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Abstract
Photo biomodulation (PBM) as a non-invasive and safe treatment has been demonstrated the anti-inflammatory potential 
in a variety of cell types, including stem cells. However, further investigations using different laser parameters combined 
with more accurate methods such as quantitative measurement of inflammatory gene expression at the mRNA level are still 
necessary. The aim of this study was to evaluate the effect of 532 nm green laser on cell proliferation as well as expression 
of inflammatory genes in human adipose-derived mesenchymal stem cells (hADMSCs) using RNA sequencing (RNA-seq) 
technique and confirmatory RT-PCR. hADMSCs were cultured in DMEM low glocuse medium with 10% fetal bovine 
serum until the fourth passage. Cultured cells were divided in two groups: control group (no laser irradiation) and laser 
group, irradiated with 532 nm laser at 44 m J/cm2 with an output power of 50 mW and a density of 6 mW/cm2, every other 
day, 7 s each time. The cell viability was assessed using MTT assay 24 h after each irradiation on days 3, 5, and 7 after cell 
seeding, followed by performing RNA-seq and RT-PCR. The MTT assay showed that PBM increased cell proliferation on 
day 5 after irradiation compared to day 3 and decreased on day 7 compared to day 5. In addition, gene expression analysis in 
hADMSCs using RNA-seq revealed down-regulation of inflammatory genes including CSF2, CXCL2, 3, 5, 6, 8, and CCL2, 
7. These results indicate that 532 nm PBM with the parameters used in this study has a time-dependent effect on hADMSCs 
proliferation as well as anti-inflammatory potential.
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Introduction

Inflammation is a natural physiological immune response in 
the face of conditions such as infection, trauma, and disease. 
In pathological conditions, immune cells invoked at the site 

of infection or injury initiate a variety of activities, including 
vascularization, release of pro-inflammatory mediators, and 
the induction of phagocytosis [1, 2]. Chronic inflammation 
leads to various autoimmune and chronic immune-related 
diseases, such as type II diabetes, atherosclerosis, cancer, 
neurodegenerative diseases, rheumatoid arthritis (RA), and 
multiple sclerosis (MS) [3, 4] with high morbidity and mor-
tality due to lack of effective immune-modulatory and anti-
inflammatory treatment [5]. Chronic inflammation has an 
important role in the onset and progression of neurodegen-
erative diseases such as Alzheimer’s disease, Parkinson’s 
disease, and Huntington’s disease [2]. In addition, numerous 
inflammatory genes play a critical role in the pathogenesis 
of inflammation-related tumors, which are involved in many 
cancer-associated functions and pathways [6]. Rheumatoid 
arthritis and osteoarthritis are two common forms of autoim-
mune and chronic diseases also associated with inflamma-
tory genes [7]. Various pro-inflammatory mediators, such as 
cytokines (e.g., IL-1β, IL-6, IL-18, TNF-α, and IFN-γ) and 
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chemokines (e.g., CCL2, CCL3, and CXCL3, 5, 6, 8), are 
involved in the onset of systemic immune responses [1, 2].

Adipose tissue-derived stem cells (ADSCs) have recently 
been considered as a possible treatment in chronic inflam-
mation [3, 8]. In fact, ADSCs exert anti-inflammatory and 
immunosuppressive effects by inhibiting the production of 
pro-inflammatory cytokines by activated macrophages as well 
as inducing apoptotic cell death [8]. They have the potential 
to treat inflammatory, immune-mediated, and ischemic con-
ditions through migration to the sites of inflammation and 
cell-cell interactions between ADSCs and lymphocytes or 
production of soluble growth factors. Nowadays, numerous 
stem cell-based strategies have provided a promising treat-
ment against cancer that increases tumor targeting [9, 10]. 
ADSCs have been shown to modulate the microenvironment 
of the tumor to suppress cancer cells. They can release media-
tors such as exosomes which migrate to tumor sites, and thus 
deliver drugs and target tumor cells effectively [11].

Photobiomodulation (PBM), also known as low-level 
laser therapy (LLLT), is a non-invasive, painless, and safe 
treatment with minimum side effects [12]. PBM uses vis-
ible or invisible near-infrared (NIR) region of the spectrum, 
with wavelengths of 450–1200 nm (either LED or laser), and 
output power of 1–500 mW [13, 14] to modulate cellular 
responses without any thermal effect [15, 16]. The mecha-
nism of PBM action occurs through the absorption of light 
by photoreceptors in the mitochondria, which modulates 
biochemical and photochemical reactions [17, 18].

