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Objective: Infiltrating immune and stromal cells are essential for osteosarcoma
progression. This study set out to analyze immune–stromal score-based gene
signature and molecular subtypes in osteosarcoma.

Methods: The immune and stromal scores of osteosarcoma specimens from the
TARGET cohort were determined by the ESTIMATE algorithm. Then, immune-stromal
score-based differentially expressed genes (DEGs) were screened, followed by univariate
Cox regression analysis. A LASSO regression analysis was applied for establishing a
prognostic model. The predictive efficacy was verified in the GSE21257 dataset.
Associations between the risk scores and chemotherapy drug sensitivity, immune/
stromal scores, PD-1/PD-L1 expression, immune cell infiltrations were assessed in the
TARGET cohort. NMF clustering analysis was employed for characterizing distinct
molecular subtypes based on immune-stromal score-based DEGs.

Results: High immune/stromal scores exhibited the prolonged survival duration of
osteosarcoma patients. Based on 85 prognosis-related stromal–immune score-based
DEGs, a nine-gene signature was established. High-risk scores indicated undesirable
prognosis of osteosarcoma patients. The AUCs of overall survival were 0.881 and 0.849 in
the TARGET cohort and GSE21257 dataset, confirming the well predictive performance of
this signature. High-risk patients were more sensitive to doxorubicin and low-risk patients
exhibited higher immune/stromal scores, PD-L1 expression, and immune cell infiltrations.
Three molecular subtypes were characterized, with distinct clinical outcomes and tumor
immune microenvironment.
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Conclusion: This study developed a robust prognostic gene signature as a risk
stratification tool and characterized three distinct molecular subtypes for osteosarcoma
patients based on immune–stromal score-based DEGs, which may assist decision-
making concerning individualized therapy and follow-up project.
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INTRODUCTION

Osteosarcoma represents the most frequent and primary bone
sarcoma, which primarily affects children, adolescents, and young
adults (Corre et al., 2020). Globally, the incidence of
osteosarcoma is approximately 1–3 cases yearly per million
persons (Itoh et al., 2018). Neo-adjuvant therapy followed by
postoperative adjuvant therapy with a cocktail of chemotherapy is
the first-line therapeutic strategy for locally resectable
osteosarcoma, leading to increased 5-years survival rate that is
up to 70% for patients with localized osteosarcoma (Deng et al.,
2020). However, most of metastatic or relapsed patients do not
benefit from this therapy and the 5-years survival rate is below
30% (Yang et al., 2020). How to improve osteosarcoma treatment
and prolong clinical outcomes is a prime issue in current research.

Osteosarcoma is characterized by huge heterogeneity at the
intra-tumoral and individual levels (Zhou et al., 2020b). Thus, it is
of significance to identify shared gene sets driving osteosarcoma.
Tumor microenvironment is composed of mesenchymal cells,
immune cells, endothelial cells, stromal cells, inflammatory
mediators, and the like (Zhang et al., 2020). It participates in
mediating biological properties of osteosarcoma like metastasis,
immune escape, and drug resistance (Zheng et al., 2018).
Evidence demonstrates that immune- and stroma cell-related
signatures in the tumor microenvironment serve as critical
regulators in the prognosis of osteosarcoma patients (Wen
et al., 2020). Precise management and proper individualized
therapy regarding osteosarcoma are required in conformity to
risk stratification. Furthermore, it is of importance to understand
the immune-stromal score-based signatures in the tumor
immune microenvironment, which may assist clarify clinical
implications in the tumor immune microenvironment as well
as propose novel therapeutic strategies (Qi et al., 2020). Herein,
this study set out to characterize immune–stromal score-based
gene signature as a prognostic stratification tool and molecular
subtypes with distinct prognosis and tumor immune
microenvironment in osteosarcoma.

MATERIALS AND METHODS

Data Preparation and Preprocessing
Clinical and transcriptome data of osteosarcoma patients were
downloaded from the Therapeutically Applicable Research to
Generate Effective Treatments (TARGET) database (https://ocg.
cancer.gov/programs/target). Eighty-four samples with both
complete survival information and expression profiles were set
as the training set. One external dataset from the Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) was

selected as the validation set (accession: GSE21257). This
dataset contained 53 osteosarcoma samples on the GPL10295
platform. The specific clinical information of 84 samples in the
TARGET database and 53 samples in the GSE21257 dataset was
separately listed in Supplementary Tables S1 and S2. The
workflow of this study is shown in Figure 1.

Estimation of STromal and Immune Cells in
MAlignant Tumor Tissues Using Expression
Data
Based on the normalized expression matrix, stromal and immune
scores across osteosarcoma specimens from the TARGET and
GSE21257 datasets were estimated by applying the ESTIMATE
algorithm (Yoshihara et al., 2013). This algorithm may infer the
overall infiltration levels of stromal and immune cells in tumor
tissues using gene expression signatures (https://sourceforge.net/
projects/estimateproject/). On the basis of the median values of
stromal/immune scores, the patients were separated into two
groups, respectively. The Kaplan–Meier overall survival (OS)
curves were examined between groups and the prognosis was
compared by log-rank test.

Differential Expression Analysis
The limma package was applied for differential expression
analysis between high and low stromal/immune score groups
of osteosarcoma samples from the TARGET database (Ritchie
et al., 2015). |Fold change (FC)| > 1.5 and adjusted p < 0.05 were
set as the criteria of differentially expressed gene (DEG)
identification. The up or downregulated genes were visualized
into volcano plots. Upregulated genes from immune/stromal high
versus low groups and downregulated genes were separately
intersected.

