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Energy gap evolution across the
superconductivity dome in single crystals
of (Ba1−xKx)Fe2As2

Kyuil Cho,1,2 Marcin Kończykowski,3 Serafim Teknowijoyo,1,2 Makariy A. Tanatar,1,2 Yong Liu,1 Thomas A. Lograsso,1,4

Warren E. Straszheim,1 Vivek Mishra,5,6 Saurabh Maiti,7 Peter J. Hirschfeld,7 Ruslan Prozorov1,2*
The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most
intriguing questions in currentmaterials research. Amongnon-oxide IBSs, (Ba1−xKx)Fe2As2 has been intensively studied
because of its high superconducting transition temperature and fascinating evolution of the superconducting gap
structure from being fully isotropic at optimal doping (x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked
evolutionwas identified in several independent experiments, there are no details of the gap evolution to date because
of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We con-
ducted a systematic study of the London penetration depth, l(T ), across the full phase diagram for different concen-
trations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variationwith the
power law, Dl ∼ T n, we find that the exponent n is the highest and the Tc suppression rate with disorder is the smallest
at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap
anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a
self-consistent t-matrix approach suggests the ubiquitous and robust nature of s± pairing in IBSs and argues against a
previously suggested transition to a d-wave state near x = 1 in this system.
INTRODUCTION
Understanding the mechanisms of superconductivity in iron-based
superconductors (IBSs) is a challenging task, partially due to the mul-
tiband character of interactions and scattering (1–4). On the other
hand, the rich chemistry of IBSs offers a unique opportunity to study
the physics within one family of materials and test material-specific
theories of superconductivity. It is widely believed that spin fluctua-
tions due to repulsive Coulomb interactions are responsible for super-
conductivity and lead to sign-changing pair states around the Fermi
surface. Theories of superconductivity based on exchange of these
electronic excitations predict that large-momentum pair scattering pro-
cesses dominate the pairing interactions, but details distinguish between
competing pair states, usually s wave and d wave. For the simplest band
structures characteristic of these systems, it was found that optimally
doped systems should have a fully gapped, s-wave ground state, but as
the system was overdoped, d wave would become more competitive
and even the s-wave state would become extremely anisotropic (5). Sys-
tematically testing these predictions would be an important step toward
understanding the origins of superconductivity in these systems.

Among various IBSs, (Ba1−xKx)Fe2As2 (BaK122) is, perhaps, one of
the most interesting and intensively studied compounds, exhibiting an
unusual variation of the superconducting gap structure across the
superconducting dome that exists between x ≈ 0.18 and 1. In the opti-
mally doped region, x ≈ 0.35 to 0.4, two effective isotropic super-
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conducting gap scales (roughly with a 2:1 magnitude ratio) were
identified in many experiments, for example, thermal conductivity
(6), London penetration depth (7, 8), and angle-resolved photoemission
spectroscopy (ARPES) (8–12). In the heavily overdoped region, x≥ 0.8,
a gap with line nodes was identified by thermal conductivity (13–15),
London penetration depth (16), and ARPES (9, 11). Although some
thermodynamic (17, 18) and small-angle neutron measurements (19)
have reported tiny full gaps instead, there is a consensus that the gap
anisotropy is very strong.

An important feature of the overdoped Ba122 system is the Lifshitz
transition reported for both electron-doped (20) and hole-doped (21)
compounds. In the material of interest here, BaK122, there is a series
of Lifshitz transitions in the x ~ 0.7 to 0.9 region that result in the re-
placement of electron-like pockets at the M point by hole-like pockets
(21, 22), although amore precise determination of the critical composi-
tions and the exact evolution of the three-dimensional band structure is
still lacking. Indeed, thismarked change in the electronic band structure
must be taken into account when trying to explain the observed evolu-
tion of the superconducting propertieswith doping.One of the problems
is the absence of systematic studies for a sufficient number of different
compositions with reliably established values of x, spanning the whole
doping range. Here, wemeasured 16 different compositions with x values
determined by the wavelength-dispersive spectroscopy (WDS) in each
measured sample.

