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A study of quantum 
Berezinskii–Kosterlitz–Thouless 
transition for parity‑time 
symmetric quantum criticality
Sujit Sarkar

The Berezinskii–Kosterlitz–Thouless (BKT) mechanism governs the critical behavior of a wide range 
of many-body systems. We show here that this phenomenon is not restricted to conventional many 
body system but also for the strongly correlated parity-time (PT) symmetry quantum criticality. We 
show explicitly behaviour of topological excitation for the real and imaginary part of the potential 
are different through the analysis of second order and third order renormalization group (RG). One 
of the most interesting feature that we observe from our study the presence of hidden QBKT and 
also conventional QBKT for the real part of the potential whereas there is no such evidence for the 
imaginary part of the potential. We also present the exact solution for the RG flow lines. We show 
explicitly how the physics of single field double frequencies sine-Gordon Hamiltonian effectively 
transform to the dual field double frequencies sine-Gordon Hamiltonian for a certain regime of 
parameter space. This is the first example in any quantum many body systems. We present the 
results of second order and third order RG flow results explicitly for the real and imaginary part of 
the potential. This PT symmetric system can be experimentally tested in ultra-cold atoms. This work 
provides a new perspective for the PT symmetric quantum criticality.

Symmetries are essential concept to understand and also to describe the physical system1. The laws of physics to 
be invariant under symmetries. The physics to be equivalent for charge conjugation symmetry (C), parity sym-
metry (P) and time reversal symmetry (T). The most interesting feature of symmetry breaking2 is that it creates 
the non-trivial and emergent physics of different quantum phases in quantum many body system.

PT symmetry has its roots in quantum field theory and opens a new perspective in studying non-Hermitian 
Hamiltonians. It can exhibit spontaneous symmetry breaking accompanied by a real-to-complex spectral phase 
transition. PT symmetric quantum mechanics is an extension of conventional quantum mechanics into complex 
domain3–6.

Initially PT symmetry quantum mechanics has started as an interesting mathematical discovery and a good 
theoretical exercise for theoretical physics3–6. But in current literature, it has been expanded experimentally in 
different field of science like open quantum systems7,8, physics of gain and loss (as found in photonics9–11) or 
systems where the non-Hermiticity models the finite lifetime12,13, localization–delocalization14–16, biological 
systems17–19, Weyl semi-metals20–24, topology and dissipation25,26 and PT symmetric circuit QED27.

This exceptional (EP) point is the unique feature in non-hermitian system when its complex eigen values 
and the corresponding eigenstate may coalesce, giving rise to a non-hermitian degeneracy3–6,28–31. This EP has 
a dramatic effect on the system leading to the nontrivial physics with interesting counterintuitive features, 
which we will observe in this study. These striking properties have been observed experimentally in microwave 
experiments32–34, nuclear magnetic resonance35, optical system36.

In the present study, we consider the low energy excitations of one-dimensional quantum many body system. 
This system shows only the collective excitations. The Tomonoga–Luttinger physics provide a unified descrip-
tion to study the low-energy behaviour for this system. This collective excitations of the system can be described 
in terms of bosonic field and also finally to express the model Hamiltonian of system in sine-Gordon model 
Hamiltonian. The study of this sine-Gordon model Hamiltonian gives different interesting features of quantum 
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criticality37–39. One can use renormalization group40,41 method to extract the different quantum phases from the 
analysis of sine-Gordon Hamiltonian.

Motivation.  The Berezinskii–Kosterlitz–Thouless (BKT) mechanism governs the critical behavior of a wide 
range of many body system. The main motivation of this study is to show that this phenomenon is not restricted 
to conventional many body system but also for the strongly correlated parity-time (PT) symmetric quantum 
criticality.

At the BKT transition temperature the pairs unbind and the vortices proliferate, resulting in a state with no 
spin rigidity and the correlation function decays exponentially with temperature. This is the classical picture of 
the BKT transition42–45. In quantum BKT (QBKT), there are no temperature dependent transitions as it observed 
for the classical BKT. For this case topological transition depends on the strength of sine-Gordon coupling and 
the Luttinger liquid parameter (K). QBKT transition is a different type of transition, where there is no spontane-
ous symmetry breaking whereas spontaneous symmetry occurs in the PT symmetry breaking phase excitations.

