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Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and
estuarine environments throughout the world, is a major food-borne pathogen that
causes life-threatening diseases in humans after the consumption of raw or undercooked
seafood. The global occurrence of V. parahaemolyticus accentuates the importance of
investigating its virulence factors and their effects on the human host.This review describes
the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease,
two type III secretion systems and two type VI secretion systems, which both cause both
cytotoxicity in cultured cells and enterotoxicity in animal models.We describe various types
of detection methods, based on virulence factors, that are used for quantitative detection
of V. parahaemolyticus in seafood. We also discuss some useful preventive measures
and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can
reduce, to some extent, the damage to humans and aquatic animals attributable to V.
parahaemolyticus. This review extends our understanding of the pathogenic mechanisms
of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its
human host. It should provide new insights for the diagnosis, treatment, and prevention
of V. parahaemolyticus infection.
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Vibrio parahaemolyticus, a kind of Gram-negative motile bacte-
ria inhabiting marine and estuarine environments throughout
the world (Wang et al., 2011a), is a major food-borne pathogen
that causes diarrhea primarily after the consumption of raw or
undercooked seafood (Bresee et al., 2002; Kawatsu et al., 2006).
To ensure its survival in varying environments, V. parahaemolyti-
cus has two different types of flagellar systems, allowing it to
adapt to constantly changing environments. The polar flagel-
lum is responsible for swimming (Broberg et al., 2011), whereas
the lateral flagella are closely associated with the swarmer cell
type transformation and biofilm formation (Figure 1). During
infection, V. parahaemolyticus uses the adhesion factors to bind
to the fibronectin and phosphatidic acid on the host cell, thus
releasing different effectors and toxins into the cytoplasm, caus-
ing cytotoxicity and serious diseases (Gode-Potratz et al., 2011).
V. parahaemolyticus is a multiserotype bacterium, containing at
least 12 different O antigens and more than seventy different
K antigens in its capsule. Consequently, serotyping has been
widely used to detect V. parahaemolyticus and to study its patho-
genesis (Xu et al., 2014). Among the serotypes, three serotypes
(O3:K6, O4:K68, and O1:K untypeable) are extremely virulent
and pathogenic to humans, and are regarded as the major agents
of food-borne diseases (Jones et al., 2012). To date, the genomes
of six strains from these different serotypes have been sequenced:
strains RimD221063 and AQ3810 from O3:K6, the strains AN-
5034, K5030, and Peru-466 from O4:K68, and the strain Vp10329
from O4:K12 (Makino et al., 2003; Broberg et al., 2011; Gonzalez-
Escalona et al., 2011). The first fully sequenced and annotated

genome of strain RimD221063 has been used as the reference
sequence in cell biological and pathogenetic analysis of numerous
clinical and environmental V. parahaemolyticus strains (Makino
et al., 2003).

DISEASE CAUSED BY V. parahaemolyticus
In 1950, an first outbreak of disease caused by V. parahaemolyticus
in the city of Osaka city of Japan was first reported, with acute
gastroenteritis in 272 individuals, 20 of whom died (Fujino et al.,
1953; Daniels et al., 2000). Since then, 802 outbreaks of food-
borne diseases have been reported in 13 of the coastal provinces of
eastern China, causing 17,462 individuals to become ill (Wang
et al., 2011a). V. parahaemolyticus (40.1%) accounted for the
greatest number of these outbreaks and cases (Liu et al., 2006;
Chao et al., 2010). Similar diseases have also been frequently
reported in many countries in Asia, Europe, Africa, and in
the Americans (DePaola et al., 2000; Alam et al., 2002; Lozano-
León et al., 2003; Martinez-Urtaza et al., 2005; Su and Liu, 2007;
Chao et al., 2009). V. parahaemolyticus infection is also dissem-
inated through open wounds, and often causes septicemia in
severe cases (Wang et al., 2012). Recently, V. parahaemolyticus
has been reported to be the major agent of acute hepatopan-
creatic necrosis syndrome afflicting penaeid shrimp, and has
seriously damaged the shrimp aquaculture industry (Tran et al.,
2013).

The food poisoning caused by V. parahaemolyticus usually
occurs in summer (from June to October), and is predominantly
associated with different kinds of seafood, including crab, shrimp,
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FIGURE 1 | Structures and virulence factors of V. parahaemolyticus.

V. parahaemolyticus contains two T3SS systems, two T6SS systems, and
expresses many toxins, including TLH, TRH, and TDH. MAM7 is responsible
for its initial attachment to host cells. This bacterium has two different
flagellar systems, allowing it to adapt to changing environments. The polar
flagellum is responsible for swimming, whereas the lateral flagella are
closely related to the swarmer cell transformation and biofilm formation.

