
Citation: Yuan, K.; Song, W.; Liu, Z.;

Lin, G.N.; Yu, S. Mendelian

Randomization and GWAS Meta

Analysis Revealed the

Risk-Increasing Effect of

Schizophrenia on Cancers. Biology

2022, 11, 1345. https://doi.org/

10.3390/biology11091345

Academic Editor: Tianwei Yu

Received: 15 August 2022

Accepted: 6 September 2022

Published: 12 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

Mendelian Randomization and GWAS Meta Analysis Revealed
the Risk-Increasing Effect of Schizophrenia on Cancers
Kai Yuan 1,2 , Weichen Song 1,2 , Zhe Liu 3 , Guan Ning Lin 1,2,3,* and Shunying Yu 1,2,*

1 Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine,
Shanghai Jiao Tong University, Shanghai 200030, China

2 Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
3 School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
* Correspondence: nickgnlin@sjtu.edu.cn (G.N.L.); yushuny@yahoo.com (S.Y.)

Simple Summary: The relationship between schizophrenia and tumors has sparked much interest
and controversy. On the one hand, the health of patients with schizophrenia is affected by a variety
of risk factors associated with cancer development, such as smoking, alcohol, and drug abuse. On the
other hand, early investigations have found that patients with schizophrenia have a lower cancer
incidence than the overall population. This phenomenon has prompted new theories on the processes
underlying the protective effect. To explore the connection between schizophrenia and tumors,
we used two-sample Mendelian randomization and GWAS meta-analysis methods on the GWAS
summary data to assess potential genetic links between schizophrenia and 13 cancers. It was revealed
that schizophrenia may lead to an increased risk of breast, ovarian, and thyroid cancers. Furthermore,
the thyroid-stimulating hormone level is impacted by schizophrenia, which may further affect the
estrogen and thyroid hormone levels. Meanwhile, based on our results, AS3MT, SFXN2, and PCCB
may be potential biomarkers for preventing breast and thyroid cancers in patients diagnosed with
schizophrenia. Therefore, we suggest that patients with schizophrenia should pay close attention to
early risk warnings for breast, ovarian, and thyroid cancers.

Abstract: The causal relationship between cancer and Schizophrenia (SCZ) remains controversial.
Some researchers have found that SCZ is a cancer-preventive factor in cohort studies or meta-
analyses, whereas others have found the opposite. To understand more about this issue, we used two-
sample Mendelian randomization (2SMR) on available GWAS summary results to evaluate potential
genetic connections between SCZ and 13 cancers. We discovered that the genetic susceptibility to
schizophrenia lead to an increasing risk of breast cancer (odds ratio [OR] per log-odds increase in
schizophrenia risk: 1.049, 95% confidence interval [CI]:1.023–1.075; p = 0.00012; FDR = 0.0017), ovarian
cancer (OR, 1.326; 95% CI, 1.267–1.387; p = 0.0007; FDR = 0.0045), and thyroid cancer (OR, 1.575;
95% CI, 1.048–2.365; p = 0.0285; FDR = 0.123). Secondly, we performed a meta-analysis based on
the GWAS summary statistics of SCZ and the three significant cancers. Next, we associated genetic
variants to genes using two gene mapping strategies: (a) positional mapping based on genomic
proximity and (b) expression quantitative trait loci (eQTL) mapping based on gene expression linkage
across multiple tissues. As a result, we identified 114 shared loci and 437 shared genes in three groups,
respectively. Functional enrichment analysis shows that the most enriched biological pathways are
related to epigenetic modification. In addition, we noticed that SCZ would affect the level of thyroid-
stimulating hormone (OR, 1.095; 95% CI, 1.006–1.191; p = 0.0354; FDR = 0.177), which may further
affect the level of estrogen and the risk of the above three cancers. In conclusion, our findings under
the 2SMR assumption provide crucial insights into the risk-increasing effect of SCZ on three cancers’
risk. Furthermore, these results may provide insights into understanding the genetic predisposition
and underlying biological pathways of comorbid SCZ and cancers.

Keywords: cancers; genetic susceptibility; genome-wide association study; mendelian randomization;
schizophrenia; meta-analysis
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1. Introduction

The relationship between psychiatric disorders and tumors has sparked much interest
and controversy [1]. On the one hand, the health of patients with Schizophrenia (SCZ)
is affected by a multitude of risk factors associated with cancer development, such as
smoking [2,3], alcohol [4], drug abuse [5], obesity [6], and physical inactivity [7]. Some
epidemiological and meta-analyses have argued that SCZ can increase the risk of breast
cancer [8,9]. On the other hand, early investigations have found that patients with SCZ
have a lower cancer incidence than the overall population [10]. This phenomenon has
prompted new theories on the processes underlying the protective effect [11]. Other studies
and meta-analyses indicated that patients with SCZ have an approximately 50% increased
risk of dying from cancer compared to the gender-age-matched healthy population [12,13].