This model Hamiltonian is the single field double frequencies sine-Gordon model Hamiltonian. We will 
see how the nature of the model Hamiltonian changes for the different phases of the PT symmetric quantum 
criticality. This work provides a new perspective for quantum criticality in quantum many body systems. We 
use renormalization group (RG) method to solve this QBKT problem for PT symmetry quantum criticality. The 
mathematical structure and results of the RG theory are a significant conceptual advancement in quantum field 
theory in the last several decades in both high-energy and condensed matter physics46,47. We use six sets of RG 
equations which cover the second and third order RG process to solve the present problem.

The model Hamiltonian and renormalization group equation.  We consider a class of one-dimen-
sional quantum system described by the sine-Gordon field theory

where H0 is

The Hamiltonian, H0 gives a universal framework for describing one dimensional interacting bosons and 
fermionic system, i.e., Tomonoga–Luttinger liquid (TLL) Hamiltonian and V(φ) is the sine-Gordon potential. 
θ(x) is the dual field of φ(x) and satisfy the following commutation relation , [φ(x), ∂xθ(x′)] = −iπδ(x − x′) . v 
is the velocity of the collective excitation of the system, K is the Tomonoga–Luttinger liquid (TLL) parameter to 
present the interaction strength in the system. The physics of low-dimensional quantum many body condensed 
matter system is enriched with its new and interesting emergent behavior. K < 1 and K > 1 and K = 1 charac-
terizes the repulsive, attractive interactions and non-interacting, respectively37–39.

In the correlated many-body system, this situation is described by the celebrated sine-Gordon model, which 
also plays a central role in quantum field theory. However, a richer and more difficult to understand class of 
topological transitions for sin-Gordon model Hamiltonian which play a major role for several systems37–39. A 
generalization to the PT symmetric case by adding an imaginary contribution29 to the potential term is as follows.

where αr and αi are the real and imaginary part of the potential. The imaginary part of the potential, which 
introduces physics of spectral singularity occurs when the real and imaginary part of the potential are same29.

It will observe that when αr becomes relevant, a stable gapped phase , i.e, the fluctuation of φ gets suppressed. 
But when αi becomes relevant, it facilities the fluctuations of φ . Therefore finally it behaves like an effectively 
dual field sine-Gordon model Hamiltonian. The phase diagram is thus controlled by the confinement/decon-
finement of the corresponding dual topological excitations. These situations are considerably more difficult to 
analyze and need much more sophisticated field theory descriptions such as the so-called dual-field double 
sine-Gordon model46.

This model Hamiltonian (Eq. 1) has enrich physics. In the threshold of the PT transition this Hamiltonian 
system has spectral singularity and quantum criticality conspire to yield an unconventional RG fixed point29, 
which has no counterpart in Hermitian system. The other important and interesting physics is due to the presence 
of imaginary potential, at the relevant phase of this there is local gain and loss physics triggers an enhancement 
of superfluid correlation.

To get the correct physical picture of quantum criticality for this model Hamiltonian, RG study is essential35–37. 
Here we present the second (2nd) order and also third (3rd) order RG equations. Detailed derivations of bos-
onized Hamiltonian and RG equations are relegated to “Methods” section. The analytical expressions for the 
2nd order RG are the following:

(1)H = H0 + V(φ),

(2)H0 =
(

hv

2π

)
∫

dx

[

K(∂xθ(x))
2 + 1

K
(∂xφ(x))

2

]

.

(3)V(φ) = αr

π
cos(2φ)− iαi

π
sin(2φ),
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The analytical expressions for the 3rd order RG are the following:

Here l is the logarithmic RG scale and gr,i = αr,ia
2

hv  are the dimensionless coupling constants with a being a 
short distance cut-off and v is the collective excitations. Here these equations describe as the whole set of RG 
equations because both the couplings of the Hamiltonian, i.e., gr and gi are present.