shellfish, lobster, fish, and oysters (Lee et al., 2008; Nakaguchi,
2013; Jones et al., 2014; Cruz et al., 2015; Letchumanan et al.,
2015). Among the whole range of seafood, shellfish is regarded
as a high-risk food because it is infested with large populations of
bacteria, including V. parahaemolyticus, to levels higher than those
in the surrounding water (Peng et al., 2010; Anonymous, 2012).
Once consumers eat undercooked, contaminated seafood, illness
is inevitable (Rahimi et al., 2010). The typical clinical symptoms of
V. parahaemolyticus poisoning are acute dysentery and abdominal
pain, accompanied by diarrhea, nausea, vomiting, fever, chills,
and water-like stools (Yeung and Boor, 2004; Shimohata and
Takahashi, 2010). The feces of patients are mixed with mucus
or blood, and their blood pressure decreases dreamily, leading
to shock (Broberg et al., 2011). Some severely affected patients
become unconsciousness, show recurrent convulsions, become
pale or cyanotic, and even death (Nair et al., 2007). The dis-
tinct pathological changes in patients include the mild erosion of
the jejunum and ileum, gastric inflammation, and internal organ
damage (liver, spleen, lung congestion, etc.). To cure V. para-
haemolyticus infection effectively, common treatment methods
include antibiotics and oral rehydration. To avoid intense ill-
ness, it is recommended that some subpopulations, including

patients suffering severe physical or immunodeficiency diseases,
do not consume the seafood (Blake et al., 1979; Hlady and Klontz,
1996).

PATHOGENESIS OF V. parahaemolyticus
HEMOLYSIN, UREASE, AND PATHOGENESIS
Thermostable direct hemolysin (TDH) and TDH-related
hemolysin (TRH) are two major virulence factors of V. para-
haemolyticus, and are closely related to its pathogenicity (Table 1).
They have similar hemolytic activity in vitro and cause the lysis of
human erythrocytes in excessively saline medium (Sakazaki et al.,
1968; Miyamoto et al., 1969; Hondo et al., 1987; Honda et al.,
1988). An epidemiological investigation indicated that TDH is
one of the major pathogenic factors in V. parahaemolyticus, and is
prevalent in almost all (95%) of clinical isolates. When secreted,
it can lyse red blood cells and produces a special hemolysis ring
on Wagatsuma blood agar plates (Nishibuchi et al., 1992; Honda
and Iida, 1993; Liu, 2003). This is also known as “Kanagawa
phenomenon” and is reported to be commonly associated with
gastroenteritis (Miyamoto et al., 1969; Joseph et al., 1982). Previ-
ous reports have shown that two enzymatic activities of TDH are
associated with bacterial pathogenesis. One is a hemolytic activity
that is independent of lipid rafts. TDH binds to the membranes of
red blood cells or host cells, and forms a pore on the membrane
surface, ultimately leading to the permeation of the colloids of red
blood cells (Matsuda et al., 2010). The other enzymatic activity is
its cytotoxicity, TDH causes cells toxicity and forms a channel in
the cell membrane, which induces an increase in the extracellu-
lar Ca2+ concentration and Cl− secretion (Matsuda et al., 2010).
When the osmotic pressure of the cell exceeds the upper limit for
cell self-regulation, pathological and morphological changes were
occur in the cell, resulting in cell expansion and even death. Like
TDH, TRH causes similar levels of hemolysis in vitro (Takahashi
et al., 2000; Ceccarelli et al., 2013).

Thermolabile hemolysin (TLH) is another hemolysin of V.
parahaemolyticus, encoded by the tlh gene, and also causes the
lysis of red blood cells (Shinoda et al., 1991; McCarthy et al., 1999;
Wang et al., 2013b). TLH is expressed by all clinical and environ-
mental strains of V. parahaemolyticus (Bej et al., 1999), and the
gene is significantly upregulated under simulated intestinal infec-
tion conditions (Gotoh et al., 2010; Table 1). Besides, TLH shows
typical lecithin-dependent phospholipase activity, and it also lyses
human erythrocytes (Broberg et al., 2011). Therefore, it may play
a key role in the process of human infection. Recent, studies have
demonstrated that all three types of cells (Hela, Changliver, and
RAW264.7 cells) display signs of severe cytotoxicity when treated
with the purified TLH protein, and its effects are dose and time-
dependent (Wang et al., 2012). Therefore, TLH may have similar
biological functions similar to these of the TDH and TRH tox-
ins, playing a key role in the V. parahaemolyticus infection. Early
studies showed that urease induces the accumulation of intesti-
nal fluid in the rabbit ileal loops test and causes gastrointestinal
inflammatory lesions, confirming that urease is an important vir-
ulence factor in trh+ V. parahaemolyticus strains (Cal and Ni, 1996;
Osawa et al., 1996). Urease is encoded by the Uh gene, and is gen-
erally involved in the formation of ammonia during the process
of infection (Levin, 2006).
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Table 1 | List of known virulence factors of V. parahaemolyticus.

Effectors Gene Biological activity Effects on host cells

Toxins

TDH tdh Forms pores on cells Cytotoxicity and enterotoxicity

TRH trh Forms pores on cells Cytotoxicity and enterotoxicity

TLH tlh Hemolysin activity or? Cytotoxicity and ?

