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ABSTRACT

Dilated cardiomyopathy (DCM) is one of the important causes of heart failure (HF). With 
the rapidly evolving technologies for gene analysis and tremendous advances in knowledge 
of HF genetics, the importance of genetic testing in DCM is currently highlighted. Several 
genetic variants causing DCM have been identified and this information is used for 
diagnosis, risk stratification and family screening of DCM patients. However, there are still 
several challenges in applying genetic testing to real clinical practice. In this review, we will 
summarize recent understandings in DCM genetics and provide an evidence-based practical 
guide to the use of genetic testing for DCM patients.
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INTRODUCTION

Heart failure (HF) is one of the most devastating condition with high mortality and morbidity 
that is still growing in number world widely as well as in Korea.1)2) Dilated cardiomyopathy (DCM) 
is a major cause of HF and leading indication for heart transplantation.3)4) Of these DCM patients, 
20–50% of patients are estimated to have a genetic predisposition5) and the utilization of genetic 
testing in cases of DCM has increased to understand the genetic basis of DCM and to provide 
advanced knowledge of disease pathogenesis and genetic consultation for families. However, the 
genetic study is not routinely used in clinical field since the genetic basis of DCM has not been 
fully elucidated and there are some challenges in making a genetic diagnosis in DCM.

In this review, we aimed to provide a practical and evidence-based guide to clinicians and HF 
specialists to the pragmatic use of genetic testing for DCM patients.

GENETIC CHARACTERISTICS OF DCM

DCM is commonly defined by the presence of left ventricular (LV) or biventricular dilatation 
and systolic dysfunction in the absence of abnormal loading conditions (hypertension, 
valve disease) or coronary artery disease sufficient to cause global systolic impairment.6) 
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DCM is classified as idiopathic (idiopathic dilated cardiomyopathy, or IDC) when all 
detectable causes have been excluded (except genetic causes). Potentially diagnosable 
causes of DCM include a variety of toxic, metabolic, or infectious agents. A diagnosis of 
familial dilated cardiomyopathy (FDC) is assigned when IDC occurs in at least 2 closely 
related family members.7) Family-based studies of first-degree relatives of patients with 
IDC have established that FDC can be identified in 20% to 50% of patients diagnosed with 
IDC by clinical screening of family members.5) However, there are still some questions 
on the practical use of genetic test in DCM8) and these challenges are mostly related to 
genetic heterogeneity, incomplete or age-related penetrance and variable expressivity DCM. 
Genetic heterogeneity for DCM means DCM is associated with wide variety of variants in 
many different genes and the genetic variants are often specific for one family only with 
extremely low recurrence rate of the same genetic variant in other families.8) Incomplete or 
age-related penetrance indicates the proportion of genetic variant carriers who exhibit DCM 
phenotype depends on age and who are healthy on cardiac examination may subsequently 
develop DCM.9)10) In addition, DCM is characterized by variable expression of disease in 
terms of disease onset, symptom severity and complication risk. Though there might 
be some correlation between genotype and phenotype, there can be large differences in 
relatives of the same family who carry the same genetic variation.11) Historically, rare genetic 
variants with low allele frequency had been considered potentially related with disease, but 
recently published researches found that the previously reported rare variants related with 
cardiomyopathies are not unique to DCM patients but also commonly encountered in general 
population.12)13) The multigenic models with combined effect of multiple genetic variants are 
also suggested in recent years to explain phenotypic variation and nonsegregation in DCM.14)

The genetic characteristics of DCM make it complicated to apply genetic tests in real clinical 
practice. However, this might be changed with development of new technologies and 
accumulation of large amount of genotypic and phenotypic data of DCM patients.

