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Abstract

Protocell multilevel selection models have been proposed to study the evolutionary dynam-

ics of vesicles encapsulating a set of replicating, competing and mutating sequences. The

frequency of the different sequence types determines protocell survival through a fitness

function. One of the defining features of these models is the genetic load generated when

the protocell divides and its sequences are assorted between the offspring vesicles. How-

ever, these stochastic assortment effects disappear when the redundancy of each

sequence type is sufficiently high. The fitness dependence of the vesicle with its sequence

content is usually defined without considering a realistic account on how the lower level

dynamics would specify the protocell fitness. Here, we present a protocell model with a fit-

ness function determined by the output flux of a simple metabolic network with the aim of

understanding how the evolution of both kinetic and topological features of metabolism

would have been constrained by the particularities of the protocell evolutionary dynamics.

In our model, the sequences inside the vesicle are both the carriers of information and

Michaelis-Menten catalysts exhibiting saturation. We found that the saturation of the cata-

lysts controlling the metabolic fluxes, achievable by modifying the kinetic or stoichiometric

parameters, provides a mechanism to ameliorate the assortment load by increasing the

redundancy of the catalytic sequences required to achieve the maximum flux. Regarding

the network architecture, we conclude that combinations of parallel network motifs and

bimolecular catalysts are a robust way to increase the complexity of the metabolism

enclosed by the protocell.

Author summary

The protocell hypothesis conjectures the existence of a vesicle containing catalytic and

replicating sequences as the primordial cellular organization during the early stages of

the evolution of life. Mathematical models of protocells traditionally consider RNA

sequences being encapsulated and having both an informational and a catalytic role in the

same molecule. Because of this dual function, the protocell sequences are evolutionarily
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constrained. Mathematical models have been extensively used to study the evolutionary

dynamics of protocells with a focus on the processes, like mutation or stochastic sequence

assortment upon division, that affect the protocell information capacity in terms of the

coexistence of different sequence types. Here we introduce a simple model of metabolic

networks whose output determines the survival of the protocell with the aim of studying

the effect of modifying the kinetic and architectural properties of the network on sequence

coexistence. We find that stochastic assortment and mutation limit the architectures able

to be encapsulated by the protocell with a given fraction of the population harbouring all

possible sequence types.

Introduction

The RNA world hypothesis [1–3] describes a stage in the early evolution of life where RNA

constituted both the catalytic and the informational component of living systems. This sce-

nario has a reasonable degree of plausibility accounted for by the evidence gathered from both

prebiotic chemistry [4, 5] and the analytic approach of evolutionary biology [6] to the study of

the origins of life. Constrained by this assumption, elucidating the evolutionary dynamics of

primordial replicators becomes a fundamental question, initially addressed by the quasi-spe-

cies model [7, 8]. This formalism assumed that error rates for early self-replicators must have

been inherently high leading to a distinct evolutionary behavior, namely that a sequence,

regardless of its fitness, never fixates in the population, but instead is always surrounded by its

mutant neighborhood forming a quasispecies. Furthermore, given a sharply peaked fitness

landscape, if the mutation rate is increased to a critical value, known as the error threshold, the

extinction of the population known as the error catastrophe will occur. One possible solution

would be to reduce the mutation rate, but that would almost certainly involve a more complex

self-replicator, encoded by a sequence of considerable length, which is in turn limited by the

error rate. This evolutionary cul-de-sac, known as Eigen’s paradox, required a reassessment of

the model of protobiotic systems in light of their poor evolutionary potential. Trying to address

this issue led to the consideration of distributing the information encoded by the sequences in

a mutualistic community of replicators known as the hypercycle model [9] in order to relax

the error rate. However, the large amplitude of the oscillations of the stationary state of the

hypercycle model could lead to its extinction upon stochastic perturbation which, together

with the susceptibility of the hypercycle model to the invasion of selfish molecules, make it dif-

ficult for the community of replicators to emerge without a form of population viscosity [10].

Viscosity could have been provided by limited spatial dispersal over a substrate like clay [11,

12] or as a limiting case, the compartmentalization of the sequences in a protocell acquiring a

multi-level selection [13, 14] structure when a the vesicle survival is coupled to its sequence

content.

The hypothetical protocell organization has been extensively modelled in the past decades,

from population genetics multilevel selection models to explicit biophysical accounts of chemi-

cal reactions that contribute to the formation of the vesicle membrane [15, 16]. These two ave-

nues have remained relatively separated in the literature and the population genetic models

have not fully explored the consequences of deriving the fitness function from realistic models

of catalysed reaction networks that could have occurred inside the vesicle. On the other hand,

the biophysically inspired models are mainly concerned with the coupling of chemical reac-

tions to the division of the membrane but do not incorporate population genetic consider-

ations such as mutation, recombination or variations in heredity mechanisms. The population
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genetics multilevel selection protocell models have their origins in the package model [17, 18]

and the stochastic error corrector model [19, 20]. These models describe the evolutionary

dynamics of a set of replicating sequences encapsulated in a protocell and consider the pro-

cesses that such a system would have had to endure at the dawn of life such as random assort-

ment of the sequences upon fission, mutations to non-functional sequence types and conflict

between selection at the sequence level and the vesicle level. All of these processes suppose that

the protocell population exhibits an average fitness lower than the maximum achievable which

is commonly referred as genetic load. In these models, the protocell level fitness is commonly

specified by a simple function, like the geometric average, of the frequencies of the sequence

types contained in the vesicle. The dynamics at the sequence level inside the protocell is

described by a replication-mutation process. Deleterious mutation is typically introduced into

the system in the form of irreversible mutation to a defective type that does not directly affect

the protocell fitness except by reducing the effective total number of functional sequences.