T3SS1 effectors

Vop Q vp1680 Forms pores and binds V-ATPase Autophagy, cell lysis, MAPK activation, IL-8 secretion

Vop S vp1686 Inhibition of Rho by AMPylation Cells rounding, phagocytes invasion

VPA0450 vpa0450 Phosphatidylinositol phosphatase Membrane blebbing, destabilization

Vop R vp1683 Binds PIP2 in membrane Promoting refolding of T3SS effectors

T3SS2 effectors

Vop A/P vpa1346 Inhibition of MAPK by acetylation of MKK Blocking of phosphorylation and ATP binging

Vop T vpa1327 Ras ADP-ribosylation Cytotoxicity and yeast growth inhibition

Vop L vpa1370 Actin nucleation Stress fibers formation and cell shape changing

Vop C vpa1321 Activation of Rac and CDC42 by deamidation Invasion of non-phagocytic cells

Vop V vpa1357 Actin binding and bundling Enterotoxicity and blunting of villi

Vop Z vpa1336 Inhibition of TAK1 and downstream MAPK and NF-kB Enterotoxicity and colonization

VPA1380 vpa1380 Cysteine catalysis dependent on IP6 Toxicity in yeast

T3SS1 INDUCES AUTOPHAGY AND CYTOTOXICITY
The type III secretion systems (T3SSs) are transmembrane appara-
tuses formed by the multicomponent protein complexes (Cornelis,
2006), that allow effectors or virulence proteins to be injected
directly into the cytoplasm of the host cell (Dean, 2011; Chat-
terjee et al., 2013). There are two different T3SS systems in V.
parahaemolyticus, designated T3SS1 and T3SS2 (Makino et al.,
2003). T3SS1 is located on chromosome I, is encoded by the
first pathogenicity island, and is present in almost every clin-
ical and environmental V. parahaemolyticus strains (Paranjpye
et al., 2012). T3SS1 gene expression is regulated by three exoen-
zyme S synthesis proteins (ExsC, ExsD, and ExsE) and heat-stable
nucleoid structuring protein (H-NS; Kodama et al., 2010; Zhou
et al., 2010). Several studies have shown that T3SS1 is cytotoxic,
causing autophagy, cell rounding, and finally death (Burdette
et al., 2008; Hiyoshi et al., 2010; Okada et al., 2010; Ritchie et al.,
2012; Zhang and Orth, 2013). To date, four effectors have
been determined in T3SS1 (Table 1): Vop Q, Vop S, VPA0450,
and Vop R (VP1638), correspondingly (Broberg et al., 2010;
Luong et al., 2010; Salomon et al., 2013a; Sreelatha et al., 2013;
Figure 2).

The effector Vop Q (Park et al., 2004a) is necessary for the for-
mation of autophagic vesicles in the process of V. parahaemolyticus
infection (Matsuda et al., 2012). Many researchers have confirmed
that the V. parahaemolyticus strain in which T3SS1 is deleted
can be easily engulfed and degraded by macrophages, causing
the apoptosis of the infected cells (Burdette et al., 2009; Sree-
latha et al., 2013). These results indicate that T3SS1 effectively
inhibits the ability of the host cells to phagocytose V. para-
haemolyticus (Jegga et al., 2011). Vop Q is also reported to be
an activator of the JNK, p38, and MAPK pathways in Caco-2

cells, and interacts with the C subunit of the vacuolar H+-ATPase
(Matlawska-Wasowska et al., 2010; Porta et al., 2011), leading to
the secretion of the chemokine interleukin 8 (IL-8; Shimohata
et al., 2011).

Vop S, another effector secreted by T3SS1, causes the death
of macrophages by inhibiting NF-κB activity. Vop S contains a
Fic domain at its C terminus, and also prevents actin aggregation
and rapid re-aggregation by AMPylating the Rho family GTPases
(Casselli et al., 2008; Yarbrough et al., 2009; Luong et al., 2010),
resulting in the rounding of the infected cells (Kim and Jo, 2013).
This change allows the pathogen to suppress the phagocytosis of
infected cells by macrophages (Higa et al., 2013). Vop S also has
exerts certain cytotoxicity effects on Hela cells.

VPA0450 is a typical phosphatidylinositide phosphatase, hydr-
olyzing phosphatidylinositide (4, 5)-bisphosphate (PI(4,5)P2) to
D5 phosphate (PI4P; Krauss and Haucke, 2007). The resulting
product, PI4P, disrupts the association between the membrane and
the actin cytoskeleton, leading to membrane blebbing (Broberg
et al., 2010). VPA0450 induces cell rounding and lysis by destroying
the dynamics of the plasma membrane cytoskeleton, and it may
play a complementary role with other effectors in the infection
process (Broberg et al., 2010).