Although there is an overall experimental consensus on the evolu-
tionwith doping from large, isotropic to smaller, highly anisotropic gaps
in BaK122, several possible theoretical interpretations exist. Most
authors propose a crossover between two generalized s-wave states,
where the usual configuration of isotropic gaps with opposite signs
on the electron and hole pockets crosses over to a configuration with
opposite signs on the hole pockets resulting in accidental nodes (15).
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This crossover may happen through an intermediate time-reversal
symmetry broken s + is state (23). Some consider a transition from s± to
d wave either directly (24) or via an intermediate s + id state (1, 25, 26).
Still, others propose the existence of too-small-to-measure but finite
“Lilliputian” gaps (17, 18). Because of themultitude of Fermi surface sheets
and the absence of direct phase-sensitive experiments, it is difficult to
pinpoint themost plausible explanation, and further studies are needed.

This is where the introduction of controlled artificial disorder
becomes a very useful tool. In fact, impurity scattering is phase-sensitive
and therefore can be used to at least narrow down possible scenarios. In
most cases, only suppression of Tc is studied, and even then, it can pro-
vide important information. For example, strong support for s± pairing
was found in electron-irradiated Ba(Fe,Ru)2As2 (27). Of course, in IBSs,
it is rather difficult to draw definitive conclusions from Tc suppression
alone because of the many parameters involved in multiband pair-
breaking (28). Measurements of another disorder-sensitive parameter,
for example, low-temperature behavior of London penetration depth,
can significantly constrain theoretical interpretations. This was sug-
gested as a way to distinguish between s± and s++ pairing (29). This idea
has been used to interpret the data in BaFe2(As,P)2 (30) and SrFe2(As,P)2
(31), where potential scattering lifted the nodes, thus proving them acci-
dental and, therefore, lending a strong support to s± pairing.

Here, we measured low-temperature variation of London penetra-
tion depth, Dl(T), down to 50 mK in 16 different compositions of
BaK122, for most of which the effect of artificial point-like disorder in-
duced by 2.5-MeV electron irradiation at several doses was examined.
By analyzing both the rate of Tc suppression and changes in Dl(T), we
conclude that increasing gap anisotropy on one of the hole bands at the
G point leads to the development of accidental nodes, and when the
electron bandno longer crosses the Fermi level at theMpoint, s± pairing
is realized between two hole bands. This is illustrated schematically in
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Fig. 1. In principle, the incipient electron band can still play a role in
interband interactions and pair-breaking scattering, but these effects
are not qualitatively relevant here because superconductivity is
supported by robust bands at the Fermi level (32, 33).We also discuss
the possibility of a crossover from s to d symmetry with increasing x
and conclude that this is very unlikely, in line with ARPES studies that
find accidental nodes on hole bands all the way up to x = 1 (11, 34).
RESULTS

Figure 2A shows the composition phase diagram of BaK122 com-
pounds. The superconducting transition temperature, Tc(x), was
determined as the midpoint of the transition in penetration depthmea-
surements (see fig. S1). For pristine samples, Tc0(x) shows its maximum
value of 39 K at around x≈ 0.40 and gradually decreases toward lower
and higher x, forming a ubiquitous superconducting “dome.”Although
the evolution of Tc(x) is smooth in general, there is an apparent jump
near x= 0.80. This anomaly correlates with the appearance of accidental
nodes induced in this material as a consequence of the Lifshitz
transition (35). For most compositions shown in Fig. 2, the same
samples were electron-irradiated and the London penetration depth
wasmeasured before and after each irradiation run. The relative change,
(Tc − Tc0)/Tc0, is shown in Fig. 2B for the same samples as in Fig. 2A.
The largest suppression of ~47% per 1 C/cm2 (~56.4% for 1.2 C/cm2)
was found in pure KFe2As2, and the smallest suppression was found in
the optimally doped compounds.

As shown in Fig. 3, the “physically meaningful” normalized Tc sup-
pression plotted versus resistivity at Tc shows a significant increase when
transitioning from optimal to overdoped regimes. Note that because of
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Fig. 1. (Color online) Schematic illustration of the effective band struc-
ture and order parameter evolution with doping. (A) Change in the
electronic band structure across the Lifshitz transition. The electron pocket
atM is lifted but remains in the vicinity of EF. The extended s± pairing survives
but is shifted to the hole bands at the G point. (B) Hole and electron pockets
relevant for calculations with the sign-changing order parameter. Signs are
encoded by green (+) and red (−) colors.
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Fig. 2. (Coloronline)Temperature-compositionphasediagram. (A)Composition-
dependent superconducting transition temperature, Tc(x), in pristine (squares)
and electron-irradiated (other symbols, see legend) samples. SDW, spin-density
wave; SC, superconducting phase. (B) NormalizedDTc/Tc0. The largest Tc sup-
pression is found at x ≳ 0.8. The color shade indicates long-range magnetic
order at small x and crossover to nodal behavior at large x.
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magnetic ordering, these rates should not be compared directly to those
of the underdoped regime, which require a separate analysis as a result
of the competition between superconductivity and magnetism (36).