METHODS OF GENETIC STUDY IN DCM

A traditional method of candidate genetic variant testing, in which small number of 
specific variants or genes have been tested with Sanger sequencing, is now limitedly used 
for cascade genetic screening in close family members of DCM with known pathogenic 
or likely pathogenic gene variant. With development and advance of next-generation 
sequencing (NGS), targeted gene panels comprising genes (mostly from 50 to 100 genes) 
relevant to the DCM are mostly widely used in current practice for technical feasibility and 
the cost. However, the drawbacks of targeted gene panel test are that even though more and 
more genes have been added to the panel only about a dozen of the genes account for the 
majority of DCM, the rate of actionable variant detection is less than 20% in DCM probands 
and in this case it is not useful to find unknown genetic causality.15)16) As the price of NGS 
plunged, genome wide approaches such as whole-exome or whole-genome sequencing 
(WES or WGS, respectively) instead of targeted panel sequencing have been considered for 
diagnostic purposes on any patients irrespective of the disease in question. The advantage 
of this genome wide approach is that it is possible to find new genetic causality and 
there is a potential to identify modifying genes. In addition, no additional genetic tests 
are needed even when new genes have been identified to be associated with DCM or the 
patients are suspected to have a different disease. However, the interpretation would be 
more difficult since there must be a flood of variant with unknown significance which might 
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raise the possibility of false positive results and the risk of over-diagnosis.17) More studies 
are mandatory to find out which methods are better, but it is definitive that genome wide 
approaches will be replaced panel tests down the road.

GENETIC VARIANTS IN DCM

In contrast to many Mendelian disorders, genetic associations present in DCM showed 
variable penetrance and phenotypical manifestations might occasionally be presented 
only with an additional insult. The estimated frequency of pathogenic genetic variants was 
10–25% in unselected DCM patients and 20–40% in FDC patients.18)19) These genetic variants 
causing DCM include genes encoding a heterogeneous group of molecules that involve force 
generation and transmission, sarcomere integrity, cytoskeletal and nuclear architecture, 
electrolyte homeostasis, mitochondrial function, and gene transcription (Figure 1).

Table 1 showed the main genetic variants associated with DCM. Many of these genes have 
been also associated with other forms of cardiomyopathies (hypertrophic cardiomyopathy, 
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Figure 1. Main genes and protein associated with DCM. 
This schematic figure shows cardiomyocyte and cardiac sarcomere. The approximate cellular locations of main proteins with genes associated with DCM is indicated. 
DCM = dilated cardiomyopathy.

Table 1. Main genetic variants associated with DCM
Gene Protein Function Estimated prevalence 

in DCM (%)
Association with other 

phenotypes
TTN Titin Sarcomere 12–25 LVNC
LMNA Lamin A/C Nuclear membrane 4–6 HCMP, muscular dystrophy
MYH7 β-myosin heavy chain Sarcomere 4–10 HCMP, LVNC, RCMP
MYH6 α-myosin heavy chain Sarcomere 4 HCMP
MYPN Myopalladin Sarcomere, Z-disc 3–4
DSP Desmoplakin Desmosome 3–4 ARVC
RBM20 RNA-binding protein 20 RNA-binding protein, spliceosome 2–5 LVNC
TNNT2 Cardiac muscle troponin T type 2 Sarcomere 2–3 HCMP, LVNC, RCMP
SCN5A Sodium channel protein type 5, α subunit Ion channel 2–3 Brugada syndrome, LQTS
TPM1 α-tropomyosin Sarcomere 0.5–1 HCMP, LVNC, RCMP
ARVC = arrhythmogenic right ventricular cardiomyopathy; DCM = dilated cardiomyopathy; HCMP = hypertrophic cardiomyopathy; LQTS = long QT syndrome; 
LVNC = left ventricular non-compaction; RCMP = restrictive cardiomyopathy.



restrictive cardiomyopathy, LV noncompaction, and arrhythmogenic right ventricular 
cardiomyopathy).20) The genetic variants in TTN gene, which encodes sarcomeric protein 
titin, are the most common variants in DCM, ranging from 10% to 20% of cases.10)20-22) 
Several types of protein-truncating variants (nonsense, short insertion or deletion, or splice-
site variants) in TTN (TTNtv) have been identified. The clinical presentation and prognosis of 
TTNtv are generally similar to IDC, but the patients with TTNtv might have a better response 
to HF medical therapy than the IDC patients.23) The variants in LMNA gene, which encodes 
nuclear envelope protein lamin A/C, are the second most common variants related to DCM 
with a diagnostic yield of 5.5%.19) The LMNA-associated DCM commonly presented as DCM 
with conduction disorder and the risk of fatal arrhythmia and sudden cardiac death (SCD) is 
high (up to 46%).5)20)22) The cascade screening of LMNA-associated DCM before the onset of 
clinical disease, allows individuals to be monitored and timely intervened with a pacemaker 
or implantable cardioverter defibrillator (ICD).22)24)