Results along with physical interpretations
Whole sets renormalization group equations and effective single frequency model Hamilto‑
nian.  Figure 1 represent the RG flow diagram for the couplings gr and gi . It consists of two panels to present 
the results of two different order RG studies. The upper and lower panel are respectively for the third order 
(Eq. 5) and second order (Eq. 4) RG study. Each panel consists of two figures, which shows behaviour of RG flow 
lines for lines for the couplings gr with gi , for different initial values of K(0). The left and right figure in each panel 
are for K = 1 and 2.5, respectively. It reveals from this study for the smaller initial values of K(= 1.0) , both the 
real ( gr ) and imaginary potential ( gi ) flowing off to the strong coupling phase.

For the right figures of each panel, K = 2.5 , RG flow lines for both the couplings ( gr and gi ) are flowing off 
to zero. In this phase, the system is in gapless TLL phase.

Figure 2 represent for K = 2 , there is a transition between PT symmetry state to the PT symmetry broken 
state. We present the behaviour of RG flow lines for the different initial for the couplings ( gr and gi ) but with the 
fixed initial values of K = 2 . It reveals from this study that the region (I) ( gr(0) > gi(0) ) is the PT symmetric 
phase region and region (II) is the PT symmetric broken phase region. These two regions are separated by the 
separatrix (magenta line with arrow towards to the origin). We will see from the RG Eqs. (7)–(10) , and also 
Fig. 3, that K = 2 is the QBKT transition point. It reveals from this study that at K = 2 , the model Hamiltonian 
also show the PT symmetry transition thus K = 2 has some special important feature where the QBKT transition 

(4)

dgr

dl
= (2− K)gr

dgi

dl
= (2− K)gi

dK

dl
= (gi

2 − gr
2)K2.

(5)

dgr

dl
= (2− K)gr + 5gr

3 − 5gi
2gr

dgi

dl
= (2− K)gi − 5gi

3 + 5gr
2gi

dK

dl
= (gi

2 − gr
2)K2.

Figure 1.   These figures show renormalization group flow diagram for the couplings gr with gi , for two different 
initial values of K(= 1, 2.5) . The upper and lower panels are for the third order (Eq. 5) and second order (Eq. 4) 
RG equations solutions, respectively.
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and PT symmetry phase boundaries coincides. The line which separated the PT symmetry and PT broken phase 
( gr = gi ), which term as spectral singular critical point.

There is some difference between the spontaneous symmetry breaking of PT symmetry and other quantum 
many body systems like superconductivity, magnetism etc. In this spontaneous symmetry breaking phase the 
symmetry of the system reduced. According to the Mermin–Wigner–Ho theorem there is no spontaneous sym-
metry breaking low dimensional system ( d ≤ 2)41. But the PT symmetry is spontaneously broken in eigenstates. 
PT symmetry is said to be broken if some of the eigenstate of the Hamiltonian are not the eigenstate of the PT 
operators even though [H , PT] = 0 . In this phase, the system is in gapless TLL phase. Therefore it is found from 
this figure that only K = 2 , the system shows the transition from PT symmetry state to PT symmetry broken state.

On the PT symmetry threshold line the spectral singularity arises as well as their eigenstates coalesce in the 
continuum spectrum. Finally it become clear that in quantum many body system coexistence of the spectral 
singularity and quantum criticality can results in an exotic RG fixed point unique to non-Hermitian point.

Figure 3 shows the RG flow lines for the couling gr with K for two different initial values of gi(0) (Eqs. 4, 5). 
This figure consists of two panels, where upper and lower panels are respectively for the 3rd order and 2nd order 
results. It reveals from this study that this RG flow diagram has three different region of phases, one is weak 
coupling phase (region mark by I), i.e., the system is in TLL phase for K > 2 and another region is the strong 

Figure 2.   These figures show the behaviour of renormalization group flow lines for the couplings gr and gi , 
for the initial value of K(= 2) . The left and right figures are for the third order (Eq. 5) and second order (Eq. 4) 
RG equations solutions. We mark the regions of RG flow lines into two region, I and II. The region I and II are 
the PT symmetry preserve and broken phases respectively. Magenta colour with arrow is the line of separatrix 
between the PT symmetry and PT symmetry broken phase. The BKT and PT phase boundaries coincide at 
K = 2.