These protocell models account, in a non-systematic manner, for the study of additional com-

plexities and processes to the protocell dynamics. For example, the incorporation of mutation

schemes exhibiting trade-offs in catalytic activities [21, 22], modifications in the mechanism of

inheritance or the incorporation of protocell fusion [23] and recombination [24]. Few of them

have directly considered a model of the structure of the underlying metabolic network and

those that have, did so in a limited manner by studying a linear chain of unsaturated Michae-

lis-Menten enzymes [25]. Most of the vesicle models depict a scenario where the nature of the

encapsulated sequences is RNA, corresponding to the idea of the ribocell as a solid candidate

for the protocellular stage in the early evolution of life [26].

The coupling between metabolism and replication would have been particularly strong in

the hypothesized ribocells as the RNA sequences are supposed to have operated as both the cat-

alysts and the carriers of the genetic information. We conjecture that this must have limited

the space of possible catalysed chemical reaction networks which could be encapsulated within

the protocells. In this work, we incorporate a simple implementation of enzymatic metabolism

to the protocell model to address the problem of determining the complexity and architectural

characteristics of early metabolic networks. The approach of considering the organism struc-

ture has been taken in other studies of the evolution of biological networks [27, 28] that high-

light the relevance of accounting for some level of biological detail to study evolutionary

dynamics.

Metabolic networks are modelled with different degrees of dynamic and kinetic detail.

With a high level of kinetic detail, metabolic networks can be modelled with systems of dif-

ferential equations incorporating aspects of the reaction mechanisms and properties of their

catalysts. These same reactions can be studied in the stochastic limit when the number of

particles considered is low. A framework that connects both the stochastic and the determin-

istic limits of a reaction network is that of chemical reaction network theory [29]. With a

lower level of kinetic detail, one can use modelling techniques such as flux balance analysis

to understand the general behavior of reaction fluxes at stationary states [30]. As a compro-

mise between realism and computability we modeled the protocellular metabolism as a mass

action irreversible reaction network with a small number of catalysts. In our model, each of

the metabolic reactions is catalyzed by a sequence of a given type with a Michaelis-Menten

kinetic mechanism and thus exhibiting saturation behavior. The output of this metabolic

network determines the fitness of the protocell. We are interested in the transition to the

coexistence of all sequence types at the protocell population level and how this depends on

the kinetics and architecture of the network. For simple protocell models, the transition to

coexistence has been extensively studied analytically [31]. Sequence coexistence provides a

way to increase the complexity of protocellular metabolism by harboring different types of
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catalysts. We find that saturated metabolic fluxes provide a way to increase the coexistence of

sequence types in the protocell by allowing the necessary redundancy to alleviate the fitness

load produced by assortment when the protocell divides. We also find that the combination

of parallel fluxes with a terminal bimolecular catalyst provides a way of increasing the com-

plexity of the protocellular metabolism.

Results

We model the protocell evolutionary dynamics as a Wright-Fisher process following the

approach in [32]. We augment the package model with a fitness function given by the flux of

a critical metabolite, ϕ(M), coming from a small metabolic network comprised of a set of

chemical reactions, r, catalysed by the sequences inside the protocell. Each protocell contains

a number of sequences from a finite set of sequence types, or genes, g, of cardinality |g| =

|r| + 1, meaning that there is a sequence type catalysing each reaction of the metabolic net-

work plus a mutational sink, the type ω, that does not contribute to the metabolic activity.

The population dynamics is derived from the following protocell life-cycle. At the beginning

of the life-cycle, N sequences are found in the vesicle distributed amongst the set of sequence

types and each sequence is equally likely to replicate. The total number of sequences at the

beginning of the protocell life-cycle will be herein referred as the protocell ploidy. When the

sequences replicate they can mutate to the defective type, ω, with a probability traditionally

unpacked in terms of the sequence length, L, and the mutation probability per base, μ, so that

the accuracy of the replication process is given by q = (1 − μ)L. Hence, the sequences have a

probability (1 − q) to mutate to the defective type. After reaching twice the ploidy, 2N, the

vesicle splits in half and the sequences randomly assort between the offspring protocells

regaining the starting total number of sequences N. At the population level, once all the pro-

tocells have divided, half of them are selected with a survival probability proportional to the

critical metabolite flux. A simplified treatment of metabolic networks is used to define the

protocell fitness function in our simulations. We evaluated the consequences on the protocell

evolutionary dynamics of varying the kinetic parameters and the organization of the catalysts

in different network topologies. Our model assumes the separation of the dynamics at three

time scales. The quickest time scale is that of metabolic reactions catalysed by the sequences.

The next time scale is that of the replication of sequences and division of the protocell. The

third and longest time scale is that of the dynamics of the population of protocells. We make

use of simplifying assumptions based on each of the time scales being much longer than the

previous time scale.