Functional Enrichment Analysis
The enrichment analysis of stromal-immune score-based DEGs
was carried out via the clusterProfiler package, including Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Yu et al., 2012). GO categories contained biological
process (BP), molecular function (MF), as well as cellular
component (CC). Terms with adjusted p < 0.05 were
significantly enriched.

Construction of a Stromal-Immune
Score-based Gene Signature
Correlations between the 272 stromal-immune score-based
DEGs and prognosis of osteosarcoma patients from the
TARGET database were evaluated by univariate Cox
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regression analysis. p < 0.05 was set as the significant cut-off for
identifying candidate genes related to osteosarcoma prognosis.
The least absolute shrinkage and selection operator (LASSO) was
employed for feature selection and obtaining an optimal gene
signature in the TARGET database. By applying 10-fold cross-
verification and penalty, a prognostic gene signature was
constructed via the glmnet package. The risk score of each
sample from the training and validation sets was determined
based on expression profiles and coefficients of feature genes. The
formula was as follows: risk score � expression of gene 1 ×
coefficient of gene 1 + expression of gene 2 × coefficient of gene
2 +. . .+ expression of gene n × coefficient of gene n.

Evaluation of the Prognostic Efficacy of the
Gene Signature
The osteosarcoma patients in the training and validation sets
were classified into high- and low-risk groups on the basis of the

median value of the risk scores. The OS time between groups
was compared by Kaplan–Meier curves and log-rank test.
Receiver operating characteristic (ROC) curve of OS time
was conducted for assessing the predictive performance of
this gene signature via survival ROC package. The area
under the curve (AUC) value of ROC was calculated to
obtain the optimal model. Also, the Akaike information
criterion (AIC) value of each point on the AUC was
determined to distinguish the optimal cut-off point to
differentiate the high- or low-risk patients.

Assessment of Chemotherapy Drug
Sensitivity
By employing the Genomics of Drug Sensitivity in Cancer
(GDSC) database (www.cancerRxgene.org) (Yang et al., 2013),
underlying chemotherapy drugs that were sensitive for
osteosarcoma subjects harboring risk scores were predicted

FIGURE 1 | Study design and workflow overview.
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utilizing the pRRophetic package in the TARGET database
(Geeleher et al., 2014).

Connectivity Map
The cMap database contains over 7,000 expression profiling of
human cells treated with small molecules (Lamb et al., 2006).
DEGs between high- and low-risk groups were screened with
the screening criteria of |FC| > 1.5 and adjusted p < 0.05. These
up- and down-regulated genes were mapped onto the cMap
database. The connectivity scores ranging from −1 to 1
indicated the correlations between small molecules and
DEGs. The positive connectivity scores were indicative of
stimulative effects of compounds on these DEGs and the
negative connectivity scores were indicative of repressed
effects of compounds on them. The candidate small
molecules related to osteosarcoma were screened with |
connectivity score|>0.9 and p < 0.05. Furthermore, shared
mechanism of action (MOA) was predicted for these
candidate drugs.

Single-Sample Gene Set Enrichment
Analysis
The infiltrations and activations of immune cells that were
retrieved from published gene signature across all cancer as
well as normal specimens were quantified utilizing the ssGSEA
algorithm (Charoentong et al., 2017; Jia et al., 2018). The immune
cells contained activated B cells, activated CD4 T cells, activated
CD8 T cells, central memory CD4 T cells, central memory CD8
T cells, effector memory CD4 T cells, effector memory CD8
T cells, gamma delta T cells, immature B cells, memory B cells,
regulatory T cells, T follicular helper cells, type 1 T helper cells,
type 17 T helper cells, type 2 T helper cells, activated dendritic
cells, CD56bright natural killer cells, CD56dim natural killer
cells, eosinophils, immature dendritic cells, macrophages, mast
cells, MDSCs, monocytes, natural killer cells, natural killer
T cells, neutrophils, and plasmacytoid dendritic cells. The
ssGSEA scores of each immune cell type were normalized in
all samples in the TARGET dataset. Previous two studies have
characterized marker genes of three phenotypes of
osteosarcoma cell lines: tumorigenic phenotype, invasive
phenotype, and colony forming phenotype (Lauvrak et al.,
2013; Sharma et al., 2017). This study curated the shared
marker genes in above studies, which played important roles
in modulating the three phenotypes of osteosarcoma cell lines.
The ssGSEA score of each phenotype was quantified in the
TARGET dataset.

Gene Set Enrichment Analysis
The KEGG pathways that were distinctly related to the risk score
were analyzed by GSEA software (https://www.broadinstitute.
org/gsea/index.jsp) based on the gene expression (Subramanian
et al., 2005). The “c2.cp.kegg.v7.1.symbols.gmt” file was obtained
as a reference gene set. Enrichment adjusted p-values were based
on 1,000 permutations. Terms with |normalized enrichment
score (NES)|>1 and adjusted p < 0.05 were recognized as
significant enrichment.

Nomogram
To better apply this prognostic gene signature, a nomogram was
established in the training set for prediction of 1-, 3-, and 5-years
survival probability of osteosarcoma patients.

Unsupervised Clustering Analysis by
Nonnegative Matrix Factorization
Consensus clustering analysis was performed with the NMF
algorithm for identifying distinct molecular subtypes according
to the 272 stromal–immune score-based DEGs. The expressions
of these signatures (matrix A) were factorized into three
nonnegative matrices. Repeated factorization of matrix A was
carried out, and its outputs were aggregated for obtaining
consensus clustering of osteosarcoma specimens in the
TARGET dataset. The optimal number of clustering was
chosen based on cophenetic, dispersion, as well as silhouette
coefficients. The 200 nruns was utilized for performing the
consensus clustering.