Figure 3.   These figures show behaviour of RG flow lines, gr with K two different initial values gi(0) . The upper 
(Eq. 5) and lower (Eq. 4) panels are, respectively, for results of third and second order RG studies. We mark 
different regions of quantum phases by I, II, III and the separatrix by the red colour lines. The magenta colour 
line represent the fixed line.
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coupling phase, i.e., the gapped phase for K < 2 . In this strong coupling (region mark by III) phase, the system is 
in the Mott insulating (MI) phase. Apart from that there is the crossover phase (region mark by II) of the system 
which goes from the weak coupling TLL phase to the strong coupling MI phase. It reveals from this study of this 
figure that crossover regime is more prominent for the 3rd order RG study. We have observed from the study 
of Fig. 3 that the behaviour of RG flow lines shows the hidden QBKT behaviour, i.e, RG flow lines show three 
different regime as one observed for the conventional BKT RG flow diagram although this RG equation is not 
the conventional QBKT. Therefore this behaviour of the RG flow diagram is termed as hidden QBKT.

In one-dimensional quantum many body bosonic system subject to periodic potential, the locking favours 
the suppression of density fluctuations and thus the gapped phase corresponds to the Mott-insulator phase (MI). 
This is physical picture for QBKT phase transition, one can also interpret this physical picture interms of classical 
picture as condensation of bounded pairs of vortex and anti-vortex.

In the weak coupling regime, K ≥ 2 , the effect of perturbation appears as a renormalization of the value of 
K and gr . It is found from the flow diagram that gr effectively decreases with K and effectively ending up at the 
renormalized value of K(= K⋆) . The base line, K ≥ 2 (magenta colour line) is the fixed line for this RG flow 
diagram.

Effective single frequency sine‑Gordan Hamiltonian.  Now we explain the physics for the PT symmetry unbro-
ken phase. When αr > αi the spectrum is real and the PT symmetry is preserve 29 . The author of Ref.48 has 
shown explicitly that the spectrum is real if and only if there exist an operator Ô satisfying Ô−1HÔ = Ĥ0 , H0 is 
the Hermitian operator. He has constructed a operator such that Ô = e−η

θ0
2  , where θ̂0 is a constant part of θ̂ and 

η = arctanh(αi/αr) . For this situation the interaction term become a single effective sine-Gordon Hamiltonian.

Thus finaly, we find effective single frequency sine-Gordon Hamiltonian for the PT symmetric phase, even 
though the complex potential is present. There is no single frequency sine-Gordon model for the PT symmetry 
broken phase, because both the couplings ( gr and gi ) increases with K for the smaller values of K and gi touches 
the base line (fixed line, magenta colour line of Fig. 3) for the higher values of K. Thus the single frequency sine-
Gordon Hamiltonian is only for the PT symmetry preserving phase.

Figure  4 shows the behaviour of RG flow lines gi with K for four different initial values of 
gr(0)(= 0.05, 0.1, 0.15, 0.2) for the third order RG process. It reveals from this study that the behaviour of the 
RG flow lines are behave differently as we increase the initial values of gr(0) . It is found that for the smaller 
initial values of gr(0) (upper panel of the figure) that the behaviour of the RG flow lines are behave as a convex 
character as we increase the initial values of gr(0) , it transform to the concave character of the RG flow lines as 

(6)H1 = (
hv

2π
)

∫

dx[K(∂xθ(x))2 +
1

K
(∂xφ(x))

2] +
√

αr2 − αi2/π

∫

dxcos(2φ).