Vop R is encoded by the vp1683 gene and is secreted by T3SS1. It
also contains a similar phosphoinositide-binding domain (BPD)
that is conserved in diverse type III effectors of both plant and
animal pathogens (Salomon et al., 2013a). Vop R localizes to the
host membrane by its N-terminal domain and specifically binds
the phosphoinositide on the host cell. It may also play a key role
in promoting the refolding of Type III effectors after their delivery
into the host cells (Geissler, 2012; Hicks and Galan, 2013; Salomon
et al., 2013a).
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FIGURE 2 | Activities ofT3SS1 effectors in cultured intestinal epithelial

cells. Vop Q inhibits the MAPK pathway by acetylating MKK, and Vop S
inhibits Rho by AMPylation, leading to cells rounding and phagocytes
invasion. VPA0450 hydrolyzes phosphatidylinositide (4, 5)-bisphosphate

(PI(4,5)P2) to D5 phosphate (PI4P) and disrupts the association between the
membrane and the actin cytoskeleton, leading to membrane blebbing. Vop R
binds to PIP2 in the membrane, thus promoting the refolding of the T3SS
effectors.

T3SS2 MEDIATES ENTEROTOXICITY AND CYTOTOXICITY
T3SS2, a newly identified type of secretion system, is encoded by
a pathogenicity island (VP-PAL) on chromosome II, and is found
primarily in clinical isolates (Meador et al., 2007). T3SS2 has been
associated with enterotoxicity in the rabbit ileal loop model, infant
rabbits and piglets (Makino et al., 2003; Paranjpye et al., 2012), and
has also been shown to cause cytotoxicity in intestinal cell lines
such as Caco-2 cells and HCT cells (Park et al., 2004b; Hiyoshi
et al., 2010; Ritchie et al., 2010; Figure 3). Seven known effectors
have so far been identified and characterized in T3SS2 (Table 1):
Vop C, Vop T, Vop Z, Vop A/P, Vop V, Vop L, and VPA1380 (Trosky
et al., 2004; Kodama et al., 2007; Liverman et al., 2007; Yu et al.,
2011; Zhang et al., 2012; Calder et al., 2014).

Vop A/P (VPA1346) is an acetyltransferase with 55% homology
to Yop J of Yersinia spp. (Makino et al., 2003), which blocks the
MAPKs signaling pathway by inhibiting the start and biological
activity of mitogen-activated protein kinase (Trosky et al., 2004),
thereby suppressing cell division via a new mechanism. Vop L
(VPA1370) contains three Wiskott Aldrich homology 2 (WH2)
domains and a C-terminal domain (VCD; Namgoong et al., 2011;
Yu et al., 2011), which generally induces the formation of polarized
actin fibers and accelerates the gathering of actin filaments by
binding to actin monomers (Liverman et al., 2007). Notably, Vop
L may provide a favorable microenvironment in which bacteria
can replicate, thereby enhancing the uptake and invasion of V.
parahaemolyticus.

Vop C disturbs the actin network and causes bacterial inva-
sion by deamidating glutamine 61 in both Rac and CDC42, which
occurs in their switch regions, resulting in the constitutive activa-
tion of the Rho family GTPases (Friebel et al., 2001; Zhang et al.,
2012). The actin cytoskeletons of infected cells are further rear-
ranged with the modification of these GTPases, thereby prompting

the infected cells to engulf the bacteria (Zhang et al., 2012). Vop
T modifies the small G protein with ADP-ribose using NAD+ as
the substrate in vivo and in vitro (Fraylick et al., 2002; Barbieri and
Sun, 2004). Vop T inhibits yeast cell growth and is cytotoxic for
Caco-2 and HCT-8 cells (Kodama et al., 2007).

Vop V has long repeat (LR) regions in its N- and C-terminal
domains, composed of three types of repeated sequence units. It
predominantly induces the enterotoxicity observed in the rabbit
ileal loop model (Hiyoshi et al., 2011), and binds directly to F-
actin, a polymeric form of actin, leading to the accumulation of
F-actin filaments beneath the bacterial microcolonies in Caco-2
cells (Haglund and Welch, 2011). All the above results indicate
that F-actin binding is required for the enterotoxicity caused by
Vop V (Hiyoshi et al., 2011). However, the molecular mechanism
of this enterotoxicity is still unclear, so further investigations are
needed for underlying its crucial role during infection.

Vop Z, a novel effector secreted by the T3SS2 system, is responsi-
ble for fluid accumulation, cell detachment, and epithelial damage
(Zhou et al., 2013). Intestinal colonization by V. parahaemolyti-
cus and fluid accumulation are reduced when Vop Z is deleted
(Zhou et al., 2013). Vop Z inhibits the activation of the MAPK
and NF-κB signaling pathways by inhibiting the activation of
the TAK1 kinase, resulting in a marked lesion, disrupting on
the integrity of the tissue (Kajino-Sakamoto et al., 2008; Zhou
et al., 2013). Therefore, it plays a critical role in the virulence of V.
parahaemolyticus.