Confirming a causal association between the two occurrences can be challenging in
observational studies since the temporal sequence and influence of variables on exposure
and outcome are impossible to identify. Large randomized controlled clinical trials are
often regarded as the gold standard for determining causality, particularly when evaluating
drug safety and efficacy [14]. However, because of the difficulty of implementation and the
high cost of time and money, randomized controlled clinical trials may confront a variety
of challenges when extrapolating to clinical practice.

Large-scale genome-wide association studies (GWAS) and Mendelian Randomization
(MR) research have been widely used in recent years to investigate the causal relationship
between complex exposure factors and disease outcomes due to better statistical meth-
ods and high-throughput sequencing technology [15]. To infer the relationship between
phenotype and disease in MR, we used genotype as an instrumental variable (IV). For
example, one MR research used anti-hypertensive drug target expression quantitative trait
loci (eQTL) data with SCZ GWAS. Lower ACE mRNA and protein levels were found to
be negatively linked with SCZ risk, indicating the importance of pharmacovigilance for
ACE inhibitors in late-onset SCZ [16,17]. Several studies have now used the MR approach
to investigate the association between SCZ and a single tumor (such as breast cancer or
ovarian cancer), with the results indicating that there may be a causal relationship between
them [18–20].

GWAS has identified a variety of genetic variants associated with complex diseases
such as SCZ [21,22] and cancer [23,24], making it possible to perform MR analysis by using
such genetic variants as IVs to detect potential causal associations of exposure with an
outcome. This study adopted the two-sample MR (2SMR) method to identify potential
evidence of a link between SCZ and 13 cancers. To discover more about the biological
mechanism under this relationship, we merged cancer cis-eQTL data and immunohisto-
chemistry staining images to identify appropriate genes to explore tumor biomarkers in
patients with SCZ.

2. Materials and Methods
2.1. Conceptual Framework

We employed 2SMR to examine the causative associations between SCZ and 13 types
of cancers by single nucleotide polymorphisms (SNPs) using summary results from GWAS.
Then using TCGA cis-eQTL data, we matched the SNPs to determine the eQTL genes and
investigated their biological significance further (Figure 1). We expected to learn a lot about
how genetic susceptibility to SCZ raises the risk of particular cancers from the 2SMR study.
We conducted a meta-analysis based on the GWAS summary data of SCZ and three cancers
to further explain the shared genetic risk loci for both diseases. Shared genetic variants
with genes were connected using two gene mapping strategies: (a) location mapping based
on genomic proximity and (b) eQTL mapping based on gene expression linkages across
multiple tissues. The annotated genes investigated their biological significance further, and
functional enrichment analysis was carried out.
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Figure 1. Flow chart that depicts the workflow of our study.

2.2. Data Sources

We used publicly available data from the cancers GWAS summary data from MRC Inte-
grative Epidemiology Unit (IEU, https://gwas.mrcieu.ac.uk/, accessed on 14 August 2022),
UK-bioBank (https://www.ukbiobank.ac.uk/, accessed on 14 August 2022) or BioBank
Japan (BioBank Japan (biobankjp.org), accessed on 14 August 2022). Details of cancer
data are shown in Tables S1 and S5. We accessed publicly available case-control GWAS
summary data for SCZ (35476 cases and 46839 controls, 46 of European and 3 of East Asian
ancestry) [22] and extracted the summary statistics for SNPs from their GWAS results
strongly associated with SCZ (p-value < 5 × 10−8). The TCGA cis-eQTL data was down-
loaded through PancanQTL (http://bioinfo.life.hust.edu.cn/PancanQTL/, accessed on
14 August 2022) website [25].

2.3. Power Calculation

We calculated the variance in phenotype explained by each instrument by

R2 =
2 ∗ EAF ∗ (1 − EAF) ∗ β2

2 ∗ EAF ∗ (1 − EAF) ∗ β2 + 2 ∗ EAF ∗ (1 − EAF) ∗ N ∗ se(β)2 (1)

https://gwas.mrcieu.ac.uk/
https://www.ukbiobank.ac.uk/
http://bioinfo.life.hust.edu.cn/PancanQTL/
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where EAF was the effect allele frequency, β was the effect size, N was the sample size,
and se (standard error, β) was the standard error of effect size. The F statistic was then
denoted as

F =
R2 ∗ (N − 2)

1 − R2 (2)

R2 and F were used to evaluate the power for each instrument. MR power and the number
of valid instruments for each pair are recorded in Table S2.