We illustrate the effects of the variations in the kinetic and stoichiometric parameters of the

network with the example of a protocell containing two catalysts (Fig 1A). This network is the

starting point for the construction of larger networks which allow us study the effects of the

network architecture on the protocell evolutionary dynamics. The first catalyst, the keystone

(denoted as α), takes an environmental input A that diffuses inside the protocell to produce

the critical metabolite, M, that is required for the protocell survival. The keystone catalyst also

produces certain amount, ca
w, of a waste product, W that can be converted by a second catalyst,

the recycler (denoted as β), into cb
M molecules of critical metabolite. A protocell composed

solely of keystone catalysts is viable and thus constitutes an absorbing boundary of the stochas-

tic process. For all of the networks studied, we assume that the environmental input is present

at sufficiently large quantities such that its concentration is not affected by the protocell popu-

lation growth and the keystone catalysts that use it are in the saturation regime. The corre-

sponding metabolic flux for this scenario according to our formalism is given by (see Methods,

The evolutionary dynamics of metabolic protocells
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section 4.1.2):

F ¼ ka
cat½a� þ cb

M min ðca
wka

cat½a�; k
b
cat½b�Þ ð1Þ

Here kcat denotes the catalytic constant of the catalysts. With the total ploidy constraint, the

fitness function defined as the critical metabolite flux of this metabolic network (Fig 1B) will

have a single maximum with a position on the space of protocell types given by the kinetic

parameters and the protocell composition, more concretely when ca
wka

cat½a� ¼ kb
cat½b�. The posi-

tion of the maximum determines the behaviour of the observables of the population like the

coexistence fraction; the fraction of the population with protocells containing the maximum

Fig 1. Coexistence fraction dependence on kinetic parameters for a simple two catalyst model. A: Depiction of a protocell encapsulating a simple keystone-

recycler metabolic network. The first catalytic sequence type, the keystone (α) is essential for the production of the critical metabolite M from the substrate A
that diffuses from the environment into the vesicle. The second sequence type, the recycler (β), catalyzes the transformation the waste product of the first

reaction, W, to form cb
M molecules of M. The molecules of M are immediately utilized by the protocell and the intermediates can diffuse out through the vesicle

membrane with permeability δ. B: The critical metabolite flux as a function of the frequency of the recycler sequence type β for a constrained total number of

sequences in the protocell. The flux closer to the boundary corresponds to a catalyst β with kinetic parameters kb
cat ¼ 2, cb

M ¼ 1:5 and the flux further to the

boundary considers the production of two waste molecules, ca
w ¼ 2, by the reaction catalyzed by α. C: The coexistence fraction for these two cases as the

protocell ploidy is varied. D: For a fixed ploidy of N = 60, the decay of the coexistence fraction as a function of the replication accuracy for the two different

fluxes.

https://doi.org/10.1371/journal.pcbi.1006265.g001

The evolutionary dynamics of metabolic protocells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006265 July 20, 2018 5 / 21

https://doi.org/10.1371/journal.pcbi.1006265.g001
https://doi.org/10.1371/journal.pcbi.1006265


number of functional sequence types. This dependence can be shown by choosing the kinetic

and stoichiometric parameters so that the flux is closer or further away from the absorbing

boundary of protocells with no recycler sequences. One simple way of achieving this is by

increasing the catalytic constant, kb
cat, of the recycler sequence to get closer to the boundary or

increasing the waste output of the keystone sequence by changing the stoichiometry, ca
w, to get

further away from it. The remaining stoichiometric coefficients can be adjusted to achieve the

same maximum flux for comparison as the fitness difference between the maximum in the

interior and the fitness of the absorbing boundary of the stochastic process (that is when the

protocell lacks any recycler sequences and just harbors the keystone) also affects the ploidy at

which the coexistence transition occurs.

The coexistence fraction of the stationary population for the flux with the maximum further

away from the absorbing boundary is always higher than the one closer to it (Fig 1C). This is

due to the effects of stochastic assortment when protocells divide that can bring a fraction of

the population to fixate at the boundary. This probability is smaller as we get further away

from the boundary and it vanishes upon increasing the ploidy of the protocell leading to a sta-

tionary population of coexisting types only. Hence, fluxes with a maximum further away from

the absorbing boundary benefit coexistence as they are less affected by the loss introduced by

the assortment. In terms of the average fitness of the stationary population, the flux further

away from the boundary also presents a higher average fitness for all ploidy values and conse-

quently if the two fluxes were to be competed with no interaction between the protocells the

flux further from the boundary would dominate at the infinite population size limit (see S1

Fig). This is because the flux that is further away from the boundary is also flatter than the

other flux and thus suffers from less assortment load as the population can spread over a larger

region of viable coexisting types.

When mutations leading to the defective type are taken into account, the decay of the coex-

istence fraction of the flux closer to the boundary is faster when increasing the mutation rate

than that of the flux further away from it (Fig 1D). In terms of average fitness of the popula-

tions, both landscapes show similar values at low mutation rates but the flux further to the

boundary becomes fitter as the mutation rate increases and the coexisting types are lost in the

flux closer to the boundary. As noted by [32], the way mutation towards a defective sequence

type is usually included in the protocell model has no other effect at the protocell level than

reducing the total number of functional types in the vesicle. Therefore, the impact of mutation

on the coexistence fraction of the stationary population will be equivalent to that of reducing

the ploidy to the effective ploidy given the mutation rate and the starting ploidy of the proto-

cell. For a given flux function and mutation rate, the effective ploidy will saturate at a constant

value as the total starting ploidy is increased. At high mutation rates the effective ploidy

becomes sensitive to the assortment in the flux closer to the boundary and thus the flux further

away from the boundary is also more robust to the effects of introducing non-functional

mutants.