VPA1380 was recently identified as a critical effector of V. para-
haemolyticus translocated by T3SS2 (Hiyoshi et al., 2011). It was
detrimental to and exerted a toxic effect on yeast growth when it
was expressed as an enhanced green fluorescent protein (eGFP)
fusion protein, when yeast was used as a heterologous eukary-
otic system (Calder et al., 2014). Bioinformatic analyses revealed
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FIGURE 3 | Activities of the T3SS2 effectors in intestinal epithelial cells

during infection. Vop C deamidates small GTPases such as Rac and
CDC42, inducing bacterial invasion. Vop L dimerizes through its VCD
domain, thus promoting actin bundling. Vop A inhibits MAPK by acetylating
of MKK. Vop V binds directly to F-actin through its long repeat (LR) and

C-terminal domain, forming the stress fibers. Vop T modifies Ras with
ADP-ribose, and triggers yeast growth inhibition and cytotoxicity in
intestinal cells. Vop Z inhibits the activation of the MAPK and NF-κB
pathways by repressing of TAK1 kinase. VPA1380 catalyzes it targeted
substrate.

that VPA1380 contains several inositol hexakisphosphate (IP6)-
inducible cysteine protease domains, which are known to occur
in large known toxins produced by other bacteria (Prochazkova
and Satchell, 2008; Pruitt et al., 2009). VPA1380 is reported to be a
typical cysteine protease, catalyzing its targeted substrate (Calder
et al., 2014), so VPA1380 is possibly involved in the invasion of
host cells by V. parahaemolyticus.

T6SS AND PATHOGENESIS
Recently, a type VI secretion system (T6SS) has been identified,
and detected in many Gram-negative bacteria. It is a macromolec-
ular machine consisting of a multicomponent protein complex
(Ho et al., 2014). T6SS is responsible for delivering a series of toxic
effector proteins into the cytoplasm of eukaryotic cells, allow-
ing the effectors to disrupt the innate immune system and to kill
the host cells (Coulthurst, 2013). The T6SS organelle is function-
ally analogous to T3SS, and may have a critical function in the
process of bacterial infection (Salomon et al., 2013a). Interest-
ingly, V. parahaemolyticus contains two different T6SS systems,
designated T6SS1 and T6SS2 (Boyd et al., 2008; Yu et al., 2012).
T6SS1 is encoded on chromosome I, is predominantly expressed
in clinical isolates, and it is most active under warm conditions
(O’Boyle and Boyd, 2014). T6SS2 has been found in both clin-
ical and environmental isolates, is encoded on chromosome I,
and is active under low-salt conditions (Salomon et al., 2013b). A
homology analysis indicated that the T6SSs are present in most
different Vibrio species, including V. parahaemolyticus, V. cholerae,
V. harveyi, and V. alginolyticus (Pukatzki et al., 2006). Recently
published medical research articles have reported that both T6SSs

are necessary for the adhesion of V. parahaemolyticus to cells
and are involved in intracellular trafficking and vesicular trans-
port (Boyd et al., 2008; Yu et al., 2012; Salomon et al., 2013b).
Only a few effectors of T6SS from V. parahaemolyticus have so far
been reported. In recent research, two T6SS effectors that mediate
its antibacterial activity were identified using proteomic, bioin-
formatic, and genetic analyses (Salomon et al., 2014). VP1388
is encoded within the T6SS1 gene cluster, whereas VPA1263 is
encoded on chromosome II (Salomon et al., 2014). The two effec-
tors contain the conserved MIX motif that is found in proteins
with predicted cytotoxic domains, including VgrG and PAAR-
repeat-containing protein (Pukatzki et al., 2007; Shneider et al.,
2013).

DETECTION METHODS BASED ON VIRULENCE FACTORS
KANAGAWA TEST
Thermostable direct hemolysin is a virulence factor that con-
tributes to the formation of a distinct hemolytic ring on blood
cells agar plates in high concentrations of salt with D-mannitol as
the carbon source, known as the “Kanagawa phenomenon” (KP;
Honda and Iida, 1993; Nishibuchi and Kaper, 1995). In the past,
the KP has been regarded as an important indicator in the identifi-
cation of the pathogenic and non-pathogenic V. parahaemolyticus
strains (Zhang and Austin, 2005; Ono et al., 2006). However, the
detection of V. parahaemolyticus based on KP is time-consuming,
labor intensive, and unreliable, and involves the evaluation of large
numbers of samples (Park et al., 2004c; Wang et al., 2011b). There-
fore, the development of specific, sensitive, and rapid methods to
detect this bacterium is crucial for public health.
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PCR DETECTION
Polymerase chain reaction (PCR) assays are being increasingly
used to identify and distinguish specific pathogenic bacteria. Mul-
tiplex PCR protocols targeting the toxR, tlh, tdh, trh, and fla
genes have been developed to detect the total and pathogenic V.
parahaemolyticus from clinical and environmental samples (Rosec
et al., 2009; Izumiya et al., 2011; Wang et al., 2011a; Hossain et al.,
2013). Recently, a serogroup-O-specific PCR assay was used to
detect and identify V. parahaemolyticus pathogens in clinical and
environmental samples (Chen et al., 2012). Before 2012, multi-
plex real-time PCR with different fluorescent probes was used to
detect total and pathogenic V. parahaemolyticus in different kinds
of seafood (Ward and Bej, 2006; Nordstrom et al., 2007; Tyagi
et al., 2009; Robert-Pillot et al., 2010). Garrido used multiplex
real-time PCR to detect pathogenic V. parahaemolyticus in water
and food samples. The limits of detection for this method were
0.24 CFU/g for tdh, and 0.44 CFU/g for trh1, and 0.52 CFU/g for
trh2 (Garrido et al., 2012). A quantitative PCR method combined
with propidium monoazide has also been used to quantify the
viable V. parahaemolyticus cells in raw seafood (Zhu et al., 2012).
In general, detection methods based on PCR are quick, high accu-
racy and sensitivity, but the main disadvantages of that is badly
controllability, and the PCR system often need to be optimized to
gain the best detection results (Letchumanan et al., 2014).