2.4. Two-Sample MR

Mendelian’s second law is the foundation of MR research. Alleles are randomly as-
signed when parents with two (or more) pairs of relative traits cross to produce gametes in
their offspring [26]. For 2SMR analysis, the inverse variance weighting method (IVW) was
utilized, which aggregated two or more random variables to minimize variance. It distin-
guishes itself by ignoring the intercept term and fitting with the reciprocal of the outcome
variance as the weight. Thus, it can give reliable combined estimations of the effect of the
exposure on the outcomes under conditions of heterogeneity between IVs, which may arise
when quite a few IVs are included in an MR analysis [27]. In the IVW hypothesis, the IVs
are not pleiotropic, considering that the results of GWAS are phenotypically standardized.
Therefore, the results will be biased if these SNPs are pleiotropic when using the IVW
method [28]. Correspondingly, there are ways to overcome the disadvantages of IVW,
such as weighted median and MR-Egger. MR-Egger adds the intercept term, whose main
purpose is to judge whether there is horizontal pleiotropic. Our study adopted 2SMR to
explore the causality between SCZ and cancers using the “TwoSampleMR” package [29].
The effector alleles for each SNP were related to an elevated risk of SCZ when the GWAS
data for SCZ was normalized. The effector alleles were then matched to the exposure
dataset to create the appropriate SNP-cancer association dataset. Then, to calculate the
2SMR results, the IVW method was used to integrate the cancer factor-SNP and SCZ
variable-SNP associated datasets, and the stats package in R was used to correct the FDR.
Meanwhile, to ensure independence among genetic instruments, we applied Linkage dis-
equilibrium clumping with a clumping window of 10 MB and an r2 cutoff of 0.001. For
other parameters set as follows: the palindromes is 1, the align alleles is 1, and minor allele
frequency threshold is 0.3.

2.5. Sensitivity Analyses

MR analysis also has certain restrictions. Firstly, the association hypothesis is that IVs
are strongly associated with exposure factors, and weak IVs can lead to bias in estimates.
Secondly, the independence hypothesis: IVs are not associated with confounding factors,
such as population stratification. Finally, the exclusivity limitation: IVs are only associated
with outcome variables generated by exposure factors [30]. Assuming that all conditions
are satisfied, MR analysis can be used to overcome two major limitations of observational
studies: unmeasured confounding and the inability to infer causality [31].

To assess whether the results were potentially biased, we used sensitivity analysis
in MR analysis. Aiming at the three limitations of MR research, the following sensitivity
analysis was designed:

2.5.1. Heterogeneity Test

The primary purpose is to test the differences between IVs when there are non-specific
SNPs (SNPs are related to the target exposure factors and other exposure factors). Hetero-
geneity analysis is needed to determine the influence of non-specific SNPs on the results.
If the MR analysis results were still statistically significant after excluding non-specific
SNPs, the evidence for a causal association between exposure factors and outcome variables
would be verified. When we carried out the analysis, multiple SNPs were generally used
as IV for causal inference, and it was difficult to avoid the influence of gene pleiotropy.
Therefore, the MR-egger regression analysis method was needed to evaluate the bias caused
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by gene pleiotropy. The slope of the MR-egger regression direction could estimate the size
of directional pleiotropy. MR-Egger was applied in each MR test, where heterogeneous
SNPs were removed for all analyses. We reported the MR analysis results with them
removed, and MR-Egger performed again after their removal to demonstrate whether
heterogeneity existed.

2.5.2. Pleiotropy Test

A fundamental assumption of MR is the exclusivity limitation, known as the ‘no
horizontal pleiotropy’ assumption. Horizontal pleiotropy occurs when the variant affects
other traits outside of the pathway of the exposure of interest and impacts the target
outcome or when the variant directly affects the target outcome. As a violation of the ‘no
horizontal pleiotropy’ assumption, horizontal pleiotropy can distort MR tests, leading to
inaccurate causal estimates, loss of statistical power, and potential false-positive causal
relationships. So the MR-PREESO package [32] was used to test horizontal pleiotropy.

2.5.3. Leave-One-Out Sensitivity Test

It mainly calculates the remaining MR results of IV after removing IV one after the
other. If the estimated MR results of other IVs after removing a certain IV differ significantly
from the total result, it indicates that MR results are sensitive to that IV.