We now focus on analysing effects of network architecture by considering two different

arrangements of three catalytic sequences (Fig 2A). We will add the third recycler catalyst in

serial or parallel with respect to the second recycler sequence of the previous example. In both

cases studied, we assume for simplicity that the keystone catalyst produces two different waste

products to have non-competing reactions. In order to discern effects derived from the topol-

ogy of the networks alone, the total fitness benefit a protocell containing all three catalysts and

the marginal fitness benefit of the third sequence with respect to the other two given by the

kinetic and stoichiometric parameters was set to be the same for each of the studied architec-

tures. According to our simplifying treatment (see Supplement, section 7.1), the output
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metabolite fluxes for these two architectures are:

FSerial ¼ ka
cat½a� þ cb

M min ðka
cat½a�; k

b
cat½b�Þ þ cg

M min ðka
cat½a�; k

b
cat½b�; k

g
cat½g�Þ ð2Þ

FParallel ¼ ka
cat½a� þ cb

M min ðka
cat½a�; k

b
cat½b�Þ þ cg

M min ðka
cat½a�; k

g
cat½g�Þ ð3Þ

The fluxes over the simplex of protocell types all have their maxima at the center for the

parameters chosen removing the effect of the proximity to the absorbing boundaries. The tran-

sition to coexistence for the parallel addition of the third catalyst occurs at a lower ploidy val-

ues than that of the serial addition (Fig 2B). The coexistence fraction also grows faster with

ploidy for the parallel architecture. Both observations can be explained in terms of the assort-

ment load, as the parallel architecture has a larger region of viable protocell types surrounding

the maximum making it more robust to assortment by allowing the population to spread over

this region (Fig 2C). The serial architecture, on the other hand, has a smaller region of viable

types surrounding the maximum and becomes more sensitive to the assortment. The mean fit-

ness of the population reflects also this pattern given by the assortment load (S2 Fig). It can be

Fig 2. Coexistence fraction variation with ploidy for the two studied three catalyst architectures. A: The two catalyst

architectures and their respective normalized value of the critical metabolic flux over the space of protocell types. B: The

dependence of the coexistence fraction with the protocell ploidy for the serial and parallel architectures. The kinetic and

stoichiometric parameters of the flux function were chosen for each architecture to have the same maximum flux and marginal

benefit of the third catalyst (in this case all catalytic constants were set to one and cb
M ¼ cg

M ¼ 4). C: Ternary plots of the

stationary distribution from populations with different ploidy values (N of 150, 500, 1000) for each architecture.

https://doi.org/10.1371/journal.pcbi.1006265.g002
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concluded that for our model the population observables are mostly determined by the fea-

tures of the fitness landscape given by the metabolic flux. The protocell population can be seen

as a quasispecies with a cloud of vesicles around the fittest type spread by the assortment at a

particular ploidy. Adding mutation to the system does not change the conclusion of the paral-

lel addition higher robustness as mutations factor in the dynamics by effectively reducing the

ploidy of the system.

The process of increasing the complexity of the studied networks by sequentially connect-

ing to them additional recycler catalysts given the considered motifs, raises the question about

what is the best way to perform this addition in order to guarantee a transition to coexistence

of the resulting networks at low ploidy values. Adding a new sequence type to the protocell

always comes at the cost of increasing the effects of the assortment, which depends on ratio the

protocell ploidy and the total number of sequence types. This means that any increase in the

coding capacity of the protocell, in terms of the number of coexisting sequence types, requires

in turn an increase in the vesicle ploidy. It has been shown that by making the ploidy suffi-

ciently large, the numbers of types that can coexist in the protocell can be made to increase

arbitrarily [32, 33]. This is, however, just for the cases with low competition at the sequence

level and no mutations. The requirement of increasing the ploidy becomes a burden once

mutation is considered, as higher ploidy protocells accumulate mutants at a faster rate (S3

Fig). If certain amount of mutants are considered deleterious as in the early versions of the

package model, the mutation process will set a limit to the ploidy increase. The mutation pro-

cess also establishes a limit on the number of catalytically active sequences in the protocell by

saturating to a constant effective ploidy regardless of the starting ploidy value. This can bring

the population to the absorbing boundaries if the effective ploidy is low enough for the assort-

ment to dominate. A way of keeping the ploidy moderate while adding new catalysts to the

network is by increasing the marginal fitness benefit of each added sequence (changing the

stoichiometric coefficient cM). This can substantially lower the critical ploidy for the coexis-

tence transition and its effects will depend on both the fitness benefit and the topology of the

previous architecture in place. For instance, if we were to add another catalyst with a high mar-

ginal fitness benefit to our two previous examples, the parallel architecture would become

unbalanced leading to the fixation of one of the branches while the serial addition would

still be viable. In order for the parallel architecture to accept the new sequence with a higher

marginal fitness benefit without becoming unbalanced a bimolecular catalyst should be

considered.

A bimolecular catalyst can be added to two independent keystone catalysts and allow them

to coexist. We consider the case of two keystone catalysts converting two independent envi-

ronment metabolites into the critical metabolite and also producing two different waste prod-

ucts that are in turn required for the third recycler catalyst in a bimolecular reaction to

produce more metabolite of interest (Supplement, section 7.2. The parameters were chosen to

have the same marginal fitness benefit and maximum fitness than the previously studied cases.

According to our simplifying the flux would be:

FBimolecular ¼ ca
Mka

cat½a� þ cb
Mkb

cat½b� þ cg
Mminðka

cat½a�; k
b
cat½b�; k

g
cat½g�Þ ð4Þ

The bimolecular motif flux exhibits a large region of viable types around the maximum

however, the protocell population is also able to spread to an absorbing boundary with a large

neutral space as the two keystone catalyst have the same marginal fitness benefit (Fig 3A).

These features of the fitness landscape contribute to a large assortment load and a substantial

fraction of the population is close to the absorbing boundary even at relatively high ploidy val-

ues (Fig 3C). Therefore, the coexistence transition for this architecture occurs at larger ploidy
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values than the other two architectures in spite of a larger region of viable types surrounding

the flux maximum (Fig 3B). On the other hand, the third bimolecular catalyst is able to provide

a way for the coexistence of these two keystone catalysts. Moreover, the bimolecular reaction

gives us a way of adding a catalyst with a large fitness benefit to the parallel architecture with-

out unbalancing it.