Loop-mediated isothermal amplification (LAMP) is a spe-
cific and highly sensitive technique for DNA amplification under
isothermal conditions with the specific primers, and has been
widely used to detect pathogenic bacteria in food (Zhao et al.,
2011; Qi et al., 2012). LAMP targeting the tlh, tdh, or toxR
genes of V. parahaemolyticus is used for the sensitive and rapid
detection of V. parahaemolyticus (Yamazaki et al., 2008; Nemoto
et al., 2009; Chen and Ge, 2010). A novel LAMP in situ detec-
tion method was reported for the rapid detection of food-borne
V. parahaemolyticus strains, which has greater specificity and
is less time-consumption than regular LAMP and other PCR-
based methods (Wang et al., 2013a). Recently, Zeng et al. (2014)
developed a novel method that combines the LAMP assay with
immunomagnetic separation to detect V. parahaemolyticus in raw
oysters. The limit of detection was 0.19 CFU/g, thus providing a
platform for the comprehensive detection of pathogenic strains
using a virulence- gene-specific LAMP assay (Zeng et al., 2014).
Although LAMP is an effective and economic method to rapidly
detect the pathogenic bacteria at one temperature without the
need of cycling, however, similar to PCR, the methods of targeted
separation and enrichments severally affected the application of
LAMP.

IMMUNOLOGICAL DETECTION
Immunological methods based on monoclonal antibodies are
often used for the rapid detection and quantification of
food-borne pathogens in seafood. Sandwich enzyme-linked
immunosorbent assays based on monoclonal antibodies directed
against TDH, TLH, and TRH have been used to identify these
proteins in pathogenic clinical isolates of V. parahaemolyti-
cus (Honda et al., 1989, 1990; Kumar et al., 2011; Sakata
et al., 2012). However, these monoclonal antibodies do not
detect all clinical and environmental V. parahaemolyticus strains

because they cross-react with other bacteria (Prompamorn et al.,
2013). An immunochromatographic assay was developed to
detect the TDH hemolysin produced by V. parahaemolyticus
in enrichment cultures from stool specimens (Kawatsu et al.,
2006).

Today, recombinant antibody fragments, such as single-chain
variable fragments (scFvs), have become an essential tool for
research, diagnostic, and therapeutic purposes (Wang et al.,
2014a). In 2012, our group has screened a high affinity scFv
antibody successfully against a pathogenic factor TLH of V.
parahaemolyticus by phage display. The screened scFv-LA3 anti-
body is specific to TLH antigen, and it is active against Vibrio
cells possessing TLH (Wang et al., 2012). Our results indicated
that scFv-LA3 recognizes specifically TLH produced by V. para-
haemolyticus (Wang et al., 2014a), and it can be used as an
antibody reagent to detect the TLH producing V. parahaemolyti-
cus strains in seafood (Wang et al., 2012). Compared to the
traditional full length Ig G antibody, the sensitivity of immuno-
logical method based on scFv is unsatisfactory, and the fact that
current scFv antibodies have the poor stability, low solubility,
and affinity seriously limits their diagnostic and clinic applica-
tion. To improve the stability and solubility of scFv antibody,
researchers have developed an Skp co-expressed system to express
a functional scFv protein, and the Skp co-expressed scFv showed
high solubility and binding activity to antigen TLH (Wang et al.,
2013b).