In terms of the rate per irradiation fluence, the normalized suppres-
sion rate of optimally doped samples (fig. S4A) is about 0.025 per 1C/cm2

and increases to 0.07 per 1 C/cm2 in the underdoped samples (x= 0.22),
consistent with our previous report (7). In sharp contrast, the suppres-
sion rate increases markedly in the far overdoped region, reaching
0.47 per 1 C/cm2, which is 20 times larger than that of the optimally
doped regime. All these numbers for the rate of Tc suppression (i) are
much greater than those expected from conventional s++ pairing and
(ii) can be explained within a generalized s± pairing model if one is
allowed to tune gap anisotropy and the ratio of interband/intraband
scattering [see Prozorov et al. (27) and references therein].

To understand the evolution of the superconducting gap with dop-
ing anddisorder,we analyze the low-temperature behavior of the London
penetration depth in terms of the power law, Dl(T) = A(T/Tc)

n, as
shown in Fig. 4 and summarized in Fig. 5. To present the observed sys-
tematic trends, the upper panels in Fig. 4 show Dl(T) on a fixed scale of
0 to 140 nm and at a temperature range of 0 to 0.3 (T/Tc) (fig. S1 shows
full-range curves). Figure 5A shows the composition variation of
Dl(0.3T/Tc) reflecting the density of thermally excited quasi-particles.
There is a clear trend of amarked increase in Dl as wemove away from
optimal doping. At small x, this trend is naturally explained in terms of
the competition between superconducting and SDW order (7, 36, 37).
The increase toward the underdoped region is quite monotonic,
whereas the increase toward x = 1 is distinctly nonmonotonic. There
is even some decrease of Dl(0.3Tc) around x = 0.80, coincident with
the anomaly inTc(x) (Fig. 2) andwhere the Lifshitz transition is believed
to occur (21). Similar nonmonotonic behavior in the same region was
reported before (15); thus, it seems that this is not an experimental ab-
erration. In fact, this feature may signal the onset of accidental nodes
near the Lifshitz transition (35).

The lower panels in Fig. 4 show the exponent, n, obtained in the
power-law fitting. To examine the robustness of the power-law repre-
sentation, fitting of Dl(T/Tc) was performed from the base temperature
up to three different upper limits,Tup/Tc = 0.2, 0.25, and 0.30. The results
Cho et al. Sci. Adv. 2016; 2 : e1600807 30 September 2016
are shown by three points in each frame of the lower panel in Fig. 4.
Figure 5B summarizes the composition and irradiation evolution of
the exponent n obtained at Tup/Tc = 0.3. Horizontal lines show three
principal limits of the exponent n expected for different scenarios. A
clean line nodal gap corresponds to n = 1, whereas exponential behavior
is experimentally not distinguishable from a large exponent (n≥ 3 to 4).
In all cases, n = 2 is the terminal dirty limit for any scenario with pair-
breaking (s± or d wave), but it should be exponential for s++ pairing
where nonmagnetic scattering is not pair-breaking.

At small x, in the coexistence regime, the gap anisotropy increases,
but we find no evidence of nodes, consistent with previous studies
(7, 36). This result argues against an s++ gap structure, in which the
reconstruction of Fermi surfaces due to SDW order must lead to
robust nodes (37). Upon electron irradiation, Tc slowly decreases,
suggesting moderate gap anisotropy and the presence of small but
significant interband impurity scattering (38). Close to the optimal
composition of x = 0.4, the penetration depth exponent n decreases
significantly with irradiation, providing strong evidence for s± pairing.
On the other hand, even upon a high-dose irradiation of 3.4 C/cm2, the
exponent remains greater thann=3,whereasTc decreases by 8%,which
is suggestive of robust full gaps. In a fully gapped s++ state, the only effect
of disorder is to average the gap over the Fermi surface, leading in-
evitably to the increase of theminimumgap and therefore an increase in
the exponent n with disorder, contrary to our observations.