Statistical Analysis
All analysis was presented using R version 3.4.1 (http://www.R-
project.org) and its appropriate packages. Two groups were
compared utilizing Wilcoxon test, while multiple comparisons
were evaluated by applying Kruskal–Wallis test. Two-sided p < 0.
05 indicated statistical significance. The source code of this study
is provided in Supplementary Table S3.

RESULTS

Stromal and Immune Scores Are
Associated With Survival Outcomes of
Osteosarcoma Patients
From the TARGET database, stromal and immune scores of each
osteosarcoma sample were estimated by the ESTIMATE
algorithm. All patients were classified into high and low
stromal/immune score groups on the basis of the median
values. The survival differences between groups were
compared by Kaplan–Meier curves. Accordingly, patients with
high immune scores (p � 2.739e-03) or stromal scores (p �
1.965e-02) displayed the advantages of survival duration
(Figures 2A,B). To obtain stromal- or immune score-related
genes, differential expression analyses were carried out between
high and low stromal- or immune-score groups. As a result, 633
genes were upregulated and 933 genes were downregulated
between high and low immune score groups (Figure 2C;
Supplementary Table S4). Furthermore, there were 576
upregulated genes and 232 downregulated genes between high
and low stromal score groups (Figure 2D; Supplementary Table
S5). Also, we depicted the distributions of stromal score and
immune score across osteosarcoma samples in the TARGET and
GSE21257 datasets (Figures 2E,F). The correlation analyses
showed that there were positive interactions between stromal
score and immune score across osteosarcoma samples in the
TARGET (R � 0.52 and p � 3.1e-07) and GSE21257 (R � 0.68 and

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 6993854

Zheng et al. Immune-Stromal Score-Based Signature in Osteosarcoma

https://www.broadinstitute.org/gsea/index.jsp
https://www.broadinstitute.org/gsea/index.jsp
http://www.R-project.org
http://www.R-project.org
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


p � 7.6e-08) datasets (Figures 2G,H). Following intersection, we
obtained 272 stromal-immune score-based DEGs that showed
consistent trends between high/low immune score groups and
high/low stromal score groups in osteosarcoma (Figure 2I). Their
biological functions were analyzed in depth. Accordingly, they

were involved in regulating immune cell activation like
lymphocytes and neutrophils (Figure 2J). MHC protein
complex, antigen binding, and immunoglobulin were
significantly enriched by these genes. Also, immune pathways
such as antigen processing and presentation, Th1, Th2, and Th17

FIGURE 2 | Stromal and immune scores are associated with survival outcomes of osteosarcoma patients. (A,B) Kaplan–Meier curves of overall survival (OS)
between high and low (A) immune and (B) stromal score groups in the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. The
statistical differences were compared by log-rank test. The dash lines mean the corresponding survival time when survival probability was 0.5. (C,D) Volcano plots of up-
(red) and downregulated (green) genes between high and low (C) immune and (D) stromal score groups in the TARGET database. (E, F) The distributions of stromal
score and immune score across osteosarcoma samples in the TARGET and GSE21257 datasets. (G,H) Correlations between stromal score and immune score across
osteosarcoma samples in the TARGET and GSE21257 datasets. (I) Venn diagram for stromal–immune score-based differentially expressed genes (DEGs) in
osteosarcoma. (J)Gene ontology (GO) including biological process (BP), cellular component (CC) andmolecular function (MF) and (K) Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis results of stromal-immune score-based DEGs.

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 6993855

Zheng et al. Immune-Stromal Score-Based Signature in Osteosarcoma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


cell differentiation were distinctly enriched by these genes
(Figure 2K).

Development and Validation of a
Stromal–Immune Score-based Prognostic
Gene Signature for Osteosarcoma
By applying univariate Cox regression analysis, 85 genes were
distinctly related to osteosarcoma prognosis among the 272
stromal- and immune score-related DEGs in the TARGET
dataset (Table 1). Based on them, nine factors were included
in this LASSO model in the training set, containing FPR1, GBP1,
FUCA1, PDK1, BNIP3, EVI2B, APBB1IP, FOLR2, and COCH
(Figures 3A,B). The risk score of each subject was determined

according to the expression of FPR1 * (−0.00618173524670456) +
expression of GBP1 * (−0.00428251209641429) + expression of
FUCA1 * (−0.00768782441651179) + expression of PDK1 *
0.0078776021549243 + expression of BNIP3 * 0.00311883
814864424 + expression of EVI2B * (−0.0014871562280857) +
expression ofAPBB1IP * (−0.0258746909192034) + expression of
FOLR2 * (−0.000566207076062648) + expression of COCH *
0.00731886943085428. All patients in the TARGET cohort were
classified into high- and low-risk groups. In Figure 3C,
patients in the high-risk group displayed the worse survival
outcomes in comparison with those in the low-risk group
(� 1.072e-06). Furthermore, there was higher proportion of
dead patients in the high-risk group (Figures 3D,E). To assess
the predictive efficacy of this signature, ROC of OS time was

TABLE 1 | Univariate Cox regression analysis for prognosis-related stromal-immune score-based genes in osteosarcoma. The bold value represent the signature-related
genes.