OTHERS METHODS
In addition to the methods discussed above, many detection meth-
ods based on biochemistry and biophysics have been used to
detect and identify V. parahaemolyticus strains. As early as Su
et al. (2005), a chromogenic medium was used for the selective
and specific detection of V. parahaemolyticus strains. Hayashi et al.
(2006), developed a novel method for the early detection of viable
and TDH- or TRH-producing V. parahaemolyticus in seafood
using soft-agar-coated filter combined with multiplex PCR, which
identifies seafood samples contaminated with V. parahaemolyti-
cus within 2 days. A new enrichment broth containing the bile
salt, sodium taurocholate (ST broth) was used for improving the
isolation and detection of pathogenic V. parahaemolyticus from
seafood (Raghunath et al., 2009). A novel light-scattering sen-
sor based solid agar plate has also been used for the real-time
detection and identification of V. parahaemolyticus, V. vulnifi-
cus, and V. cholerae colonies (Huff et al., 2012). Dual-color flow
cytometry was developed for the simultaneous detection of V.
parahaemolyticus and Salmonella typhimurium in real samples.
In this system, fluorescent quantum dots (QDs) labeled aptamers
recognize the two bacterial species, and the sensitivity of detec-
tion was increased when QDs nanoparticles was used (Duan et al.,
2013). Recently, Xiang et al. (2013) developed a real-time resis-
tance measurement based on four different methods of detection
V. parahaemolyticus by targeting the lecithin-dependent hemolysin
gene: including LAMP, electrochemical ion bonding (crystal vio-
let and Mg2+), real-time monitoring, and derivative analysis. The
limit of detection was 10 CFU/mL, and the results revealed that
this method is more accurate, sensitive, and specific than culture
methods.
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PREVENTION AND CURES BASED ON VIRULENCE FACTORS
ANTIBODY NEUTRALIZATION AND INHIBITION
Given the widespread contamination by V. parahaemolyticus and
because it is strongly pathogenic to humans, it is very important to
prevent and treat the diseases caused by this bacterium. However,
to date, no effective measures are available to treat the diseases
caused by V. parahaemolyticus, and the prospect of developing
such therapies is still not good. Excitingly, antibody molecules
have become extremely potent candidates for therapeutic applica-
tions, and have been developed into an important class of drugs for
the treatment of numerous infectious diseases (Hagemeyer et al.,
2009). An scFv antibody directed against the pathogenic factor
TLH of V. parahaemolyticus effectively neutralized the cytotoxic-
ity of V. parahaemolyticus TLH, thus exerting a protective effect
on various types of TLH-infected cells (Wang et al., 2012). In V.
parahaemolyticus, the needle complex is formed by the needle sub-
unit protein (VP1694), which contains only 88 amino acids, and
its function only relies on a single polymerized protein (Tamano,
2000; Blocker et al., 2008). The needle subunit may be a useful tar-
get protein for screening an effective antibody or inhibitor that can
prevent the formation of the needle complex (Davis and Mecsas,
2007). A specific and high-affinity scFv antibody directed against
VP1694 (needle subunit) has been prepared, and may play an
important role in inhibiting the assembly of T3SS (Wang et al.,
2014b). Significantly, the above results showed that the specific
and functional scFv antibodies against target antigens of V. para-
haemolyticus have been prepared successfully, and it provides a
solid foundation for the immunological diagnosis and prevention
of the diseases caused by V. parahaemolyticus.

INHIBITOR-MEDIATED TARGETED THERAPIES
Type III secretion systems is conserved among different bacterial
pathogens, and it may be an important potential therapeu-
tic target (Gauthier et al., 2005; Mota et al., 2005). Like other
Gram-negative pathogenic bacteria, V. parahaemolyticus contains
a contact-dependent T3SS, which delivers several effectors into
the cytosol of infected host cells (Makino et al., 2003; Park et al.,
2004a; Sun et al., 2008; Worrall et al., 2011). The above descrip-
tion shows that T3SS might be a useful target for screening an
effective inhibitor that can prevent the formation of the needle
complex.

Many small chemical molecules have been shown to block
assembly of T3SS, and some compounds broadly inhibit T3SS
in many other bacterial pathogens (Izore et al., 2011). A high-
throughput assay was developed to screen for a specific tran-
scriptional inhibitor of the virulence factors in enteropathogenic
Escherichia coli, to block the promoters of virulence associated
factors and thus inhibit their transcription (Gauthier et al., 2005).
Sulfonyl amino benzanilides and salicylidene anilides have been
shown to inhibit the expression of T3SS- related genes, disrupting
different pathways in enteropathogenic E. coli (Kauppi et al., 2003;
Gauthier et al., 2005). Benzimidazoles also have also been shown
to inhibit the transcription factors LcrF of Yersinia pseudotuber-
culosis and ExsA of Pseudomonas aeruginosa (Garrity-Ryan et al.,
2010; Grier et al., 2010). Salicylidene acylhydrazide and thiazolidi-
none have been used to repress the formation and assembly of the
needle complex, and to block the secretion of effectors in many

bacterial pathogens, including Shigella, Yersinia, Chlamydia, and
Salmonella spp. (Negrea et al., 2007; Veenendaal et al., 2009; Aiello
et al., 2010). Other studies have suggested that thiazolidinones are
multifaceted therapeutic agents for inhibiting bacterial infection
(Dayam et al., 2006). In summary, the prevention and control of
the diseases caused by V. parahaemolyticus mainly involve the use
of antibiotics, or chemical molecules/drugs, but these inhibitors
based on chemical molecules often lead to bacterial drug resis-
tance or environmental residues of drug, resulting in enormous
damage to the environment and human health (Pasqualinà et al.,
2011; Silva et al., 2014b). Hence, it is very important to develop a
feasible measure to improve this dilemma.