2.6. GWAS Meta-Analysis

Meta-analysis is becoming an increasingly important tool in GWAS of complex genetic
diseases and traits [33]. Meta-analysis provides an efficient and practical strategy for
detecting variants with modest effect sizes [34]. METAL provides a computationally
efficient tool for meta-analysis of genome-wide association scans, which is a commonly
used approach for improving power complex traits gene mapping studies. Meta-analysis
of SCZ and cancer was performed with a sample size-based analytical strategy model using
METAL [35], which is a fast and efficient meta-analysis of genomewide association scans.
Specifically, METAL combines p-values across studies considering study-specific weights
(the sample size) and direction of effect. METAL supplied the SNP ID, weight, alleles,
frequency, effect size, standard error, and p-value from both GWAS summary statistics.

2.7. Identification of Candidate SNPs, Gene Mapping, and Functional Annotation

The tool FUMA [36] (v1.3.6) was used to find potential SNPs. Linkage disequilibrium
blocks from 1000 Genomes Project Phase 3 [37] EUR population were used as a reference
panel to compute r2 and MAF. Positional and eQTL mapping methods were used separately
to map candidate SNPs to genes. Gene window for positional mapping was set at a
default maximum distance of 10 kb on both sides and was based on ANNOVAR [38]
annotation. Two sets of tissue types were employed for cis-eQTL mapping: (1) whole
body tissues in GTEx v8 [39] (54 tissue types, including brain regions), and (2) 13 brain-
only regions. SNPs were mapped to genes up to 1 Mb. Statistics were only applied to
eQTLs with FDR 0.05. Genes that were mapped have their biotypes identified by Ensembl
BioMart (Ensembl build v92, https://uswest.ensembl.org/info/data/biomart/index.html,
accessed on 9 September 2022). Hypergeometric tests were used to perform functional
enrichment studies. Information on pathways and functional gene sets was retrieved
from MSigDB v7.0.

2.8. MAGMA Gene-Based Tests

The MAGMA [40] v1.08 with SNP-wise mean model as part of the FUMA pipeline
was used to conduct the gene-based analysis. A 10 kb upstream and 10 kb downstream
gene annotation window was used. 19,383 genes from Ensembl build v92 GRCh37 were
assigned to SNPs. Based on GTEx v8 [39] RNA-Seq data, tissue expression (gene-property)
analysis was carried out to evaluate the genetic connections of highly expressed genes in a
particular tissue.

https://uswest.ensembl.org/info/data/biomart/index.html
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2.9. Immunohistochemistry

The protein expression of disease risk genes in cancers and normal tissues was an-
alyzed by immunohistochemistry image in this study. The Human Protein Atlas (HPA)
(https://www.proteinatlas.org/, accessed on 14 August 2022) is a freely accessible web-
site that helps to study protein expression in human tissue and cells [41]. GeneMANIA
(http://genemania.org, accessed on 14 August 2022) is a web tool for identifying internal
associations of gene sets [42]. The interactions of common genes at the gene and protein
expression level were identified with the help of GeneMANIA.

3. Results
3.1. SMR Results of SCZ and Cancers

Our findings revealed that SCZ was linked to an increased risk of breast cancer (odds
ratio [OR] per one-standard-deviation increment of log odds of SCZ risk,1.049; 95% confi-
dence interval [CI], 1.023–1.075; p = 0.00012; FDR = 0.00175; after removal of horizontally
pleiotropic SNPs), ovarian cancer (OR, 1.326; 95% CI, 1.267–1.387; p = 0.0007; FDR = 0.0045)
and thyroid cancer (OR, 1.575; 95% CI, 1.048–2.365; p = 0.0285; FDR = 0.123) (Table 1).
MR-Egger was used to undertake various sensitivity analyses to uncover any violations
of the third MR assumption. SCZ was found to have a moderately significant correlation
with three cancers (breast cancer, ovarian cancer, and thyroid cancer) using the MR-Egger
regression method (Figure 2A–C). Besides, no significant pleiotropy was identified in the
MR-Egger pleiotropy test (p-value > 0.05) except for breast cancer (Table 1). Therefore, to
reduce distorted effects of genetic IVs in breast cancer, eight horizontally pleiotropic SNPs
(rs2905432, rs4702, rs58120505, rs11658257, rs73229090, rs4523957, rs11740474, rs12932476)
were identified. The results of the leave-one-out analysis indicated that each variant had
no significant effect on the overall IVW estimates, indicating that the SNPs utilized in this
study were legitimate instruments (Figure 2A–C). The results for funnel plot asymmetry
showed that the estimates of the precision (1/standard error) and Wald ratios for each SNP
were bilaterally symmetrical (Figure 2A–C), confirming that SNPs used in this analysis
were valid IV. We used another cancer data set for verification to ensure reliable results.
In the European population data, we discovered that the probable causation between
schizophrenia and breast cancer, ovarian cancer, and thyroid cancer remains considerable.
Simultaneously, no significant association was observed when the 2SMR analysis was per-
formed in an inverted direction, indicating that almost all cancers had no significant effect
on SCZ risk (p-value > 0.05, Table S3), except the glioma (OR, 1.0559; 95% CI, 1.005–1.109;
p = 0.030; FDR = 0.214).