We now consider the fluxes derived from the addition of a fourth catalytic sequence to the

previous networks as a unimolecular or bimolecular recycler (Supplement, section 7.3). We

again consider the production of an additional waste metabolite to have non-competing reac-

tions. When the added recycler catalyst has the same marginal fitness benefit as the other two

recyclers, the parallel architecture shows the transition to coexistence at the lowest ploidy

value, as in the three catalyst networks previously analysed (Fig 4A). The parallel architecture

is followed by the two other architectures with parallel motifs showing that for the case of

equal marginal fitness benefit the parallel architectures are better at supporting the coexistence

of catalyst and thus maintaining metabolic complexity. This is due to the larger region of viable

types surrounding the flux maximum for the parallel architectures. When the marginal fitness

benefit of the fourth recycler catalyst is greater than the other two, the parallel architectures are

no longer the ones showing coexistence transitions at lower ploidy values. The bimolecular

and the serial architectures will be the ones showing a markedly earlier transition to coexis-

tence than the architectures with parallel motifs (Fig 4B). The addition of a recycler with larger

Fig 3. Coexistence fraction variation with ploidy for the bimolecular architecture. A: The value of the critical metabolite flux over the

space of protocell types. B: The coexistence fraction variation for this architecture and its dependence on ploidy. C: Ternary plots of the

stationary distribution from populations with different ploidy values (N of 150, 500, 1000). All catalytic constants were set to one and

cb
M ¼ ca

M ¼ 2:5 and cg
M ¼ 4).

https://doi.org/10.1371/journal.pcbi.1006265.g003
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marginal fitness benefit unbalances the parallel architectures unless it is added as a bimolecular

motif. Increasing the complexity of metabolic networks in the protocell model requires the bal-

ance between the limitations given assortment load, the marginal fitness benefit and the risk of

unbalancing the previously existing architectures. We find that combining bimolecular and

parallel pathways one can achieve networks with transitions to coexistence at lower ploidy val-

ues that would avert the problems introduced by mutations at large ploidy values. Our finding

is interesting in the light of the prevalence of bow-tie modules in extant metabolic networks

[34, 35] as the concatenation of the parallel and bimolecular motifs could produce such a net-

work feature.

Discussion

Mathematical models of early life forms constitute a powerful tool to test the feasibility of pro-

posed hypothetical scenarios in the first stages of life. They allow us to increase our under-

standing of the conjectured scenarios and provide intuition about how to overcome their

limitations. Our metabolic model of the protocell serves to analyse the effects of considering

details of the kinetic mechanism of the catalysts encapsulated and their network architecture.

Our model provides an example of how the fitness load introduced by protocell fission assort-

ment process and its effects on the coexistence of catalysts can be alleviated by modifications

in their kinetic parameters and their network organization. The requirement to withstand the

assortment load limits at low ploidy values the metabolic architectures that can be effectively

encoded in the protocell. Although the networks analyzed here are simple and small, they

already show interesting consequences of accounting for the saturation of the catalysts in dif-

ferent architectures. We demonstrate that variations in the kinetic parameters that keep the

catalyst saturated provide a way to increase the catalyst redundancy and diminish the assort-

ment effects. The saturation of the catalysts means that the reaction they control becomes lim-

iting and additional catalytic sequences will consequently increase the output flux.

The other major limitation for the evolution of a complex protocellular metabolism is the

interplay of the effects of the assortment and the network architecture. We demonstrate that

architectures with a larger region of viable types surrounding the maximum in the interior

favour the coexistence transition as they allow for the quasispecies to spread. The architectures

Fig 4. Coexistence fraction variation with ploidy for the four catalysts architectures. A: Coexistence fraction behavior considering equal stoichiometric

production of the metabolite of interest for all the recycler catalysts in the network cb
M ¼ cg

M ¼ cy
M ¼ 6. B: Coexistence fraction behavior when the addition

catalyst θ has a higher benefit cy
M ¼ 10.

https://doi.org/10.1371/journal.pcbi.1006265.g004
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that are favoured also depend on how they are assembled, more specifically, the marginal fit-

ness benefit of the new catalyst with respect to the previous network catalysts. This benefit can

happen directly by a higher stoichiometric benefit or indirectly by increasing the catalytic effi-

ciency of the enzyme which allows the limiting catalyst to increase their numbers in the vesicle

virtue of the flux saturation. For architectures containing parallel motifs it will be detrimental

to accept the new catalyst if it has a higher marginal fitness benefit unless it is involved in a

bimolecular reaction. The bimolecular motif prevents the system from becoming unbalanced

and becomes a fundamental building block for larger architectures. Nevertheless, the assort-

ment load together with the coupling of genes and catalysts, limit the architectures of the meta-

bolic networks that can be maintained in the vesicle by coexistence of its catalysts. This limit in

the metabolic evolutionary potential of the protocell can be alleviated, as it has been previously

pointed out [36], by the evolution of the decoupling between genetic information and catalytic

activity, either with the advent of proteins or DNA in a ribozyme world or by the divergence

of complementary RNA sequences [37]. The evolution of correlated inheritance like the chro-

mosomal organization would be another mechanism that would allow the exploration of a

larger space of network architectures and catalytic efficiency [38] as it would diminish the

assortment load. An example of releasing this constraint can be found in [25] which makes use

of the unsaturated linear metabolic chain formulation of [39] to address the effects of chromo-

somal organization in the evolution toward specialization of promiscuous catalysts.

