraph
of the discussion, Xiong et al. (1) cite 2 studies (their
references 17 and 28) as being in agreement with their
findings. However, both of the cited studies showed
differences in substrate oxidation between meal types,
and the study described as testing British people was
performed on women in the United States.

The unexpected patterns of EE and fuel oxidation reported
by Xiong et al. (1) could be due to technical challenges
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over the study period, such changes in room temperature, a
change in inspired gas concentrations due to poor ventilation,
measurement error due to drift in the gas analyzer readings,
or lack of proper instrument calibration and quality control.
The lack of internal agreement with the data presented suggests
errors in calculations, missing data, and/or typographical errors.
In any case, these data require careful review. It would be helpful
for readers if the authors could provide a clear explanation for
why their results are so different from prior studies and confirm
that the data are presented correctly.
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