Moving to a higher x away from optimal composition, the gap an-
isotropy increases and the exponentn for the pristine samples decreases.
Upon irradiation, the gap anisotropy is smeared out and the exponent
increases even in the s± case, provided that all bands are still fully gapped
and the intraband impurity scattering is dominant. This is apparently
the case for x = 0.54. For yet higher doping levels, the anisotropy
becomes so strong that the system develops accidental nodes (n →
1), which, in this case, are apparently not lifted by the disorder (39). This
is possibly due to (i) the substantial change in the electronic band struc-
ture approaching the Lifshitz transition and/or (ii) substantial interband
impurity scattering. Note that this evolution is very different from the
isovalently substituted BaFe2(As,P)2 (30) in which line nodes are found
at all x values and the band structure is unchanged. In our case, at a large
x, the exponential temperature dependence in pristine samples changes
to ∼ T2 at around x = 0.60 and tends toward∼ T at x≥ 0.80, indicative
of gaps with line nodes. Unlike the optimally doped region, the electron
irradiation is much more effective in decreasing Tc, that is, 41% upon
3.4 C/cm2 (x= 0.81) and 56%upon 1.2 C/cm2 (x= 1.00). Nevertheless,
the exponent n never exceeds 2.

s± superconductivity in the overdoped region
In previous studies of London penetration depth and thermal conduc-
tivity in overdoped samples, nodal behavior was identified above x= 0.8
and attributed to a crossover froma fully isotropic s-wave statewith sign
change between electron and hole pockets to a new type of s± pairing
with sign change between the hole pockets (15), which also acquired
accidental nodes. Thermal conductivitymeasurements of the endmem-
ber, at x= 1, indicate line nodes andwere interpreted in terms of d-wave
pairing (13, 40), which was also claimed theoretically (24). Here, we add
an additional restriction on possible interpretations by looking simulta-
neously at the variation ofTc and temperature-dependent London pen-
etration depth with controlled point-like disorder. As we mentioned
above, the suppression of Tc with irradiation at optimal doping rules
out a global s++ state.Now, the challenge is to beginwith a “conventional”
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(nodeless) s± state and determine whether a reasonable model of super-
conducting gap and its evolution with composition can be constructed
to describe all experimental results. We find that a generalized sign-
changing s± state with accidental nodes can be used to describe the en-
tire phase diagram, including a crossover from nodeless to nodal gap.
The novel assertion of our approach is that with electron pockets absent
above Lifshitz transition, x > 0.8, the s± pairing shifts to hole pockets,
naturally resulting in a nodal state.

We use the self-consistent t-matrix formalism and sign-changing s±
state to describe both the London penetration depth and theTc suppres-
sion rate for different levels of disorder. To keep the analysis tractable
and to fit the experimental data, we minimize our parameter set by
working in the 2Fe-BZ and modeling the gap structure as shown sche-
matically in Fig. 1. Specifically, before the Lifshitz transitions, two elec-
tron pockets at theM point and two hole pockets at theG point are each
modeled as a single C4 symmetric pocket with gap, DeðfÞ ¼ Diso

e þ
Dani
e cos 4f and Dh1ðfÞ ¼ Diso

h1 þ Dani
h1 cos 4f, respectively. Here, angle

f is measured from the zone diagonal. After the Lifshitz transition,
the electron pockets disappear, and the two model bands now corre-
spond to two hole pockets. Each hole pocket gap is nowmodeled inde-
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pendently, with its own isotropic and anisotropic components,
Dh2 ¼ Diso

h2 þ Dani
h2 cos 4f. We realize that the actual band structure is

more complex, and its evolution across the Lifshitz transition involves
several bands changing across the Brillouin zone. However, we find that
a model with two effective gaps each having isotropic and anisotropic
parts is sufficient to explain the observed results.