The model presented incorporates assumptions about the biochemistry of the hypothetical

protocell and standard population dynamics that can be sophisticated or relaxed with interest-

ing consequences. For example, the incorporation of trade-off between catalytic and replica-

tion activity has shown interesting dynamical features at the population level such as sustained

oscillations [40]. The metabolism model could be further enriched in the direction of the

whole cell model [41] by increasing the biochemical details considered. The only limitation

is that the nature of early living things is purely conjectural and it would be preferable to

understand general features of the evolution of metabolic networks rather than a concrete

instantiation mirroring extant life. Together with this consideration, a better model for the

development stage of the protocell and the corresponding population dynamics would allow

us to decompose the summary statistic of the evolutionary dynamics, that is fitness, in terms of

the whole interplay of the network flux and the replication of catalytic sequences throughout

the developmental stage. A more detailed account on protocell development would require a

full stochastic treatment that properly accounts for the separation of metabolic and replicative

dynamic time scales. The effects of introducing other processes in the population dynamics

like alternative division mechanisms in the metabolic protocell model as described by [42, 43]

or modification in the heredity mechanisms already studied in previous protocell models

could also yield interesting results. Further incorporating considerations about environment

would lead us in the direction of understanding the ecology of the protocells. If our intermedi-

ates that leak out accumulate significantly in the environment [44], interesting frequency

dependent relations can be established in the protocell populations and one could add proto-

cell fusion to study the assembly of networks in this augmented model.

The protocell organization is considered a solid candidate for a transitional form of life

and, as such, has been extensively explored computationally and is starting to be addressed in

experimental settings [45]. The utility of the protocell theoretical models has been recently val-

idated in helping the development of chemical implementations of protocell structures [46].

This also provides the experimental set-up to test the conclusions of the theoretical works in

the protocell literature. Furthermore, construction of the first synthetic autonomous protocell

is becoming a reality and we believe that theoretical models can be useful to further this

endeavour.
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Methods

Metabolic model

We will model the metabolic activity of our protocell as a well-stirred reactor in which ribo-

zymes, environmental inputs, and metabolites interact. More specifically, the metabolic

dynamics will be modelled as Michaelis-Menten enzyme dynamics where each flux is given by

the expression

v ¼
kcat½E�½S�
Km þ ½S�

ð5Þ

Where, [E] and [S] denote the concentrations of enzyme and substrate respectively and kcat is

the turnover number (catalytic constant) of the enzyme and Km its Michaelis constant. We will

also study bimolecular reactions with mechanisms of the following form:

ð6Þ

The velocity will have the functional form

vr ¼
kcat½S1�½S2�

Km þ a1c1 þ a2c2 þ c1c2

ð7Þ

where the values of a1 and a2 can be determined from either the forward and the backward

rates of the underlying reactions or from thermodynamic potentials. Special values of these

constants correspond to the cases of random order, definite order, non-interacting. We will

model the depletion reactions as exponential decay or diffusion

vd ¼ di½S� ð8Þ

where δi is the decay rate or diffusion constant for S.

We assume that even though the protocell development will be accompanied by an increase

in the vesicle volume, this will be negligible and will not dilute significantly the concentrations

of the catalysts and intermediates of the reaction network. Therefore we can identify the cata-

lysts’ concentrations with the catalyst number in our model of metabolism. We will augment

this hypothesis with three further assumptions. We assume that the supply of this input in the

environment is high enough that we can disregard depletion and treat its concentration as

constant (but note that the concentration of the same inputs within the protocell may vary due

to the permeability of the membrane). We assume that the intermediates that leak out to the

environment are degraded and do not accumulate. We assume that the characteristic timescale

of the metabolic reactions is sufficiently faster than the timescale of sequence replication that

we may ignore initial transients, approximate the metabolic reactions by their (dynamic) equi-

librium solution, and describe the metabolic outputs by their averaging their rates of produc-

tion over a metabolic timescale.

Network motifs. Many interesting networks of biochemical interest can be built up by

assembling copies of a few simple motifs [47]. We will now derive the steady state conditions

on fluxes through two classes of motifs under the assumptions of irreversible Michaelis-

The evolutionary dynamics of metabolic protocells
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Menten kinetics and small diffusion out the membrane. Because of the assumption of irrevers-

ibility, we may obtain the fluxes for a large class of networks by composing these conditions.

The first class of motifs consist of a unimolecular reaction in which an enzyme E reacts with

one molecule of substrate S to produce one or more products Pi:

E þ S ! E þ c1P1 þ c2P2 þ � � �

S ! ;
ð9Þ

Graphically, we may represent these motifs by the following diagram:

ð10Þ

On account of irreverisbility, the velocity of the reaction does not depend upon the products

or their stoichiometry. Letting j be the flux of substrate S and δ be the diffusion constant of the

membrane, we have the following kinetic equations:

j ¼ v þ d½S�

v ¼
kcat½E�½S�
Km þ ½S�

ð11Þ

Eliminating the concentration [S] between these equations produces an equation which can be

solved to express the reaction velocity v as a function of the incoming flux j. To incorporate the

assumption that the diffusion constant δ is small, we will expand this equation in powers of δ.

ðv � jÞðv � kcat½E�Þ þ dKmv ¼ 0 ð12Þ

In the limit δ! 0, this equation reduces to (v − j)(v − kcat[E]) = 0, which has the solutions v = j
and v = kcat[E]. The choice of solution depends upon the value of j and is determined by the

conditions that the concentration is positive; thus, when j< kcat[E], we should choose the solu-

tion v = j and, when j� kcat[E], we should choose v = kcat[E]. As a result, the zeroth order term

in the expansion of the the velocity is a piecewise linear function of the incoming flux,

v ¼

( j j < kcat½E�

kcat½E� j � kcat½E�
; ð13Þ

which may be expressed more succinctly as v = min(j, kcat[E]). The higher order terms can be

regarded as corrections which account for deviations from piecewise linearity. Most notably,

they replace the sharp peak at the maximum with a smooth peak whose maximum value is

lower.