Although there might be ethnic differences in genetic variations, there are extremely limited 
reports on genetic variations associated with DCM in Korean. In genetic diagnosis support 
program launched by Korea National Institute of Health, 88 patients with DCM completed 
the genetic studies.25) A targeted gene panel with 49 genes (ABCC9, ACTC1, ACTA2, ANKRD1, 
BAG3, CAV3, CRYAB, CSRP3, CTF1, DES, DMD, DSG2, DSP, EMD, EYA4, FHL2, FKTN, GATAD1, 
ILK, JUP, LAMA4, LAMP2, LDB3, LMNA, MYBPC3, MYH6, MYH7, MYPN, NEBL, NEXN, PLB1, 
PLN, PSEN1, PSEN2, RBM20, SCN5A, SDHA, SGCD, TAZ, TCAP, TMPO, TNNC1, TNNC2, TNNI3, 
TNNT2, TPM1, TTN, TTR and VCL) using NGS technology and Sanger sequencing for the 
confirmation were used in this program. The variants were most frequently found in 
sarcomere and cytoskeletal genes. Of the patients, 39.8% have pathogenic/likely pathogenic 
variants. Twenty-five known variants and 9 novel variants in TTN, MYH6, MYH7, TNNI3, 
ABCC9, TNNT2 and TAZ were identified in these patients. A 42% of the patients had at least 
one or more unclassified variants in candidate genes. The variants in MYBPC3 (6.8%), LMNA 
(5.7%), and MYH7 (5.7%) were most frequently identified. The prevalence of MYBPC3 variant 
was somewhat higher than previous report26) in this cohort. The prevalence of variant in TTN 
gene (5%) was relatively lower than the previous report.21) Developing a more comprehensive 
gene panel with novel DCM genes and using WES can improve the detection rate, and further 
studies in large sized cohort with detailed clinical information are needed to figure out the 
exact prevalence and pattern of genetic variation associated with DCM in Korean patients.

CLINICAL USE OF GENETIC TESTING IN DCM

To refine the diagnosis of DCM and identify the specific etiologies
The positive genetic testing in those with cardiomyopathies with unknown cause helps 
confirming the diagnosis and the etiology, which might result in specific recommendation 
for the treatment and family screening. The following example is a typical case. A male 
patient of 55-year-old with frequent ventricular tachycardia and LV ejection fraction of 
25% was suspected to have sarcoidosis since there was multiple regional wall motion 
abnormalities which did not match the coronary territory. However, 18-Fluoro-2-
deoxyglucose positron emission tomography revealed no abnormal uptake in myocardium 
and cardiac biopsy was also negative for sarcoidosis. The genetic analysis showed that 
he has pathologic variant in MYBPC3 (c.2067+1G>A, splice-donor variant) that has close 
correlation with hypertrophic cardiomyopathy or less commonly with DCM. The diagnosis 
of this patient must be cardiomyopathy related to MYBPC3 variant, in regardless of whether 
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his morphologic diagnosis is hypertrophic cardiomyopathy or DCM. He was enrolled for 
cardiac transplantation for refractory HF symptom and intractable ventricular arrhythmia 
and his family was screened for cardiomyopathy. In this case, genetic testing confirms the 
diagnosis of MYBPC3 related cardiomyopathy and if we had the result of genetic test earlier, 
he could avoid unnecessary tests such as 18-Fluoro-2-deoxyglucose positron emission 
tomography and endomyocardial biopsy. Furthermore, there are some rare but particular 
cardiomyopathies where the confirmed diagnosis can lead to a specific therapy. For example, 
enzyme replacement therapy can be applied for Fabry disease, liver transplantation or 
tafamidis for transthyretin-related amyloidosis27)28) and arginine and citrulline replacement 
for cardiomyopathy related to mitochondrial encephalomyopathy, lactic acidosis, and 
stroke-like episodes (MELAS) syndrome.29) However, in order to reach these specific etiologic 
diagnoses, patients often go through a bunch of specific tests sequentially for each disease, 
which is called diagnostic odyssey. Thus, a comprehensive genetic testing can be a time and 
cost-efficient way to get to the specific diagnosis in cardiomyopathies. Furthermore, a new 
category of hypokinetic non-dilated cardiomyopathy has been proposed since it is frequent 
to observe intermediate phenotypes that do not meet standard definition of DCM but has 
definite causative genetic variants related to DCM or significant myocardial abnormalities 
on cardiac MRI, radionuclide studies or endomyocardial biopsy.30) Though it is not sure yet 
whether early treatment in these patients is related with better prognosis, this highlights 
the importance of genetic testing for early diagnosis of DCM in preclinical state. In these 
aspects, most guidelines or positional statements recommend genetic testing for DCM with 
red flags such as neurosensory disorders, skin pigmentation, skeletal myopathy, elevation of 
creatinine kinase, conduction abnormalities, cardiac hypertrophy and so on.8)31-33)