Figure 4.   These figures show behaviour of RG flow lines, gi with K for four different initial values of 
gr(0)(0.05, 0.1, 0.15, 0.2) for the 3rd order RG process. The upper and the lower panels are respectively for the 
lower and higher values of gr(0) . We mark different regions of quantum phases by I, II. The magenta colour line 
represents the fixed line. Region I and II are respectively the superfluid and TLL phase.
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we present in the lower panel of this figure. It is found that for the smaller initial values of gr(0) (upper panel of 
the figure), the RG flow lines are flowing off to the strong coupling phase upto the initial value of K(0) = 1.5 . We 
mark the region of strong coupling phase as I. The other phase of this system is the weak coupling phase, when 
the coupling gi touches the base line (fixed line, magenta colour line of the figure). i.e., the TLL phase which 
starts from K = 1.5 and the second one is the strong coupling phase, i.e., the superfluid phase for K < 1.5 . In 
the lower panel, we present the behaviour of RG flow lines for the higher initial values of gr(0)(= 0.15, 0.2) , it 
is found that the character of the RG flow lines become concave and the region of superfluidity become large, 
it is K(0) = 1.8 and 2.2 for the two initial values gr = 0.15 and 2 respectively. The concave character is more 
pronounced for gr(0) = 0.2.

In Fig. 5, we do the same study what we have done for the Fig. 4 but for the 2nd order RG equations. We 
observe the same behaviour and the transition point from the superfluid state to the TLL phase occur as one 
observe for the 3rd order RG. But for the 2nd order RG process, we observe that the transition point for the 
superfluid to TLL phase changes , now it is K[0] = 1.7 and 2 respectively. Thus it is clear from this study that the 
strong coupling regime is more prominent for the 3rd order RG study.

Quantum Berezinskii–Kosterlitz–Thouless transition along with physical interpretation.  Here 
we derive four sets of conventional QBKT equations from the 2nd order (Eq. 4) and 3rd RG (Eq. 5) equations 
(Please see/// “Method” section for the detail derivation). In the previous section we have already discussed the 
basic aspects of QBKT and also the motivation of the present study.

Here we also derive two sets of quantum BKT equations from the third order RG equations

(7)

dgr

dl
= (2− K)gr

dK

dl
= −gr

2K2.

(8)

dgi

dl
= (2− K)gi

dK

dl
= gi

2K2.

Figure 5.   These figures show behaviour of RG flow lines, gi with K for four different initial values of 
gr(0)(0.05, 0.1, 0.15, 0.2) for the 2nd order RG process. The upper and the lower panels are respectively for the 
lower and higher values of gr(0) . We mark different regions of quantum phases by I, II. The magenta colour line 
represents the fixed line. Region I and II are respectively the superfluid and TLL phase.
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Figure 6 represents results of QBKT study based on four sets of RG equations (Eqs. 7, 8, 9, 10). The upper 
and lower panels are respectively present results of third-order and second-order RG calculations. Each panel 
consists of two figures, the left and right figure are respectively for the RG flow study of gr and gi with K. It is 
found that the left figures of upper and lower panels have three regions, weak coupling region (mark by I in the 
figure) where the RG flow lines for gr flowing off to the zero, i.e, the system is in the gapless TLL phase, upto 
K = 2 . In the strong coupling region (mark by III in the figure), the RG flow lines for the coupling gr flowing 
off to the strong coupling phase and this phase system is in the gapped insulating phase. The other region is the 
cross over region, in this region system goes from weak coupling phase to the strong coupling phase (mark by II 
in the figure). The separatrix of different quantum phases are marked by the red colour lines and the fixed line by 
the magenta colour in the RG flow diagram. It is found that the results of 3rd order RG, the flow lines are much 
more stiffer compare to the 2nd order RG due to the presence of an extra term ( ∼ gr

3 ) in the RG flow equations.

(9)

dgr

dl
= (2− K)gr + 5gr

3

dK

dl
= −gr

2K2.

(10)

dgi

dl
= (2− K)gi − 5gi

3

dK

dl
= gi

2K2.