The second class of motifs consist of a bimolecular reaction in which an enzyme E reacts

with molecule of substrate S1 and a molecule of substrate S2 to produce one or more products

The evolutionary dynamics of metabolic protocells
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Pi. This is described by the reactions

E þ S1 þ S2 ! E þ c1P1 þ c2P2 þ � � �

S1 ! ;

S2 ! ;:

ð14Þ

the diagram

ð15Þ

and the kinetic equations

j1 ¼ v þ d½S1�

j2 ¼ v þ d½S2�

v ¼
kcat½E�½S1�½S2�

Km þ a1½S1� þ a2½S2� þ ½S1�½S2�
:

ð16Þ

Eliminating the concentrations [S1] and [S2] and collecting powers of δ leads to the equation

ðv � j1Þðv � j2Þðv � kcat½E�Þ � ða1v þ a2v � a1j1 � a2j2Þvdþ Kmvd
2
¼ 0: ð17Þ

In the limit δ! 0, this reduces to (v − j1)(v − j2)(v − kcat[E]) = 0. As previously, the choice of

root is determined by the values of j1 and j2 through the condition that the concentrations [S1]

and [S2] not be negative. This leads to a piecewise linear form of the leading term in the expan-

sion of the solution,

v ¼

j1 j2 � j1 < nE;VE

j2 j1 < j2 < nEVE

kcat½E� kcat½E� � j1; j2

8
>>><

>>>:

; ð18Þ

which may more conveniently be expressed in the form v = min(j1, j2, kcat[E]).

Two catalyst network: Keystone and recycler. As a simple illustration of how to use

these motifs, consider a network consisting of an environmental input A, two enzymes α and

β, an intermediate metabolite W and an output metabolite M and reactions

Aþ a ! aþW þM

W ! ;

W þ b ! bþ cb
MM

ð19Þ
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This may be represented by the diagram

ð20Þ

The velocity of the first reaction, which is catalyzed by α, referred in the text as the keystone, is

given by the Michaelis-Menten formula. However, since we assume that the input A is plentiful

in the environment, we expect this reaction to be happening well within the saturation regime,

hence will approximate its velocity by the limiting velocity:

va ¼ ka
cat½a� ð21Þ

The remaining two reactions, where β (referred in the text as the recycler) takes part are an

instance of the first type of motif, so we have

vb ¼ min ðj; kb
cat½b�Þ ð22Þ

Here j is the flux of W. Since the stochiometry of the first reaction produces one molecule of

W for every molecule of input, we have j = vα, hence

vb ¼ min ðva; kb
cat½b�Þ ¼ min ðka

cat½a�; k
b
cat½b�Þ: ð23Þ

The total flux of M will include the output of both reactions:

F ¼ va þ cb
Mvb ¼ ka

cat½a� þ cb
M min ðka

cat½a�; k
b
cat½b�Þ: ð24Þ

Using exactly the same techniques and assumptions as in the foregoing simple example, we

calculated the flux-fitness functions for several more complicated networks involving three

and four enzymes. The results of these calculations were then inserted into the evolutionary

population model described below to study the effects of network architecture.

Protocell development rate

Our aim is to enrich the evolutionary population genetic models with relevant biochemical

features rather than go on the direction of a full-blown simulation of a cellular system. How-

ever, in order to introduce these features realistically, we will derive them from a simplified

“whole protocell” model in which the metabolic reactions described above are augmented with

reactions that describe the replication of the sequences:

aþM !2a

bþM !2b
ð25Þ

We will model the replication as mass action kinetics. As described in the previous section, we

will model the enzymatic reactions using Michaelis-Menten kinetics. The only difference is

that now we will augment the equation for the critical metabolite with a term which accounts
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for the depletion of metabolite as the sequences replicate.

d½M�
dt
¼ F � r½M�ð½a� þ ½b�Þ

For the two catalyst keystone recycler network, we have the system of equations:

d½a�
dt

¼ r½M�½a�

d½b�
dt

¼ r½M�½b�

d½M�
dt

¼ ka
cat½a�½A� þ cb

M
kb

cat½b�½W�
Kb

m þ ½W�
� r½M�ð½a� þ ½b�Þ

d½W�
dt

¼ ka
cat½a�½A� � d½W� �

kb
cat½b�½W�

Kb
m þ ½W�

For convenience, we introduce two rescaled variables—the ratio of types x and the scaled flux

ϕ:

x ¼
½a�

½a� þ ½b�

� ¼
F

½a� þ ½b�
¼ ka

catx½A� þ cb

M
kb

catð1 � xÞ½W�
Kb

m þ ½W�

Combining the first two equations, we conclude that

dx
dt
¼

½b�
d½a�
dt
� ½a�

d½b�
dt

� �

ð½a� þ ½b�Þ
2

¼
r½M�ð½b�½a� � ½a�½b�Þ
ð½a� þ ½b�Þ

2
¼ 0

so the ratio α to β remains constant during development. Since ϕ only depends upon α and β
through their ratio, ϕ will also remain constant. As per the “slow-fast” minority control

hypothesis of Kaneko and Yomo [48], we shall assume that the counts and reaction rates of the

sequences are much smaller than the counts and reaction rates of the metabolites. In terms of

the constants, this means that ka
cat; k

b
cat >> r. As a consequence, the concentrations of M and

W will approach an equilibrium values after an initial transient. Combining the equations, we

conclude that

d
dt
ð½a� þ ½b�Þ ¼ r½M�ð½a� þ ½b�Þ ¼ �ð½a� þ ½b�Þ:

Protocell evolutionary dynamics

The general protocell model for our study will be built following a similar approach to the

package model [17, 32]. We will add to it an explicit representation of the metabolism by con-

sidering a set of chemical reactions, R, catalyzed by the sequences contained in the protocell.