Table 1. The 2SMR results of SCZ and 13 cancers using IVW methods. Genetic susceptibility to SCZ
may influence the risk of three cancers.

Datasets Num Cancer Name MR Results
(IVW-p Value) FDR Heterogeneity

Statistics OR (95%CI)

ieu-a-1126 Breast cancer 0.00012 * 0.0015 0.054 1.049 (1.023–1.075)
ieu-a-1120 Ovarian cancer 0.0007 * 0.0045 0.2821 1.326 (1.267–1.387)
ieu-a-1082 Thyroid cancer 0.0285 * 0.123 0.3841 1.575 (1.048–2.365)
ieu-a-822 Pancreatic cancer 0.1638 0.3549 0.7246 1.155 (0.943–1.415)
ieu-a-816 Neuroblastoma 0.504 0.655 0.6306 0.939 (0.782–1.128)
ieu-a-1057 Gallbladder cancer 0.843 0.843 0.095 0.876 (0.235–3.264)
ieu-a-1013 Glioma 0.225 0.417 0.274 0.880 (0.716–1.081)
ieu-a-966 Lung cancer 0.073 0.237 2.12 × 10−34 1.130 (0.989–1.290)
ieu-b-85 Prostate cancer 0.418 0.603 2.98 × 10−15 1.019 (0.973–1.068)

ieu-b-90 Oral cavity and
pharyngeal cancer 0.681 0.804 0.00024 1.042 (0.858–1.265)

ukb-b-16713 Secondary malignant
neoplasm of liver 0.158 0.332 0.4327 1.000 (0.999–1.0001)

ukb-b-20145 Colon cancer 0.812 0.879 0.8691 1.000 (0.999–1.0005)
ukb-b-19425 Rectum cancer 0.67 0.871 0.3638 0.9998 (0.9994–1.0003)

* Bold fonts represent the best experimental results. FDR: false discovery rate; Significance symbol conventions
are *: p < 0.05.

https://www.proteinatlas.org/
http://genemania.org
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Figure 2. Estimated positive causal effects of genetically increased SCZ risk on three cancers risk.
Forest plot representing the causal estimation of SCZ risk on (A) breast cancer, (B) ovarian cancer,
and (C) thyroid cancer risk using each or all variants. Red lines are the causal effect of exposure on
outcome is estimated using all SNPs using different methods.

3.2. SMR Results of SCZ and Subtypes of Three Cancers

The subtypes of each cancer were investigated further. Because breast cancer can be
stratified by ER status, we employed MR to explore the impact of SCZ on ER-positive and
ER-negative breast cancer risk. Using the random-effects IVW or the weighted median mod-
els, significant associations of genetically predicted SCZ risk with both ER-positive and ER-
negative breast cancer risk were discovered, with ORs ranging from 1.03 to 1.05 (Table S4).
Epithelial ovarian cancer can be categorized into five histological subgroups based on
histology and molecular genetic alterations, including high-grade serous adenocarcinoma,
endometriosis adenocarcinoma, clear cell adenocarcinoma, mucinous adenocarcinoma, and
low-grade serous adenocarcinoma [43]. MR analysis were performed on these five types of
ovarian cancer and SCZ is found to be significantly related to low-grade (OR, 1.235; 95% CI,
1.029–1.483; p = 0.024; FDR = 0.060) and high-grade serous adenocarcinoma (OR, 1.085; 95%
CI, 1.015–1.160; p = 0.006; FDR = 0.03; after the removal of horizontally pleiotropic SNPs)
(Table 2).

Table 2. The 2SMR results of SCZ and five subtypes of ovarian cancers using IVW methods.

Datasets
Num Cancer Name sample

Size
MR results

(IVW-p Value) FDR Heterogeneity
Statistics OR (95% CI)

Ieu-a-1125 Endometrioid ovarian cancer 43,751 0.8596 0.86 0.2153 1.0096 (0.908–1.122)
Ieu-a-1124 Clear cell ovarian cancer 42,307 0.1522 0.254 0.207 1.114 (0.961–1.291)

Ieu-a-1123 Invasive mucinous
ovarian cancer 42,358 0.548 0.685 0.1659 1.046 (0.902–1.213)

ieu-a-1122 Low-grade serous
ovarian cancer 41,953 0.02374 * 0.06 0.101 1.235 (1.029–1.483)

ieu-a-1121 High-grade serous
ovarian cancer 53,978 0.006 (0.017) * 0.03 0.1742 1.085 (1.015–1.160)