ID HR HR.95L HR.95H p ID HR HR.95L HR.95H p

DOK3 0.885 0.816 0.961 0.004 LAIR1 0.945 0.898 0.993 0.027
CYP2S1 0.724 0.529 0.991 0.044 PRKCH 0.925 0.86 0.995 0.036
ESPN 1.07 1.019 1.124 0.006 GPR65 0.688 0.487 0.972 0.034
FAAH 1.028 1.002 1.055 0.037 CASP1 0.939 0.887 0.993 0.027
CPM 0.901 0.823 0.985 0.022 ARHGAP25 0.842 0.753 0.942 0.003
FPR1 0.819 0.702 0.956 0.011 ARHGAP30 0.9 0.82 0.988 0.027
ENG 0.994 0.988 0.999 0.033 CD163 0.956 0.922 0.991 0.015
FTL 0.9998 0.9996 0.99999 0.04 CD209 0.915 0.843 0.992 0.032
NPL 0.934 0.877 0.994 0.033 MS4A4A 0.946 0.908 0.987 0.01
GBP1 0.971 0.949 0.993 0.012 SLC7A7 0.941 0.899 0.985 0.009
GJA5 0.843 0.747 0.951 0.006 CEBPA 0.902 0.831 0.979 0.013
GJA4 0.961 0.923 0.9999 0.049 GIMAP1 0.814 0.668 0.993 0.043
GYPC 0.979 0.961 0.997 0.026 ACSL5 0.858 0.738 0.998 0.046
FUCA1 0.962 0.936 0.989 0.006 EVI2B 0.949 0.914 0.985 0.005
VSIG4 0.965 0.937 0.994 0.018 SMAD9 1.033 1.009 1.059 0.007
TYROBP 0.998 0.996 0.999 0.009 HCLS1 0.976 0.956 0.997 0.025
DOCK2 0.87 0.764 0.992 0.038 CSF3R 0.789 0.625 0.996 0.046
FCER1G 0.996 0.993 0.999 0.011 LGALS9 0.973 0.949 0.998 0.036
LCP2 0.923 0.857 0.994 0.035 IL10RA 0.91 0.834 0.992 0.033
TNFSF8 0.693 0.524 0.918 0.011 LILRB2 0.884 0.797 0.98 0.019
LY96 0.968 0.938 0.998 0.038 LILRB5 0.773 0.613 0.976 0.03
LY86 0.933 0.872 0.998 0.043 APBB1IP 0.927 0.884 0.971 0.002
MFNG 0.893 0.799 0.998 0.047 HAVCR2 0.951 0.906 0.9997 0.049
MPP1 0.954 0.926 0.984 0.003 APOL2 0.977 0.96 0.994 0.009
MSR1 0.969 0.939 0.999 0.045 LRRC25 0.921 0.851 0.995 0.037
NCF4 0.939 0.887 0.994 0.031 ARHGDIB 0.994 0.989 0.999 0.023
FCGR2A 0.985 0.971 0.999 0.03 ARHGAP9 0.901 0.824 0.985 0.022
FCGR2B 0.775 0.607 0.99 0.041 SAMHD1 0.979 0.963 0.995 0.012
POU2F2 0.887 0.794 0.991 0.034 RASGRP4 0.618 0.435 0.88 0.008
PDK1 1.078 1.033 1.124 6E-04 SLC43A2 0.88 0.791 0.979 0.019
PLEK 0.944 0.9 0.99 0.018 APOE 0.999 0.998 0.99997 0.042
CSF2RB 0.804 0.647 0.9998 0.05 BIN2 0.851 0.733 0.988 0.034
BNIP3 1.008 1.004 1.012 2E-04 C1QB 0.997 0.994 0.9997 0.032
TLR2 0.882 0.781 0.996 0.042 C1QA 0.997 0.995 0.99987 0.039
IL2RA 0.552 0.331 0.922 0.023 C1QC 0.998 0.996 0.9998 0.029
VAV1 0.871 0.776 0.977 0.018 CD14 0.994 0.988 0.99999 0.05
C3AR1 0.946 0.903 0.99 0.016 CD37 0.917 0.849 0.991 0.028
PILRA 0.932 0.871 0.996 0.038 CD53 0.984 0.97 0.997 0.018
SLCO2B1 0.957 0.922 0.993 0.02 FOLR2 0.985 0.976 0.995 0.004
PPFIA4 1.108 1.034 1.186 0.003 COCH 1.017 1.007 1.026 5E-04
PIK3R5 0.794 0.657 0.959 0.017 CTSS 0.98 0.961 0.9997 0.047
ITGAM 0.864 0.771 0.967 0.011 CYBB 0.975 0.952 0.9997 0.047
NFAM1 0.84 0.712 0.991 0.038
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FIGURE 3 | Establishment and verification of a stromal–immune score-based prognostic gene signature for osteosarcoma. (A) A 10-fold cross-verification for
determining the number of factors. (B) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of stromal–immune score-based gene features. (C)
Kaplan–Meier curves of OS between high- and low-risk groups in the TARGET dataset. (D,E) The distribution and proportion of survival status in the high- and low-risk
groups. The dotted line indicates the median value of risk scores. (F) Receiver operating characteristic (ROC) of OS time based on the risk scores in the TARGET
dataset. Themaximum inflection point was the cut-off point by the Akaike information criterion (AIC). (G)Kaplan–Meier curves of OS between high- and low-risk groups in
the GSE21257 dataset. (H,I) The distribution and proportion of survival status of high- and low-risk osteosarcoma patients. (J) ROC of OS time for validating the
predictive efficacy of this signature in the GSE21257 dataset.
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conducted. The AUC value was 0.881, demonstrating the well
performance on predicting osteosarcoma patients’ prognosis
(Figure 3F). The maximum inflection point was recognized
as the cut-off point on the ROC curve by the AIC values.
The GSE21257 dataset was used for independently validating this
prognostic signature. Consistently, high-risk score indicated poor
prognosis of osteosarcoma patients (p � 5.074e-03; Figure 3G).
Higher proportion of dead patients was found in the high-risk group
(Figures 3H,I). The AUC of OS was 0.849, confirming that this
signature possessed high accuracy and sensitivity on predicting
prognosis (Figure 3J).