Each protocell will contain a number of sequences from a finite set of sequence types, g, that,

in principle will be of cardinality jgj ¼ jRj þ 1, indicating that there will be a sequence
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catalyzing each reaction, r 2 R, of the metabolic network plus a mutational sink, the type ω,

that will not contribute to the metabolic activity.

We will model the protocell development process as 2N independent samplings with

replacement from the initial contents of the vesicle to represent the replication of sequences.

Let ji denote the number of number of sequences of type i present at the beginning of the

cycle. The probability of sampling a sequence of type i equals ji/N. The probability that a repli-

cation will produce a sequence of non-error type i equals

q
ji
N

ð26Þ

and the probability of producing an error type ω equals

1 � qþ q
jo
N
: ð27Þ

Hence the probability of an outcome in which there are ki offspring of the sequence type i is

given as

PdevðkijjiÞ ¼
2N

k1; k2; . . . ko

� �
Yg

i¼1

q
ji
N

� �ki

1 � qþ q
jo
N

� �ko

ð28Þ

The probability that a protocell of this composition will then assort into an vesicle containing

mi sequences of type i and an offspring with ki − mi sequences of type i equals to

Passtðmi; ki � mijkiÞ ¼

Yg

i¼1
ð

ki
mi
Þ

ð
2N
N Þ

ð29Þ

The probability of a particular outcome at the end of the lifecycle equals the product of the

development and assortment probabilities. Defining m0i ¼ ki � mi and simplifying with the aid

of binomial identities, we obtain the result

Plifeðmi; m0ijjiÞ ¼ Passtðmi; m0ijkiÞPdevðmi þm0ijjiÞ

¼
N

m1; . . . mo

� �
Yg

i¼1

q
ji
N

� �mi

1 � qþ q
jo
N

� �mo

�
N

m0
1
; . . . m0

o

� �
Yg

i¼1

q
ji
N

� �m0i
1 � qþ q

jo
N

� �m0o

ð30Þ

The way this probability factors means that the type of one vesicle offspring is independent of

the type of the other offspring given the initial protocell composition and that both follow a

Wright-Fisher process. This does not mean that the two daughter protocells are independent

after development.

Our population is comprised of a number of non-interacting protocells each of which

undergoes a lifecycle as described above. To describe this population, we introduce the sum-

mary statistic F(ji) which is the frequency in the population of protocells which began their

development process with ji copies of the i-th sequence. Let W(ji) denote the survivability of a

typical protocell which begins its development process with ji copies of the i-th sequence. Such

a population may be modelled either as a branching process to describe a growing population

or as a Moran process to describe a population which has reached its carrying capacity. In the

limit of large population size, the dynamics of either of these models become deterministic and
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the equilibrium frequencies of both models are determined by the same eigenvalue equation

X

jij
P

i
ji¼N

KðmijjiÞFðjiÞ ¼ �WFðmiÞ ð31Þ

where

KðmijjiÞ ¼WðmiÞ
N

m1; . . . mo

� �
Yg

i¼1

q
ji
N

� �mi

1 � qþ q
jo
N

� �mo

ð32Þ

and �W is the mean fitness. Since all the components of the matrix K(mi|ji) are non-negative,

this equation may be solved numerically by using Perron-Frobenius iteration for small ploidy

values (up to 100) and few sequence types (up to three). For higher ploidy values, both the Per-

ron-Frobenius iteration or the Moran Process become cumbersome, so an agent based simula-

tion which also approaches the same limit for large population size was used instead. As in

[24], the agent based model algorithm starts with an homogenous populations of protocells

with the same number of sequences for each catalytic type. The entire population undergoes

development and assortment doubling the number of protocells. Half of the population is

selected without replacement with a probability proportional to its fitness. We found that 5000

generations were sufficient to reach the stationary behavior of the model in all the cases stud-

ied. Comparing instances the Perron-Frobenius iteration and the agent-based model available

shows that even for small population sizes of 1000, the results are already in reasonable agree-

ment with the infinite population limit. Using these values of 5000 generations of 1000 individ-

uals, the computation proceeds sufficiently rapidly that it becomes feasible to scan across

ranges of parameter values and generate plots which show how observables vary across param-

eter space. The model was implemented in Julia version 0.3.11 [49] and the plots were gener-

ated in python 2.7. The code used for the simulations can be found in GitHub as: https://

github.com/jopejor/protocell_metabolism.

Supporting information

S1 Fig. Average mean metabolic flux for the stationary protocell population of the recycler

example. The figure shows the dependence of the average mean metabolic flux of the station-

ary population with the ploidy and the replication accuracy for the case in Fig 1.

(PDF)

S2 Fig. Average mean metabolic flux for the stationary protocell population for the two

catalyst architectures. The figure shows the dependence of the average mean metabolic flux

of the stationary population with the ploidy for the case in Fig 2.

(PDF)

S3 Fig. Average defective type frequency of the stationary protocell population of the recy-

cler example. The curves show the dependence of the average defective type frequency in the

stationary population with the ploidy and the replication accuracy for the case in Fig 1.

(PDF)

S1 Text. Networks and metabolic fluxes. Chemical reactions, network diagrams and fluxes

for each of the networks studied in this work.

(PDF)
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