First, we fit the data for the pristine samples and then include im-
purity scattering within self-consistent t-matrix formalism (41–44). We
model the defects induced by electron irradiation as point-like scat-
terers, which scatter between the bands with a certain (interband) am-
plitude and within the same band with another (inband) amplitude.
The presence of interband impurity scattering and the relative sign
change between these two bands are necessary to explain the Tc sup-
pression and penetration depth in the irradiated samples (see the Sup-
plementary Materials for details of the fitting procedure). The obtained
gap amplitudes are shown in Fig. 6 as a function of composition, x. It is
important that the average gap h1 on one of the hole bands changes its
sign with increasing x. This is essential to fit the Tc suppression and
penetration depth on equal footing in a self-consistent manner (see
fig. S4b). Without a relative sign change between the hole pockets, even
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a strong interband impurity scattering will average the gap anisotropy,
leading to a weak suppression of Tc and activated behavior in the tem-
perature dependence of the low-temperature penetration depth, which
is not in agreement with the data. The obtained evolution of gaps sug-
gests a new paradigm where an s± superconducting state with relative
sign change between the hole and electron pockets at moderate doping
levels evolves into an s± state with the sign change between the hole
bands with accidental line nodes. This evolution of the gap structure
is shown schematically in Fig. 1 and is the central result of this paper.

We note that if one concentrates exclusively on Fermi surface–
integrated quantities, such as thermal conductivity or penetration
depth, distinguishing d-wave states from anisotropic, deeply nodal s
states can be very difficult. As shown in Fig. 7, both d-wave and aniso-
tropic s± states give reasonable fits to the pristine penetration depth data
for x = 1.0. Furthermore, distinguishing on the basis of disorder is dif-
ficult because here we do not have a well-established link between the
pair-breaking rate and irradiation dosage; thus, it is possible to find
parameters for either “dirty d wave” or “dirty nodal s wave” cases that
fit both theDl andDTc data for the single x= 1 sample.However, on the
basis of the fits to the heavilyK-doped alloys near x=0.9 in Fig. 7, we see
that there is substantial additional curvature at low temperatures that is
incompatible with the cos 2f dwave. It is conceivable that a strong anti-
phase cos 6f component in a d-wave state could fit the penetration
depth data. However, there is no theory in support of such a state,
and we therefore conclude that the superconducting condensate in this
system has s-wave symmetry throughout the phase diagram and simply
evolves in an anisotropicmanner as roughly depicted in Fig. 1. In Fig. 7,
we show a comparison between the state with accidental nodes and a
d-wave state for x = 0.91 and x = 0.92. For x = 0.91 and x = 0.92, we see
the incompatibility of a d-wave gap with experimental data. However,
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for x = 1.0, both d-wave and s± states with accidental nodes can fit the
data. Thus, we cannot rule out a crossover between s-wave and d-wave
symmetries between x = 0.92 and x = 1.0. However, ARPES measure-
ments provide a strong argument against this scenario (11).

An additional argument favoring s± pairing with accidental nodes
over the d wave is the nonmonotonicity of Dl(0.3Tc, x) near x ~ 0.8
(see Fig. 5). Because of an overall decrease inTc in the overdoped region,
the normal fluid density in an isotropic s-wave or d-wave state is
expected tomonotonically increase. On the other hand, this nonmono-
tonicity occurs naturally during a smooth onset of accidental nodes—
where a fully gapped D(f) near the expected nodal region transits to a
linear-in-f dependence through an intermediate quadratic, D(f) ∼ f2,
dependence. Accidental nodes not only are more probable for s-wave
pairing as opposed to d-wave pairing but also are expected to appear
around the Lifshitz transition (35). Of course, nonmonotonicity of
Dl(0.3Tc, x) does not uniquely imply accidental nodes, but accidental
nodes naturally lead to the observed nonmonotonic behavior. This
scenario can also explain variations observed at the lowest temperatures
for close compositions, such as x = 0.91 and 0.92 (see Fig. 7).

We emphasize that our analysis of the rate ofTc suppression by non-
magnetic scattering supports accidental nodes in an s± state rather than
in an s++ state. Although a small gap could be present in the x = 0.92
sample, at x = 1, our data and fitting appear to rule this out. However,
within our experimental temperature range, down to 50 mK, it is im-
possible from the penetration depth alone to definitively rule out gaps
on the order of 0.1 meV or smaller, such as those suggested by the anal-
ysis of the specific heat experiments (17, 18).