* Bold fonts represent the best experimental results. FDR: false discovery rate; Significance symbol conventions
are *: p < 0.05.
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3.3. Shared Genetic Variants of SCZ with Three Cancers

Based on earlier GWAS research, we performed a genome-wide association meta-
analysis of SCZ and three main cancers (Table 1). In the meta-analysis, we found 24,278
candidate related SNPs (p < 0.05) for 142 lead variants (p < 5 × 10−8) at 109 risk loci
in SCZ and breast cancer. We found 465 lead variations (p < 5 × 10−8) at 227 risk loci,
among 44,801 potential linked SNPs (p < 0.05), for ovarian cancer and 56,609 candidate
related SNPs (p < 0.05) with 865 lead variations (p < 5 × 10−8) in 778 risk loci for thyroid
cancer (Figure S1A–C).

On the one hand, 114 SNPs appeared in all three sets of results (Figure 3A). Accord-
ing to annotation, the plenty loci were strongly correlated with Schizophrenia, especially
rs11191419 (p < 5 × 10−19). It has been shown that the neural expression of BORCS7,
AS3MT, and NT5C2 is altered in SCZ due to genetic variation at rs11191419 [44]. These sites
are significantly related to AS3MT, SFXN2, and C10orf32 genes in three different tumors
(Figure 3C–F). AS3MT is the main enzyme in the biomethylation of inorganic arsenic (iAs),
a key enzyme that catalyzes the conversion of inorganic As2O3 to methylated products.
AS3MT mRNA expression is closely related to the incidence of breast cancer [45,46]. Mean-
while, the protein expression level of AS3MT is tissue-specific and substantially expressed
in the parathyroid and adrenal glands, according to the Human Protein Atlas database
(HPA). Previous research indicated that SFXN2 could further be manipulated in future
experiments to diminish breast cancer tumors’ viability [47]. In breast and thyroid cancer,
genes corresponding to the intersection sites (rs11191419, rs13240464, rs7432375) included
SFXN2, AS3MT, IMMP2L, and PCCB. Using TCGA gene expression data, we found that
the AS3MT and PCCB genes were differentially expressed in breast cancer, and the expres-
sions of SFXN2 and PCCB were significantly different in ovarian cancer (Figure S2A–D).
Moreover, the expression of these genes was significantly correlated with the prognosis of
breast cancer and thyroid cancer patients (Figure S2E,F). In the future, these genes could
be employed as a biomarker to help SCZ patients avoid breast cancer and thyroid cancer.
We evaluated immunohistochemical staining images from the HPA to learn more about
AS3MT and SFXN2 protein expression in breast and thyroid cancer. The findings revealed
that normal breast tissues had medium AS3MT protein expressions, whereas breast cancer
tissues had low AS3MT protein expressions. Normal thyroid tissues had a medium level of
SFXN2 protein expression, whereas thyroid cancer tissues had a high protein expression
level. In conclusion, AS3MT protein expression was higher in breast cancer tissues than in
normal breast tissues, and SFXN2 protein expression was higher in thyroid cancer tissues
than in normal tissue (Figure S3A). We analyzed the relationship of common genes at
the gene level using GeneMANIA (Figure S4B). The results showed that SLC5A6 was a
Physical Interaction with PCCB and the diseases associated with SLC5A6 include Neu-
rodegeneration, Infantile-Onset, Biotin-Responsive, and Biotin Deficiency. It can also be
regarded as an important transporter for antipsychotic drugs [48]. Another important gene
is SFXN1, which connects to SFXN2 by shared protein domains. SFXN1 is expressed in a
number of cancer cells, with the highest expression in leukemia and lymphoma. Therefore,
SFXN1 and its homologous proteins may be an important node regulating the fate of serine
in cells and may also play an important role in tumor cell growth [49].

On the other hand, SCZ_ovrianrs-specific variants contain a large number of variants
associated with breast cancer and ovarian cancer. rs10069690 polymorphism may be a
risk factor for cancer, especially breast cancer, ovarian cancer, lung cancer, and thyroid
cancer [50]. Other 14 SNPs (rs10069690, rs2853669, rs4702131, rs12519859, rs10941679,
rs72765759, rs72749841, rs62355901, rs10472076, rs72774916, rs332529, rs6882649, rs6596100,
rs11135046) were previously found primarily associated with risk of breast cancer [51].
For SCZ_thyroid-specific variants, we found the SNP rs965513 in 9q22, which has been
consistently shown to be highly associated with increased papillary thyroid cancer risk [52].
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Figure 3. Shared variants regulated different genes expression in three tumors. Venn diagram
showing (A) Number of specific and shared variants of three study cohorts; (B) Number of specific and
shared genes of three study cohorts; (B–F) boxplot showing rs11191419 with eQTL genes expression
in different cancers.scz_br: the common variants in schizophrenia and breast cancer; scz_ov: the
common variants in schizophrenia and ovarian cancer; scz_th: the common variants in schizophrenia
and thyroid cancer; OV: ovarian cancer; BRCA: breast cancer; THCA: thyroid cancer.