Prediction of Chemotherapy Drug
Sensitivity and Potential Small Molecule
Compounds Based on Risk Scores
The sensitivity to chemotherapy drugs including paclitaxel,
methotrexate, doxorubicin, and cisplatin was estimated in each
osteosarcoma sample from the TARGET database (Figures
4A–D). Accordingly, there were significantly lowered IC50 values
of doxorubicin in the high-risk group than the low-risk group (p �
0.0062), indicating that the high-risk osteosarcoma patients were
more sensitive to doxorubicin. There were 57 upregulated and 658
downregulated genes in the high-risk specimens than the low-risk
specimens (Supplementary Table S6). Based on these DEGs, 61
small molecule compounds with |connectivity score| > 0.9 and p <
0.05 were predicted for treating osteosarcoma by cMap analysis
(Table 2). Also, we analyzed the shared MOA among these small
molecule compounds. As a result, sotalol, bisoprolol, suloctidil, and
nicergoline shared adrenergic receptor antagonist (Figure 4E).
Pirenzepine, tropicamide and lobeline had the shared acetylcholine
receptor antagonist. Risperidone, molindone, and piperacetazine

shared dopamine receptor antagonist. Protein synthesis inhibitor
was shared by puromycin, emetine, and diloxanide.

Associations Between Risk Scores and
Tumor Immune Microenvironment of
Osteosarcoma
Stromal and immune scores were evaluated in the high- and
low-risk osteosarcoma specimens with the ESTIMATE
algorithm. Accordingly, higher stromal scores (p � 4.47e-07)
and immune scores (p � 4.32e-11) were detected in the low-risk
group compared to the high-risk group (Figures 5A,B).
Considering that programmed death-1 (PD-1) and
programmed death-ligand 1 (PD-L1) are well-established
markers for prediction of the responses to anti-PD-1/L1
therapies (Sun et al., 2018), the expression distributions of
PD-1 and PD-L1 were assessed. No significant difference in
PD-1 expression was found between the high- and low-risk
groups (Figure 5C). The low-risk osteosarcoma group
displayed distinctly higher PD-L1 expression than the high-
risk group (p � 0.00054; Figure 5D), indicating that the low-risk
samples could be likely to respond to anti-PD-L1 therapy. The
low-risk samples were enriched by various immune cells
including activated B cells, activated CD4 T cells, activated
CD8 T cells, central memory CD4 T cells, central memory CD8
T cells, effector memory CD4 T cells, effector memory CD8
T cells, gamma delta T cells, immature B cells, memory B cells,
regulatory T cells, T follicular helper cells, type 1 T helper cells,
type 17 T helper cells, type 2 T helper cells, activated dendritic
cells, CD56bright natural killer cells, CD56dim natural killer
cells, eosinophils, immature dendritic cells, macrophages, mast
cells, MDSCs, monocytes, natural killer cells, natural killer

FIGURE 4 | Prediction of chemotherapy drug sensitivity and potential small molecule compounds based on risk scores in osteosarcoma. (A–D) Drug sensitivity of
(A) paclitaxel, (B) methotrexate, (C) doxorubicin, and (D) cisplatin between high- and low-risk osteosarcoma samples by the Genomics of Drug Sensitivity in Cancer
(GDSC) database. (E) The shared mechanism of action among small molecule compounds.
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TABLE 2 | Potential small molecule drugs for osteosarcoma by connectivity map (cMap) analysis.