Nevertheless, our systematic measurements and analysis of many
different compositions add to the growing experimental support
for the s-wave origin of the pairing interaction near x∼ 1 (and there-
fore over the whole phase diagram). This, in turn, indicates that any
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competing d-wave channel, as predicted by many theoretical ap-
proaches, is competitive but subleading all the way up to x = 1. The
extent of this competition can be addressed by probing collective
modes in the nonpairing channel using other experimental tech-
niques (for example, Raman scattering). We note that some studies
of the x = 1 composition under pressure also propose a change of
pairing symmetry from d to s (45). Our work poses severe difficulties
for such an interpretation.
CONCLUSIONS

In conclusion, we used deliberately introduced point-like disorder as
a phase-sensitive tool to study the compositional evolution of the
superconducting gap structure in BaK122. Measurements of both the
low-temperature variation of London penetration depth and Tc sup-
pression provided stringent constraints on the possible gap structures.
By using a generalized s± model and t-matrix calculations, we were able
to describe the compositional evolution of the superconducting gap, in-
cluding a crossover fromnodeless to nodal concomitant with the Lifshitz
transition.Ourmodel provides anatural interpretationof the richphysics of
this system and shows that s± pairing is a very robust state of iron pnictides.
MATERIALS AND METHODS

Crystal growth
We developed an inverted temperature gradient method to grow large
and high-quality single crystals of BaK122. The starting materials—Ba
and K lumps, and Fe and As powders—were weighed and loaded into
an alumina crucible in a glove box. The alumina crucible was sealed in a
tantalum tube by arc welding. The tantalum tube was then sealed in a
quartz ampoule to prevent the tantalum tube from oxidizing in the fur-
nace. The crystallization processes from the top of a liquid melt help to
expel impurity phases during the crystal growth, compared to the
growth inside the flux. Details of the growth and detailed characteriza-
tion for the entire dome can be found elsewhere (46, 47).
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Sample characterization and selection
Sixteen different compositions ranging from x = 0.20 to 1.00 were iden-
tified usingWDS.More than one sample of each compositionwas studied.
The crystals had typical dimensions of 0.5 mm × 0.5 mm × 0.03 mm.

All samples were prescreened using a dipper version of the tunnel
diode resonator (TDR) technique (48), using the sharpness of the super-
conducting transition as a measure of quality in each particular piece.
After this prescreening, the chemical composition of each individual
sample was determined using WDS in a JEOL JXA-8200 electron mi-
croprobe. In each sample, the composition was measured for 12 points
per surface area and averaged (46).

The variation of in-plane London penetration depth Dl(T) was
measured down to 50 mK using a self-oscillating TDR (49–51). To
study the effect of disorder, Dl(T) for each crystal was measured before
and after the irradiation.

Electron irradiation
Irradiation by 2.5-MeV electrons was performed at the SIRIUS Pelletron
in Laboratoire des Solides Irradiés at École Polytechnique (Palaiseau,
France). The electrons created Frenkel pairs that acted as point-like
atomic defects. Throughout the paper, the total acquired irradiation
dose was conveniently measured in coulombs per square centimeter,
where 1 C/cm2 = 6.24 × 1018 electrons/cm2.With a calculated head-on
collision displacement energy for Fe ions of 22 eV and a cross section
to create Frenkel pairs at 2.5 MeV of 115 barn (b), a dose of 1 C/cm2

resulted in about 0.07% of the defects per iron site. Similar numbers
were obtained for other sites—cross sections for Ba andAs are 105 and
35 b, respectively. It is known that the interstitials migrate to various
sinks (surface, dislocations, etc) and vacancies remain in the lattice.
The electron irradiation was conducted in liquid hydrogen at 22 K,
and recombination of the vacancy-interstitial pairs upon warming
up to room temperature was 20 to 30%, as measured directly from
the decrease of residual resistivity (27). After initial annealing, the de-
fects remained stable, which was established from remeasurements
performed several months (up tomore than a year) apart. In addition,
by measuring the Hall coefficient, it was determined that electron ir-
radiation did not change the effective doping level; neither did it in-
duce a measurable magnetic signal, which would be detected in our
sensitive TDR measurements.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/9/e1600807/DC1
London penetration depth
T-matrix fitting procedure
fig. S1. (Color online) Full transition curves of ∆l(T) for the studied samples.
fig. S2. (Color online) Resistivity estimated from the skin depth (TDR).
fig. S3. (Color online) t-Matrix fitting of the London penetration depth for compositions
spanning the superconductivity dome.
fig. S4. (Color online) Variation of superconducting critical temperature upon irradiation for
different compositions.
fig. S5. (Color online) Comparison of Tc suppression as a function of increasing disorder for
various possible scenarios for heavily overdoped systems.
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