For risk stratification and to guide a specific management: phenotype-genotype 
association
Positive genetic testing can provide prognostic value in a patient with DCM and help clinical 
decision making. Currently, ICD is recommended for primary prevention of SCD in DCM 
patients according to their HF symptoms and LV function, but the benefit is still unclear.34) 
The risk of ventricular arrhythmia varies according to the etiologies of DCM. For example, 
patients with HF caused by systemic hypertension might have lower arrhythmic risk while 
younger patients with some of the malignant genetic variants have a greater risk of SCD and 
more survival benefit from ICD implantation.35) This is an example of genotype-phenotype 
association in DCM. DCM related to lamin A/C (LMNA), desmin (DES), filamin C (FLNC) and 
RNA-binding protein 20 (RBM20) has been shown to be associated with ventricular arrhythmia 
while sodium channel protein type 5, alpha subunit (SCN5A) is commonly associated with 
atrial fibrillation but not with ventricular arrhythmia.36-44) Though titin (TTN) truncation 
variant may be in a compensated state and more likely to develop HF under conditions of 
stress such as pregnancy, alcohol, and cardiac toxic drugs,45-47) those with TTN truncation 
variant still have higher risk of ventricular arrhythmia.48)49) Thus, gene specific management 
recommendations such as early implantation of ICD could be considered in these patients. 
Moreover, it has been observed that DCM patients carrying sarcomeric rare variant or RBM20 
variant showed a more rapid progression toward death or heart transplantation, which 
implicates early consideration of more definitive treatment such as heart transplantation.42)50)51) 
Genotype-phenotype interactions are still an unmet issue and the effects of specific variants 
on the mechanisms of disease expression remain largely unknown. Extreme genetic 
heterogeneity and variable penetrance prohibited robust studies on genotype-phenotype 
correlation and the result of genetic testing does not strongly affect clinical management of 
DCM. Nevertheless, despite the complex genetic architecture of DCM, an increasing number 
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of actionable prognostic genotype-phenotype associations are emerging and the needs for 
preemptive treatment are increasing, for example, early ICD implantation for LMNA variant 
related DCM who has high life-threatening arrhythmic risk.24)52)

Facilitating familial screening
The 2018 Heart Failure Society of America guideline on genetic evaluation of 
cardiomyopathies24) and the 2018 American College of Medical Genetics and Genomics 
clinical practice resource on genetic evaluation of cardiomyopathies19) recommended 
obtaining comprehensive family history of at least 3 generations and phenotypic evaluation 
of all at-risk first degree relatives. Baseline clinical evaluation for phenotype screening 
is recommended for all at-risk family members and serial phenotypic screening for the 
emergence of cardiomyopathy is recommended for clinically unaffected at-risk family 
members whose genetic status is unknown.24) This screening test is recommended for 
two reasons: early diagnosis for intervention and refining initial diagnosis of proband 
by observing the disease in different phase. However, this clinical screening would be an 
expensive and impractical journey of screening test. For example, if a person found dead 
in his forties and the autopsy indicates he had DCM and the first manifestation was SCD. 
If the proband has 5 siblings and 3 children, they all should undergo constant screening 
tests for cardiomyopathy since the disease can develop later even though initial tests turn 
out negative. This is the problem of incomplete or age-related penetrance. In this case, 
genetic test can facilitate familial screening. If the genetic test of the proband has one or 
more significant disease-causing variants and the relatives do not carry the disease-causing 
variants, then they can be reassured, and follow-up screening would be no longer required 
as far as the initial screening tests are negative (negative cascade genetic testing).19)24) If the 
relative carries the disease-causing variant, then regular clinical follow-up is required in order 
to detect disease early, and improve the management.19)24)

However, several limitations should be appreciated.8) First, at present there are no tools 
to prevent disease development in disease-causing variant carriers. Second, even though 
there are several strategies recommended to take a benefit of an early diagnosis, such 
as avoidance of intensive and strenuous physical activities, avoidance of environmental 
hazards, drug therapy (e.g., angiotensin converting enzyme [ACE] inhibitor), precautious 
for pregnancy and prophylactic ICD implantation, it is important to note that prospective 
randomized clinical trials on their clinical efficacy are lacking. Third, the identification of 
the disease-causing variant may result in adverse psychological consequences as the previous 
psychological burden related to uncertainty might be replaced by the near-certainty of 
developing the disease and the risk of transmitting the disease to the offspring.8)53)54)