CMap name Cell line Mean N Enrichment p Specificity Percent non-null

Zalcitabine MCF7 0.728 2 0.979 0.00076 0.0057 100
Monensin PC3 0.679 2 0.974 0.00109 0.0056 100
Tolnaftate MCF7 0.707 2 0.971 0.00139 0.0115 100
Cefapirin MCF7 0.698 2 0.97 0.00159 0 100
Sulfamonomethoxine MCF7 0.677 2 0.97 0.00165 0.0065 100
Podophyllotoxin MCF7 0.674 2 0.963 0.00235 0.0209 100
Amantadine MCF7 0.68 2 0.962 0.00256 0 100
Gossypol PC3 0.699 2 0.96 0.00266 0.023 100
Stachydrine MCF7 0.721 2 0.957 0.00326 0 100
Pheniramine MCF7 0.674 2 0.955 0.00374 0.0062 100
16,16-Dimethylprostaglandin E2 PC3 0.629 2 0.953 0.004 0.0229 100
Furazolidone MCF7 0.646 2 0.951 0.00439 0 100
Metronidazole MCF7 0.673 2 0.949 0.00483 0.022 100
Pivmecillinam MCF7 0.632 2 0.948 0.00487 0.0119 100
Zardaverine MCF7 0.688 2 0.946 0.00545 0.0272 100
Gabexate MCF7 0.685 2 0.945 0.00567 0.0065 100
Metampicillin PC3 0.612 2 0.944 0.00587 0.0162 100
Levopropoxyphene MCF7 0.63 2 0.939 0.00714 0.0116 100
Etilefrine MCF7 0.615 2 0.935 0.00797 0.0064 100
Brinzolamide MCF7 0.734 2 0.935 0.00809 0.0063 100
Pyrithyldione MCF7 0.622 2 0.932 0.00873 0.0294 100
Moroxydine MCF7 0.754 2 0.931 0.00915 0.0296 100
Bretylium tosilate MCF7 0.617 2 0.929 0.00968 0 100
Melatonin MCF7 0.628 2 0.928 0.00984 0.0298 100
Iohexol MCF7 0.576 2 0.927 0.01022 0.025 100
Khellin MCF7 0.657 2 0.92 0.01276 0.0275 100
Pentoxifylline PC3 0.564 2 0.914 0.01443 0.0165 100
Cloxacillin MCF7 0.607 2 0.914 0.01465 0.012 100
Indoprofen MCF7 0.569 2 0.911 0.01589 0.0345 100
Cefaclor MCF7 0.618 2 0.909 0.01682 0.0396 100
Hydroflumethiazide PC3 0.59 2 0.909 0.01696 0.0317 100
Oxolamine MCF7 0.585 2 0.908 0.01752 0.0189 100
Benzathine Benzylpenicillin MCF7 0.606 2 0.904 0.01881 0.0455 100
Rotenone PC3 0.56 2 0.9 0.0204 0.0292 100
Adipiodone MCF7 −0.733 2 −0.97 0.00191 0 100
Guaifenesin PC3 −0.728 2 −0.959 0.00364 0.005 100
Octopamine MCF7 −0.693 2 −0.953 0.00481 0.0188 100
Clorgiline MCF7 −0.745 2 −0.952 0.00497 0.0074 100
Meropenem MCF7 −0.731 2 −0.951 0.00525 0 100
Protoveratrine A MCF7 −0.714 2 −0.95 0.00541 0.0161 100
Trolox C MCF7 −0.711 2 −0.95 0.00551 0 100
Salsolidin MCF7 −0.682 2 −0.944 0.00692 0.0177 100
Pipenzolate bromide MCF7 −0.671 2 −0.94 0.00754 0.0245 100
Nicergoline MCF7 −0.722 2 −0.937 0.00817 0.0132 100
Androsterone MCF7 −0.763 2 −0.937 0.00823 0.0058 100
Seneciphylline MCF7 −0.672 2 −0.937 0.00829 0.0378 100
Trazodone MCF7 −0.752 2 −0.935 0.00891 0.0279 100
Sulfametoxydiazine MCF7 −0.662 2 −0.928 0.0108 0 100
Dexpanthenol MCF7 −0.684 2 −0.928 0.0109 0.0063 100
Procainamide MCF7 −0.672 2 −0.927 0.01099 0.0154 100
Vitexin MCF7 −0.676 2 −0.924 0.01183 0.0101 100
Pridinol MCF7 −0.707 2 −0.922 0.01217 0.0058 100
Salbutamol MCF7 −0.683 2 −0.918 0.01368 0.0064 100
Halcinonide MCF7 −0.645 2 −0.918 0.01386 0.0084 100
Morantel MCF7 −0.701 2 −0.917 0.01398 0.0049 100
Ritodrine MCF7 -−0.68 2 −0.917 0.01416 0.0054 100
Corbadrine MCF7 −0.718 2 −0.915 0.01467 0.0114 100
Betaxolol MCF7 −0.669 2 −0.909 0.0167 0.0055 100
Aminophenazone MCF7 −0.671 2 −0.906 0.01767 0.0057 100
Glycocholic acid MCF7 −0.736 2 −0.905 0.01821 0.0124 100
Oxetacaine MCF7 −0.624 2 −0.901 0.01944 0.0458 100
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T cells, neutrophils, and plasmacytoid dendritic cells
(Figure 5E).

Activation of Signaling Pathways
Associated With the Gene Signature
GSEA was utilized for exploring KEGG pathways associated with
the gene signature. Under the threshold of |NES|>1 and adjusted
p < 0.05, no pathways were significantly enriched in the high-risk

osteosarcoma samples. B cell receptor signaling pathway (NES �
−2.17, p < 0.0001), cell adhesion molecules cams (NES � −2.22,
p � 0.001), chemokine signaling pathway (NES � −2.11, p �
0.003), cytokine-cytokine receptor interaction (NES � −2.16, p �
0.002), leukocyte transendothelial migration (NES � −2.30, p <
0.0001) and Toll-like receptor signaling pathway (NES � −2.10,
p � 0.004) were significantly activated in the low-risk group
(Figure 6).

FIGURE 5 | Associations between risk scores and tumor immune microenvironment of osteosarcoma in the TARGET dataset. (A,B) The distribution of (A) stromal
scores and (B) immune scores in high- and low-risk osteosarcoma samples with the Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using
Expression Data (ESTIMATE) algorithm. (C,D) The distribution of (C) programmed death-1 (PD-1) and (D) programmed death-ligand 1 (PD-L1) expression in high- and
low-risk osteosarcoma samples. (E) The relative infiltration levels of immune cells in high- and low-risk groups with the single-sample gene set enrichment analysis
(ssGSEA) algorithm. *p < 0.05; **p < 0.01; ***p < 0.001.
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Associations Between Risk Scores and
Clinicopathological Characteristics and
Phenotypes of Osteosarcoma Cell Lines
In TARGET cohort, we evaluated the associations between risk
scores and clinicopathological characteristics of osteosarcoma
patients. In Figure 7A, metastatic patients exhibited distinctly
increased risk score than non-metastatic patients (p � 0.0033).
However, no significant difference in risk score was found
between female and male (Figure 7B) as well as between stage
1/2 and stage 3/4 (Figure 7C). In the GSE21257 dataset, we
observed that there was no significant difference in risk score
between female and male (Figure 7D) as well as between grades
I–II and grades III–IV (Figure 7E). Three phenotypes of
osteosarcoma cell lines were scored in each osteosarcoma
sample in the TARGET cohort based on the relevant marker
genes using ssGSEA method. We observed that risk score was
negatively correlated to tumorigenic phenotype, invasive
phenotype, and colony forming phenotype across
osteosarcoma (Figures 7F,G).