Figure 6.   These figures show the behaviour of RG flow lines for the couplings gr and gi to study the 
conventional quantum BKT equations (Eqs. 7, 8, 9). The upper and lower panels are respectively for third order 
and second order RG study. We mark different regions of quantum phases by I, II, III and the separatrix by the 
red colour lines. The magenta colour line represent the fixed line. RG flow lines show different behaviour for the 
couplings gr and gi and also for the 2nd and 3rd order RG process.
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It is found from this study that the RG flow lines are more stiffer for conventional QBKT equation compare to 
RG flow lines of hidden BKT. We also observe the 2nd order RG flow lines for the coupling gi show only the semi-
circular nature for the all initial values of gi . But for the 3rd order RG flow lines, it shows the semicircular nature 
for the smaller initial values of gi , otherwise there is no evidence of semicircular nature of the RG flow lines.

The situation is different for the QBKT study for gi with K. Here we observe semicircular RG flow lines. 
The imaginary potential allows for substantial increase of K even if its strength gi initially small indicating the 
anomalous enhancement of the superfluid correlation. One can understand the anomalous enhancement of 
superfluid correlation from this physical interpretation: a local gain–loss structure introduced by the imaginary 
term causes locally equilibrated flows29,49,50 in the ground state. This results in the enhancement of fluctuations 
in the density, or equivalently, the suppression of fluctuations in the conjugate phase. For K > 2 , both of the 
couplings are flowing off to the base line ( gr,i = 0 ), i.e., the system is in the TLL phase.

It is found that in third order for the higher initial values of gi the RG flow lines are not semicircular in nature.
In one-dimensional quantum many body bosonic system subject to periodic potential, the locking favours 

the suppression of density fluctuations and thus the gapped phase corresponds to the Mott-insulator phase (MI). 
This is physical picture for QBKT phase transition, one can also interpret this physical picture interms of classical 
picture as condensation of bounded pairs of vortex and anti-vortex.

Nature of topological excitations and uniqueness of PT symmetry criticality.  It is well known to us that the polif-
ercation of topological excitations occurs in BKT transitions. But in the PT symmetry broken phase the ground 
state exhibits the enhanced superfluid correlation indicating tight binding of topological excitations29,49,50. Thus 
it is clear from these two topological excitations that these two transition behave different in nature.

The author of Refs.37,38 have solved the double frequencies dual field sine-Gordon Hamiltonian from the 
perspective of interacting Helical liquid and also for the study of topological states of interacting quantum mat-
ter. The model Hamiltonian of system contains two strongly relevant and mutually nonlocal perturbations over 
the Gaussian (critical) theory. In such a situation, the strong coupling fixed point is usually determined by the 
most relevant perturbation whose amplitude grows up according to its Gaussian scaling dimensions. However, 
this is not the general rule if the two operators exclude each other. In this case, the interplay between the two 
competing relevant operators, can produce a novel quantum phase transition.

The most interesting features of the PT symmetry quantum criticality the two couplings ( gr and gi ) are present 
but there is only single field φ(x) . But when the PT symmetry is broken, the fluctuation of the φ(x) facilitate the 
correlation of conjugate field. Therefore PT symmetry broken phase generate the physics of sine-Gordon dual 
field theory for the system. This is the uniqueness of PT symmetry quantum criticality.

Now we interpret the semicircular behaviour of RG flow lines physically, a real potential suppress the fluc-
tuation of φ and stabilize the gapped Mott insulating phase for K < 2 . Moreover, owing to the semicircular RG 
flows, the imaginary potential allows for a substantial increase of K, even for the initial small values of gi . This 
anomalous behaviour of our model Hamiltonian for the PT broken phase is also observed in the laser physics 
such as anomalous lasing and absorption in optics29,49,50.

To the best of our knowledge, it is the only phenomena in correlated many body system where the initial 
intuition was the real and imaginary potential are rival to the each other, as if they behave like dual fields to each 
other. But for the anamolous phase they are the true friend of each other.

Exact solutions.  In this study, we exactly solve, two sets RG equations for the second order RG equations to find 
the behaviour of RG flow lines.

(11)gr =
√

gr(0)
2 + 4(1/K − 1/K0)+ 2ln(K/K0).