Pharmacogenetics of HF medical treatment
Though the mortality and morbidity of HF have improved during last 2 decades with the 
continuous progress in HF medical therapy, the HF physicians easily encounter the different 
individual response to medication and subsequent difference in the patient's prognosis. 
Modifier genes can aid in pharmacogenetic differences in the individual's response to 
disease or therapy. The common polymorphic variants of modifier genes include genes of the 
renin-angiotensin-aldosterone system and adrenergic system could influence drug response 
in cardiovascular disease in a variety of areas including HF, arrhythmia, hypertension, and 
dyslipidemia (Table 2).55)
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There is large variation in response to beta blocker therapy and the single nucleotide 
polymorphisms (SNPs) in the β1-adrenergic receptors (ADRB1), β2-adrenergic receptors 
(ADRB2), α-2C receptors (ADRA2C), and G-protein receptor kinase 5 (GRK5) genes partially 
explain the variable responsiveness to beta blocker. Regarding ADRB1 genes, the Arg389 
homozygotes showed better response to beta blocker therapy and Gly389 variant carriers 
showed no clinical benefit.56) The Ser49 homozygotes showed worse prognosis compared 
to Gly49 carriers and decreased sensitivity to beta blocker therapy as well as decreased β1 
receptor desensitization. The patients with a homozygous DD genotype of ACE gene which 
increase ACE activity and angiotensin II levels had a worse prognosis despite treatment with 
ACE inhibitors, especially in patients did not receive beta blocker therapy.57)58)

Current HF therapies can be tailored to an individual patient with recent advances of 
genetic information and pharmacogenetics, but challenge remains that; 1) clarifying the 
inconsistencies between gene-drug response associations which suggest complex genetic 
and environmental interaction, 2) building clinical data to support a clinical application 
of pharmacogenetics-guided therapy to improve HF prognosis, 3) more studies to find 
pharmacogenetics information focused on emerging HF therapies.

CONCLUSIONS

Substantial technical advances in genetic testing and improving understandings of genetic 
background of DCM make progress in the identification of genetic markers of DCM. 
However, the genetic background of DCM has not yet been fully elucidated and the diagnostic 
yield of DCM is not high because of the genetic heterogeneity, incomplete or age-related 
penetrance and variable expressivity. Nevertheless, identifying the genetic cause of DCM 
can provide significant implication for the diagnosis of DCM with specific cause, risk 
stratification, guiding specific treatment and facilitating family screening. For the routine use 
of genetic testing in real clinical practice, further researches are needed to clarify genotype-
phenotype relationship and to make sufficient evidence for the interpretation of genetic test. 
Recent advances in the genetics of DCM will ultimately improve the management of DCM 
patients and their families.
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Table 2. The main genetic variations associated with different pharmacological responses in HF
Protein (gene) Polymorphism Function Related medications
ACE (ACE) D/I D: higher ACE activity and angiotensin II level ACE inhibitors

β-blockers
Aldosterone synthase (CYP11B2) Promoter-344 T/C C: increased transcriptional activity and aldosterone 

production
ACE inhibitors

Aldosterone receptor antagonists
β1-adrenergic receptors (ADRB1) Arg389Gly Arg389: increased adrenergic signal β-blockers

ACE inhibitors
β2-adrenergic receptors (ADRB2) Gly49Ser Gly49: enhanced down regulation β-blockers

Gly16Arg Receptor down regulation β-blockers
Gln27Gly

α-2C receptors (ADRA2C) α-2C deletion Decreased uptake of norepinephrine β-blockers
G protein receptor kinase 5 (GRK5) Gln41Leu Desensitize β-adrenergic receptor signialing β-blockers
G protein β3 subunit (GNB3) C825T Increased α-adrenergic signialing, lower plasma renin ACE inhibitors
Nitric Oxide Synthase (NOS3) Asp298Glu Asp: associated with lower NOS3 activity ACE inhibitors
Endothelin 1 (EDN1) IVS-4 G/A Lys198Asn Unknown β-blockers
ACE = angiotensin converting enzyme; HF = heart failure.
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