Establishment of a Nomogram for
Prediction of 1-, 3-, and 5-years Survival of
Osteosarcoma
For better applying this risk signature, a nomogram was
established for osteosarcoma prognosis in the TARGET
cohort, which contained FPR1, GBP1, FUCA1, PDK1, BNIP3,
EVI2B, APBB1IP, FOLR2, and COCH. Our data demonstrated
that this nomogram could be predictive of 1-, 3-, and 5-years

survival probability of osteosarcoma patients (Figure 8). In this
model, the 1-, 3-, and 5-years survival probability of the patients
was determined through the total points that were calculated
through adding up the point of each gene.

Characterization of Osteosarcoma
Subtypes With Distinct Prognostic
Implications
Using the 272 stromal-immune score-based DEGs, consensus
clustering analysis was applied with the NMF algorithm for
stratifying osteosarcoma samples into distinct molecular
subtypes. Accordingly, three molecular subtypes were
characterized, including cluster1 (n � 50), cluster2 (n � 13)
and cluster3 (n � 21; Figures 9A,B). To understand the
difference in the underlying biology of the three subtypes, we
established a heatmap that showed the differences in expression
of the 272 DEGs among three clusters (Figure 9C). Among them,
cluster1 had the worst survival outcomes (p � 2.987e-02;
Figure 9D). Also, we noticed distinct differences in immune
and stromal scores between molecular patterns. The lowest
immune scores (p � 5e-09; Figure 9E) and stromal scores
(p � 0.00047; Figure 9F) were found in cluster1.

Stromal–Immune Score-basedModification
Patterns Characterize Distinct Immune
Landscapes
This study further investigated the distributions of PD1 and PD-
L1 expression across three stromal-immune score-based gene

FIGURE 6 | Gene set enrichment analysis (GSEA) for the KEGG pathways associated with the gene signature.
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clusters. Among them, cluster3 had the highest PD-1 expression
(p � 0.028; Figure 10A). Moreover, this cluster exhibited the
highest PD-L1 expression (p � 0.023; Figure 10B). In Figure 10C,
the three molecular patterns were characterized by distinct
immune cell infiltrations. Cluster3 exhibited the highest
infiltration levels of activated B cells (p < 0.001), activated
CD4 T cells (p < 0.05), activated CD8 T cells (p < 0.001),
central memory CD4 T cells (p < 0.05), central memory CD8
T cells (p < 0.01), effector memory CD4 T cells (p < 0.01), effector
memory CD8 T cells (p < 0.001), gamma delta T cells (p < 0.001),

immature B cells (p < 0.001), memory B cells (p < 0.05),
regulatory T cells (p < 0.001), T follicular helper cells (p <
0.001), type 1 T helper cells (p < 0.001), type 2 T helper cells
(p < 0.01), activated dendritic cells (p < 0.001), mast cells (p <
0.05), MDSC (p < 0.001), natural killer cells (p < 0.001), natural
killer T cells (p < 0.01) and plasmacytoid dendritic cells (p <
0.001), while cluster1 had the lowest infiltration levels of above
immune cells. Thus, cluster3 was recognized as a “hot” tumor,
cluster2 was recognized as an “excluded” tumor, and cluster1 was
recognized as a “cold” tumor.

FIGURE 7 | Associations between risk scores and clinicopathological characteristics and phenotypes of osteosarcoma cell lines. (A–C) Comparisons of risk score
(A) between metastatic and non-metastatic patients; (B) between female and male patients; (C) between stage 1/2 and stage 3/4 patients in the TARGET cohort. (D,E)
Comparisons of risk score (D) between female and male patients; (E) between grades I–II and grades III–IV patients in the GSE21257 dataset. (F,G) Comparisons of
three phenotypes of osteosarcoma cell lines (tumorigenic phenotype, invasive phenotype, and colony forming phenotype) between high- and low-risk groups using
ssGSEA method in the TARGET cohort. *p < 0.05; ***p < 0.001.
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DISCUSSION

Osteosarcoma, a common bone malignancy, is prone to
metastasis as well as undesirable survival outcomes (Yao et al.,
2018). Stromal and immune cells in the tumor microenvironment
are critical regulators of osteosarcoma progression, drug
resistance and treatment response (Smeland et al., 2019).
Based on immune–stromal score-based DEGs, we developed
and verified a gene signature for the prediction of survival
outcomes of osteosarcoma patients as well as characterized
three distinct molecular subtypes.

An immune-stromal score-based gene signature containing
FPR1, GBP1, FUCA1, PDK1, BNIP3, EVI2B, APBB1IP, FOLR2,
and COCH was established for predicting clinical outcomes of
osteosarcoma subjects. Consistent with previous research,
FUCA1 was distinctly correlated to osteosarcoma patients
(Yiqi et al., 2020). PDK1 upregulation was detected in
osteosarcoma, which elevated a proliferative capacity of
osteosarcoma cells (Li et al., 2017). EVI2B that possessed the
predictive potential on prognosis was associated with metastasis

and immune cell infiltration in osteosarcoma (Yang et al., 2021).
Immune-related APBB1IP was in relation to clinical outcomes of
osteosarcoma patients (Cao et al., 2020). More assays should be
carried out to verify their biological implications in osteosarcoma.
Consistently, high stromal or immune scores were in relation to
prolonged survival time of osteosarcoma (Alves et al., 2019).
Patients with high risk were indicative of unfavorable prognosis.
After external verification, this signature possessed the well
performance on prediction of clinical outcomes of
osteosarcoma patients.