Figure 7.   These figures show the RG flow lines for the exact solutions (Eqs. 11, 12) for the coupling gi (left 
figure) and gr (right figure). The regions mark by I and II for the left figures are respectively for the superfluid 
and TLL phase region. The regions mark by I, II and III for the right figures are respectively for the TLL, cross 
over phase and and strong coupling Mott insulating phase. Different colours for the RG flow lines have no extra 
physical significance.
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In Fig. 7, we present the result of exact solutions of RG flow lines behaviour for real (right figure) and imagi-
nary (left figure) potential. It is found that the behaviour of RG flow lines from the exact solutions (Eqs. 11, 12) 
are the same what we observe from the numerical studies of Eqs. (7) and  (8). The only difference that we obtain 
in the superfluid transition, for the exact solution it occurs at K = 1 , whereas we obtain it from the whole sets 
of RG equation (Eq. 4) at K = 1.5.

It is clear from the results of exact solutions that the results of numerical studies are consistent with the exact 
solutions.

Experimental proposal.  The authors of Ref.29 have proposed the source of non-Hermitian quantum mechanical 
system as PT symmetry quantum many body system. Here we briefly discuss their proposal. The PT symmetric 
many body system can be realized in a one-dimensional interacting ultracold bosonic atoms subject to a shal-
low PT symmetric optical lattice, the potential form is given in Eq. (3). αr and αi are respectively the depth of 
real and imaginary part of the potential, d is the lattice constant. The source of imaginary optical potential is 
a weak near-resonant standing-wave light. We refer, Ref.29, for the detail experimental proposal for this model 
Hamiltonian system.

Discussion
We have presented results of quantum Berezinskii–Kosterlitz and Thouless transition for both the PT symme-
try preserve and broken state for correlated many-body system. We have shown that a combination of spectral 
singularity and quantum criticality yields an exotic universality class which has no counterpart in known criti-
cal phenomena. We have found that the evidence of both hidden and conventional QBKT for the real part of 
the potential for the whole sets of RG equations and also for the conventional BKT equation, respectively. We 
have presented the exact solution for the second order RG flow lines for the both real and imaginary coupling. 
The topological excitations are different nature for the real and imaginary part of the potential. We have shown 
explicitly that for the PT symmetric phase, one can express the model Hamiltonian of the system in terms of 
effective single frequency-single field sine-Gordon field theory, whereas for the PT symmetry broken phase the 
effective Hamiltonian of the system is double frequency dual field sine-Gordon field theory. This work provides 
a new perspective for the study of PT symmetry quantum criticality.

Methods
Derivation of renormalization group equations.  Our starting point is the sine-Gordan Hamiltonian

Now we write the partition function Z in terms of fields as,

where SE is the Euclidean action which can be written as SE = −
∫

drL = −
∫

dr(L0 +Lint) , where r = (τ , x) . 
Thus the partition function is given by

The first and second terms of the exponent of the above equation are L0 and Lint , respectively.
Now we divide the fields into slow and fast modes and integrate out the fast modes. The filed φ is 

φ(r) = φs(r)+ φf (r).

Here � is the cut-off to start with and b is factor greater than one. It is clear from the above definition of 
faster and slower mode. One can make the average over the fast mode in order to get an effective action for the 
slower mode. Thus Z is

Using the relation �A�f =
∫

D φf e
−Sf (φf )A , one can write

(12)gi =
√

gi(0)
2 − 4(1/K − 1/K0)− 2ln(K/K0).

(13)H = (
hv

2π
)

∫

dx[K(∂xθ(x))2 +
1

K
(∂xφ(x))

2] + gr

∫

dxcos(2φ(x))+ igi

∫

dxsin(2φ(x)).

(14)Z =
∫

D φD θe−SE [φ].

(15)
Z =

∫

D φD θexp

[

−
∫ �

−�

dω

2π
|ω|

( |φ(ω)|2
2K

+ K |θ(ω)|2
2

)

−
∫

dr
(

grcos(2φ(x))+ igisin(2φ(x))
)

]

.

(16)φs(r) =
∫ �/b

−�/b

dω

2π
e−iωrφ(ω) and φf (r) =

∫

�/b<|ωn|<�

dω

2π
e−iωrφ(ω).