3.4. Tissue Expression Specific and Gene Mapping

Here, we used two gene mapping approaches: (1) genomic proximity-based positional
mapping and (2) eQTL mapping, which is based on linked gene expression across several
tissues. As a result, 545 genes were shown to be associated with SCZ and breast cancer,
817 genes with ovarian cancer, and 1168 genes with thyroid cancer. Between the three gene
sets, 437 genes are shared (Figure 4A). SNPs in the intronic region were followed by in the
intergenic region, which contained the highest proportion of SNPs in the three study cohorts
(Figure S4). Tissue enrichment analysis was performed using MAGMA to investigate the
tissue expression of variant-associated genes. We found the SCZ_breast genes were majorly
expressed in the whole_blood and brain spinal cord cervical (Figure 4B). The SCZ_ovarian
genes were expressed highly in fibroblast cells and brain spinal cord cervical (Figure S4).
Our results coincide with Li et al. [53]. We should associate these shared variations with
genes in the genome to learn more about how they affect the underlying pathophysiology
of SCZ and cancers.

Nucleosome assembly, epigenetic negative regulation of gene expression, and chro-
matin organization involved in negative regulation of transcription were the most notable
enriched GO biological pathway gene sets for the shared genes. The most significant
enriched Reactome gene sets for the SCZ and thyroid cancer-related special genes were
HDACs deacetylate histones and hormone metabolic process pathways, which were en-
riched in GO biological processes. The top significant Reactome pathways using the SCZ
and ovarian cancer-related special genes and the histone deacetylation pathway include
deubiquitination and interleukin-7 signaling (Figure S5).
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Figure 4. Functional enrichment of shared genes (A) Number of specific and shared genes of three
study cohorts; (B) tissue expression enrichment in GTEx tissue types. The dashed line indicates the
significance threshold at p < 0.001; (C) Bar-dot plots show significantly enriched gene sets annotation
genes. scz_br: the common genes in schizophrenia and breast cancer; scz_ov: the common genes in
schizophrenia and ovarian cancer; scz_th: the common genes in schizophrenia and thyroid cancer.

3.5. The Level of the Thyroid-Stimulating Hormone Could Be Affected by SCZ

It is generally known that female patients are more likely to develop breast, ovarian,
and thyroid cancers and that these three diseases are closely linked to hormones in the
human body (Figure S3C). As a result, we looked into whether SCZ is linked to hormones
in a significant way. Previous research has suggested that thyroid hormone, estrogen,
and other factors have a role in the pathogenesis of all three types of tumors. Thus, we
performed a 2SMR study of SCZ, thyroid hormones, thyroid-stimulating hormones, and
estrogen. The blood level of thyroid-stimulating hormone was found to be positively asso-
ciated to the hereditary risk of SCZ (OR, 1.100; 95% CI, 1.011–1.197; p = 0.035; FDR = 0.177),
while thyroid hormone receptor alpha (OR, 1.039; 95% CI, 0.952–1.134; p = 0.39), estrogen
sulfotransferase (OR, 1.001; 95% CI, 0.923–1.086; p =0.976), estrogen receptor (OR, 0.963;
95% CI, 0.887–1.045; p = 0.363) and parathyroid hormone-related protein (OR, 1.000; 95% CI,
0.916–1.093; p = 0.992) did not change significantly (Table 3). Thyroid-stimulating hormone
(TSH) is a hormone produced by the adenohypophysis that helps thyroid development
and function. It encourages thyroid follicular epithelial cell proliferation, thyroid hormone
synthesis, and release. TSH stimulates thyroid hormone production by acting on the thy-
roid gland. Thyrotropin can influence thyroid hormone and estrogen levels. As a result, it
may develop associated tumors [54].

Since these three tumors were mainly adenocarcinomas, we performed MR analysis us-
ing different cancer types (adenocarcinoma, squamous cell carcinoma, large cell carcinoma).
The results of the MR study of various cancer types revealed that squamous cell carcinoma
had a substantial impact. SCZ was found to be related to squamous cell carcinoma but
not to lung adenocarcinoma, squamous cell lung cancer, or basal cell carcinoma, according
to the findings (Table S5). Such observation results may be related to the different data
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sources of squamous cell carcinoma and the collected patients’ self-reported database of
squamous cell carcinoma. Furthermore, it is speculated that the genetic susceptibility of
squamous cell carcinoma may function in different mechanisms compared with the above
three solid tumors (breast, ovarian, and thyroid cancer).