At current, neoadjuvant chemotherapy and surgery are
approved to remove primary or metastatic osteosarcoma,
followed by adjuvant chemotherapy after surgery, which may
increase OS time of osteosarcoma patients (Zhang et al., 2020).
Nevertheless, drug resistance leads to worse clinical outcomes
(Xiao et al., 2018). Doxorubicin represents the most effective first-
line drug regarding high-grade osteosarcoma (Buondonno et al.,
2019). Here, high-risk patients were more sensitive to
doxorubicin, which indicated that these subjects were more
likely to benefit from this chemotherapy drug.

FIGURE 8 | Establishment of a nomogram for prediction of 1-, 3-, and 5-years survival of osteosarcoma in the TARGET cohort.
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Immunotherapy, especially immune checkpoint inhibitors, has
hugely altered the therapeutic landscape of metastatic or
recurrent osteosarcoma (Chen et al., 2021). However, only
some patients can benefit from immunotherapy (Yu et al.,
2019). Here, we found that low-risk patients had the increase
in PD-L1 expression and higher infiltration levels of various
immune cells, indicating that these patients were more likely
to respond to anti-PD-L1 therapy. Our GSEA results also
confirmed that immune pathways such as B cell receptor
signaling pathway (Long et al., 2016), chemokine signaling
pathway (Chao et al., 2020), cytokine-cytokine receptor
interaction (Lu et al., 2018), and toll-like receptor signaling
pathway (Zhou et al., 2020a) were significantly activated in the
low-risk patients.

Previous two studies have characterized the gene set of
phenotypes of 22 osteosarcoma cell lines, including

tumorigenic phenotype, invasive phenotype, and colony
forming phenotype, which reflect the osteosarcoma
heterogeneity (Lauvrak et al., 2013; Sharma et al., 2017). One
has characterized osteosarcoma phenotypes at multiple levels.
The other suggests that these phenotypically differentiated
osteosarcoma cell lines play important roles in modulating
tumor microenvironment by multitype network-guided target
controllability analysis (Sharma et al., 2017). Here, we employed
ssGSEA method to quantify tumorigenic phenotype, invasive
phenotype, and colony-forming phenotype across
osteosarcoma samples based on the expression profiles of
shared marker genes between above two studies. We observed
that immune-stromal score-based risk score was negatively
associated with tumorigenic phenotype, invasive phenotype,
and colony-forming phenotype, indicative of the important
role of the risk score in the progression of osteosarcoma.

FIGURE 9 | Establishment of osteosarcoma subtypes with distinct prognostic implications in the TARGET cohort based on the 272 stromal-immune score-based
DEGs with the NMF algorithm. (A) The relationships between cophenetic, dispersion, evar, residuals, rss, silhouette and sparseness coefficients, and the number of
clustering. (B) Heat map of nonnegative matrix factorization (NMF) clustering results of stromal-immune score-based signatures with clustering number � 3. (C) The
heatmap of the differences in expression of the 272 stromal-immune score-based DEGs among three clusters. (D) Kaplan–Meier curves of OS for osteosarcoma
patients in the TARGET cohort with three molecular subtypes. P for log-rank test. (E) The immune scores in three stromal–immune score-based clusters using the
ESTIMATE algorithm. (F) The stromal scores of three gene clusters with the ESTIMATE algorithm. The differences between three subtypes were compared by
Kruskal–Wallis test. ns, no statistical significance. ***p < 0.001; ****p < 0.0001.
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By employing NMF algorithm, we established three immune-
stromal score-based gene patterns for osteosarcoma patients,
with distinct survival outcomes. Among them, cluster3 had the
highest PD-1/PD-L1 expression and the highest infiltration
levels of activated B cells, activated CD4 T cells, activated
CD8 T cells, central memory CD4 T cells, central memory
CD8 T cells, effector memory CD4 T cells, effector memory
CD8 T cells, gamma delta T cells, immature B cells, memory
B cells, regulatory T cells, T follicular helper cells, type 1 T
helper cells, type 2 T helper cells, activated dendritic cells, mast
cells, MDSC, natural killer cells, natural killer T cells and

plasmacytoid dendritic cells. These data indicated that
osteosarcoma patients in cluster3 were more likely to
benefit from immunotherapy. The limitations of this study
should be pointed out. First, due to limited number of
patients, their clinical implications will be validated in a
larger osteosarcoma cohort in our future studies. Second, in
the TARGET and GSE21257 datasets, there was lack of
clinicopathological characteristics (such as stage and grade)
of osteosarcoma patients. Thus, it was difficult to analyze the
correlations between the risk score and clinicopathological
characteristics.

FIGURE 10 | Tumor immune microenvironment characteristics in distinct stromal–immune score-based modification patterns for osteosarcoma in the TARGET
cohort. (A) Comparisons of PD-1 expression across three stromal-immune score-based gene clusters. (B) Relative distribution of PD-L1 expression in three clusters.
The differences between three subtypes were compared by Kruskal–Wallis test. (C) The fractions of tumor-infiltrating immune cells in three clusters with the ssGSEA
algorithm. The statistical differences between clusters were compared with the Kruskal–Wallis test. ns, no statistical significance. *p < 0.05; **p < 0.01; ***p < 0.001.

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 69938515

Zheng et al. Immune-Stromal Score-Based Signature in Osteosarcoma

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


CONCLUSION

Collectively, this study established an immune–stromal score-
based gene signature and distinct molecular subtypes, which
could predict the survival outcomes of osteosarcoma patients
sensitive to chemotherapy and immunotherapy. Thus, the risk
score may assist decision making for individualized therapy and
follow-up project in clinical practice.
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