(17)Z =
∫

D φsD φf e
−Sf (φf )e−Sint (φ).

(18)Z =
∫

D φse
−Ss(φs)

〈

e−Sint (φ)
〉

f
.
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We write the effective action as

Taking ln on both sides give, Seff (φs) = Ss(φs)− ln
〈

e−Sint (φ)
〉

f
. By writing the cumulant expansion up to 

third order, we have

Similarly, Now we calculate the second order cumulant term of the action Seff (φ)

where the dotted term represents the expectation value of the correlation function of sine-Gordon operators, 
which we evaluate below.

Similarly,

We obtain the following relation by comparison of rescaled gr term (Eqs. 22,  23) using the rescaled relation 
as b = edl.

Comparison of rescaled K terms from the contribution of φ (Eqs. 25, 13), gives,

b = edl

Similarly one can find the analytical expression for gi.

We obtain the final form of dKdl  after the combination of the above two contribution from φ and θ for K.

Thus finally we obtain the 2nd order RG equations which are the following

(19)e−Seff (φs) = e−Ss(φs)
〈

e−Sint (φ)
〉

f
.

(20)
Seff (φs) =Ss(φs)+ �Sint(φ)�f −

1

2

(

〈

S2int(φ)
〉

f
− �Sint(φ)�2f

)

+ 1

6

(

〈

S3int(φ)
〉

f
− 3

〈

S2int(φ)
〉

f
�Sint(φ)�f + 2�Sint(φ)�3f

)

.

(21)�Sint(φ)� =
∫

dr
[

gr�cos (2φ(r))�f
]

+
[

igi�sin (2φ(r))�f
]

(22)
∫

dr
[

gr
〈

cos
(

2
√
πθ(r)

)〉

f

]

= b−K

∫

dr
[

gr cos
(

2
√
πθs(r)

)]

(23)
∫

dr
[

gi
〈

cos
(

2
√
πθ(r)

)〉

f

]

= b−K

∫

dr
[

gi cos
(

2
√
πθs(r)

)]

(24)−1

2
(
〈

S2int
〉

− �Sint�2) = −1

2

∫

drdr′
{

gr
2[....] − gi

2[....] + igrgi[....] + igigr[....]
}

,

(25)

− gr
2

2

∫

drdr′
{〈

cos[2φ(r)] cos[2φ(r′)]
〉

− �cos[2φ(r)]�
〈

cos[2φ(r′)]
〉}

= gr
2

4

(

1− b−2K
)

∫

dr(∂rφs(r))
2.

(26)

gi
2

2

∫

drdr′
{〈

sin[2φ(r)] cos[2φ(r′)]
〉

− �sin[2φ(r)]�
〈

sin[2φ(r′)]
〉}

= − gi
2

4

(

1− b−2K
)

∫

dr(∂rφs(r))
2.

(27)ḡr =grb
(2−K) → dgr

dl
= (2− K)� .

(28)ḡi =gib
(2−K) → dgi

dl
= (2− K)gi .

(29)
1

K̄
= 1

K
+ gr

2

2K

(

b2 − b(2−K)
)

(30)
1

K̄
= 1

K
+ gr

2dl → dK

dl
= −gr

2.

(31)
dK

dl
= gi

2.

(32)
dK

dl
= (gi

2 − gr
2)K2.
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These 2nd order RG equations are consistent, if your take the limit of 2nd order of Ref.29, it is the same RG 
equations.

The 2nd order QBKT equations (Eqs. 7, 8) for the coupling gr and gi can be obtained by taking the limits 
gi = 0 and gr = 0 respectively.

Now we calculate the third order terms of cumulant expansion for the effective action (Eq. 20),

Now we follow the same analytical calculations what we have done during the derivation of second order RG 
equations and finally obtain these RG equations for the third order RG process which is consistent with Ref.29.

The 3rd order QBKT equations (Eqs. 9,  10) for the coupling gr and gi can be obtained by taking the limits 
gi = 0 and gr = 0 respectively.
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