Table 3. The 2SMR results of SCZ and hormones using IVW methods.

Datasets
Num Hormone Name Samples

Size
MR Results

(IVW-p Value) FDR Heterogeneity
Statistics OR (95% CI)

prot-a-2974 thyroid hormone
receptor alpha 3301 0.3866 0.644 0.1852 1.040(0.952–1.134)

prot-a-2892 estrogen
sulfotransferase 3301 0.9762 0.992 0.5922 1.001 (0.923–1.086)

prot-a-991 estrogen receptor 3301 0.3628 0.644 0.7841 0.963 (0.887–1.045)

prot-a-530 thyroid-stimulating
hormone 3301 0.03536 * 0.177 0.3254 1.0999 (1.011–1.197)

prot-a-2432 parathyroid
horm-related protein 3301 0.9921 0.992 0.1516 1.0004 (0.916–1.093)

* Bold fonts represent the best experimental results. FDR: false discovery rate; Significance symbol conventions
are *: p < 0.05.

4. Discussion

According to 2SMR, the analysis revealed that SCZ’s genetic susceptibility was linked
to breast, ovarian, and thyroid cancer, and SCZ mainly affects high- and low-grade serous
ovarian cancer. Based on meta-analysis and gene annotation, Numerous genes and loci
detected may be intimately linked to variations in risk co-occurring in both diseases. We
looked at the effect of genetic risk of SCZ on estrogen and thyroid-stimulating hormone
and discovered that it primarily affected thyroid-stimulating hormone levels. Based on
literatures [55,56], we believe that genetic susceptibility to SCZ may increase the expression
of thyroid-stimulating hormone, which in turn increases the expression of thyroid hormone,
thus resulting in patients with SCZ having an increased risk of breast cancer, ovarian cancer,
and thyroid cancer.

Our study has several strengths. Firstly, this 2SMR analysis demonstrated a significant
genetic influence of SCZ on breast, ovarian, and thyroid cancer risk using publicly available
summary statistics from the largest-scale SCZ GWAS [22] and 13 types of cancers GWAS.
Meanwhile, we eliminated pleiotropic SNPs that could have affected the results in MR
studies. Besides, the IVW random-effects and weighted median model results suggest a
reliable estimate. Second, Our meta-analysis was able to capture the significant signal from
both SCZ and cancer summary statistics. We identified that AS3MT and SFXN2 might
be employed as biomarkers in the future to help SCZ patients avoid breast cancer and
thyroid cancer. Finally, a hormone study demonstrated that the SCZ genetic locus might
contribute to an increase in thyroid-stimulating hormone levels, which could influence the
development of associated cancers.

Despite our findings showing an increased risk of three cancers in SCZ patients,
there were some potential limitations in this study. Firstly, because SCZ represents a binary
exposure in this 2SMR study, the random effects of IVW MR’s estimated influence on cancer
risk may still be biased [57]. Second, breast and ovarian cancers are almost exclusively seen
in women, and thyroid cancer is also more prevalent in women. As a result, demographic
stratification may occur. Thirdly, the underlying biological processes of the increased
risk of breast, ovarian, and thyroid cancers in SCZ patients are unknown and cannot be
studied as outcome mediators such as drugs. For example, a previous study suggested
that antipsychotic drugs may cause hyperprolactinemia and lead to breast cancer, but
this conclusion cannot be confirmed for the time being. Because hyperprolactinemia is
also present in patients with first-episode SCZ, some prolactin elevating antipsychotics
have been shown to have a cancer-protective mechanism [58]. On the other hand, a meta-
analysis of 16 cohort studies that included 480,356 schizophrenia patients and 41,999 cancer
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patients revealed that people with schizophrenia had a slightly significantly lower overall
risk of cancer than the normal population [10], but this protective effect was not found
in our results.

5. Conclusions

In conclusion, utilizing SCZ as an exposure factor and 13 cancers as an outcome,
2SMR analysis revealed that SCZ’s genetic susceptibility was linked to breast, ovarian,
and thyroid cancer. It has been demonstrated using GWAS meta-analysis that epigenetic
changes in Schizophrenia may create “molecular scars”, some of which may last the entirety
of a person’s life and alter a person’s genetic susceptibility to other diseases. Future studies
with individual genotype and phenotype data would be expected to determine the potential
biological mechanisms underlying this causal relationship and promote tumor prevention
and treatment in patients with SCZ.
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