BACTERIOPHAGE-BASED THERAPIES
The increasing prevalence of bacterial antibiotic resistance has
prompted a search for candidate agents to replace antibiotics
in the effective treatment of bacterial diseases. In recent years,
therapies based on bacteriophages have become a topical issue
in this field. With the development of phage biology research
and genome sequencing, theses methods have been applied to
the diagnosis and treatment of bacterial diseases (Laanto et al.,
2012; Silva et al., 2014a). A mycobacteriophage delivered by a
non-virulent Mycobacterium was reported to effectively kill the
M. avium and M. tuberculosis, and has become a model for phage
therapies directed against intracellular bacterial pathogens (Brox-
meyer et al., 2002; Peng et al., 2006). The therapeutic efficacy of
phage therapies has been demonstrated in many infectious diseases
caused by members of the genus Vibrio, including V. vulnifi-
cus, V. harveyi, V. parahaemolyticus, and V. anguillarum (Shivu
et al., 2007; Crothers-Stomps et al., 2010; Mateus et al., 2014).
Phage therapy can protect against experimentally induced vib-
riosis in the Atlantic salmon, and can effectively prevent mortality
during vibriosis of in the brine shrimp and V. anguillarum infec-
tions during the production of fish larvae (Higuera et al., 2013;
Martinez-Diaz and Hipolito-Morales, 2013; Silva et al., 2014b).
Unlike antibiotics or chemical drugs, phage therapies are inex-
pensive, and more environmentally friendly, and do not induce
microbial resistance, suggesting that phage therapy is a suitable
alternative treatment for vibriosis in aquaculture industries (Silva
et al., 2014b). One of the main challenges in using bacteriophages
to control pathogens in seafood is to control the efficacy and
safety of phage, and the market acceptance of use of phage. The
detailed characterization of phage properties and understanding
of phage–host interactions are essential requirements for the suc-
cessful application of phage-based pathogen control (Tan et al.,
2014).

CONTROLS AND PREVENTION
To reduce the risk of V. parahaemolyticus infections associated
with seafood consumption, some strategies based on physical
and chemical methods have been developed (Su and Liu, 2007).
Thermal processing is a common approach to inactivating V. para-
haemolyticus residues in seafood. Low-temperature freezing (at
–18◦C or –24◦C) or high-temperature treatment (>55◦C) for
10 min is reported to effectively inactivate or kill V. parahaemolyti-
cus in oysters (Andrews et al., 2000). High-pressure processing
(HPP) is another method that has also been used to destroy
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pathogenic microorganisms in seafood, and has been used exten-
sively to inactivate V. parahaemolyticus in oysters (Calik et al., 2002;
Cook et al., 2002; He et al., 2002). Irradiation is another impor-
tant method of eliminating V. parahaemolyticus from oysters. It
does not kill the oyster or alter its sensory qualities at low doses,
but the safety issues associated with radioactive materials limits
its use (Andrews et al., 2003; Jakabi et al., 2003). Similar to the
approaches discussed above, chemical reagents have been devel-
oped to reduce the bacterial contamination in seafood, including
chlorine, electrolyzed oxidizing water and iodophors (Croci et al.,
2002; Ren and Su, 2006). However, none of these effectively dis-
lodge V. parahaemolyticus from oysters, and further research is
required that focuses on the screening and development of new
drugs.

CONCLUSION
Vibrio parahaemolyticus occurs naturally in marine, estuarine, and
coastal environments throughout the world, and is the causative
agent of food-borne gastroenteritis (Ceccarelli et al., 2013). The
T3SSs are responsible for its cytotoxicity, and play a significant
role in the induction of inflammatory chemokines in the host.
T3SS1 is essential for systemic infection and the innate immune
responses induced during intestinal infection, although the details
of the mechanisms are still unclear, and the host targets remain
to be determined (O’Boyle and Boyd, 2014). T3SS2 is associ-
ated with the enterotoxicity of V. parahaemolyticus in mammalian
infection models in vivo, and has been reported to cause cyto-
toxicity in intestinal cell lines (Ham and Orth, 2012). The T6SSs,
novel recently identified systems are necessary for the adhesion of
V. parahaemolyticus to cells and are also involved in intracellular
trafficking and vesicular transport. T6SS1 has antibacterial activity
under warm conditions, enhancing the environmental fitness of
V. parahaemolyticus (Salomon et al., 2013a), but our knowledge of
the biological activity of T6SS2 is limited (Salomon et al., 2013a,
2014). Although a number of toxins and effectors associated with
the pathogenesis of V. parahaemolyticus have been identified and
characterized, but the detailed mechanisms of the total effectors
of this bacterium, which have evolved to work together, and the
distinct functions of individual effectors in causing pathogenic-
ity are yet to be investigated. Further studies should focus on the
correlation between T3SS and T6SS, and the non-invasive nature
of V. parahaemolyticus warrants further investigation. Today, a
large number of detection methods based on virulence factors are
used for the detection and risk assessment of V. parahaemolyticus.
However, to reduce the harm attributable to V. parahaemolyti-
cus, specific, highly sensitive molecular methods are required to
reliably identify and differentiate virulent and avirulent V. para-
haemolyticus strains. The prevention and treatment of the diseases
are still the key outcomes of future research, which should extend
our understanding of the precise relationship between the disease
in the human host and the pathogenicity of V. Parahaemolyti-
cus. This review article provides insight into the control of the
clinical risks posed by this potently virulent bacterium, which is
extremely pathogenic to humans, by summarizing the molecu-
lar and therapeutic techniques available to future medical and
immunological research. Effective control measures that combine
novel drugs and targeted therapies must be developed to eradicate

the risks posed to human health by this life-threatening disease
exclusively.
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