Cytochrome-C-oxidase as complex IV of electron trans-
port chain of the mitochondria is the major mitochondrial 
chromophore of PBM in the range of red to NIR light from 
600 to about 900 nm [15, 16, 19]. Light absorbance leads to 
production of adenosine triphosphate (ATP) [17], reactive 
oxygen species (ROS), release of nitric oxide (NO) [20], 
increased membrane potential, and downstream cellular 
signaling via ATP, cAMP, ROS,  Ca2+, and NO to influence 
gene transcription [15] and modulate various transcription 
factors [18]. It has been shown that PBM can improve cell 
survival, decrease apoptosis, reduce oxidative stress, sup-
press inflammation, and promote mitochondrial function 
[16, 21], as well as enhance cell proliferation and migration, 
and induce stem cell differentiation [22].

In addition to several studies which reported enhancing the 
proliferation and differentiation of stem cells [13], growing 
body of literature indicates that PBM can change the expres-
sion of various genes and proteins. Among them, many anti- 
and pro-inflammatory genes have regulated [23–27]. For 
example, phototherapy at 630 nm (32 and 64 J/cm2) and 465 
nm (16, 32, 64 J/cm2) in human nucleus pulposus (NP) cells, 
under inflammatory conditions, significantly suppressed the 
production of IL-6 protein and inhibited the expression of IL-8 
(CXCL8) compared with untreated control cells [28]. Another 
study displayed increased levels of IL-6, IL-8, and TNF-α 

mRNA in human outer root sheath cells (hORSCs) using 660 
nm light (2.42 mW/cm2), with 1, 3, 5, or 10 J/cm2 of energy, 
while 830 nm NIR light at 1 J/cm2 on hORSCs increased IL-6 
mRNA at 10 J/cm2 and IL-8 mRNA at 5 J/cm2 [29]. Also, 
LLLT with 660 nm GaAlAs laser (1, 2, and 3 J/cm2) signifi-
cantly enhanced CCL2, CXCL10, and TNF-α, mRNA, and 
protein expression in human monocyte cell line THP-1 [30]. In 
another study, 660 nm laser irradiation on LPS-treated MSCs 
significantly decreased mRNA expression levels of inflamma-
tory cytokines such as IL-1β, IL-6, and IL-8 and increased 
the expression and secretion of anti-inflammatory cytokines 
including IL-4 and IL-10 compared to control cells [31].

Additionally,WS1 human skin fibroblasts were examined 
in response to irradiation with a 660 nm diode laser (5 J/cm2, 
11 mW/cm2) and it revealed up-regulation of several inflam-
matory cytokines and chemokines including CD40LG, 
CXCL11, CXCL2, IFNG, IL-10, IL-2, and IL-4 and down-
regulation of CXCL1, CXCL5, and IL-1β [32]. Likewise, in 
a study involving patients with facial wrinkles showed that 
the mRNA level of IL-1 and TNF-α increased while IL-6 
decreased by 633 nm LED laser [33].

GaInAlAs laser irradiation at 660 nm on L929 fibroblast 
cells showed down-regulation of IL-6 mRNA expression at 
5 J/cm2 [34]. The mRNA level of TNF-α and IL-1β demon-
strated a marked decrease using 810 nm (5 J/cm2) irradiation 
in RA synoviocytes. Also 25 J/cm2 had significant decrease in 
the intracellular levels of TNF-a, IL-1β, and IL-8 protein [35]. 
Accordingly, it suggested that the use of red and NIR LLLT as an 
effective treatment leads to down-regulation of pro-inflammatory 
cytokines and chemokine engaged in inflammatory response.

However, PBM with green light have been less studied. 
A study showed that laser irradiation at 532 nm (1.5 J/cm2) 
in cultured human skin fibroblasts increased the expression 
of type I and III procollagen, TIMP1 and TIMP2, Hsp70, 
and IL-6 whereas reduced MMP1 and MMP2 expression 
[36]. Moreover, PBM with 525 nm light inhibited the protein 
expression of inflammatory cytokine IL-6 in human nucleus 
pulposus cells at 16, 32, and 64 J/cm2 [28]. Although several 
previous studies have been concerned on the laser-induced 
gene expression changes in stem cells, there are few stud-
ies that have examined the effect of PBM at transcriptional 
expression level. Thus, the purpose of the present study was to 
explore the anti-inflammatory and cellular proliferation effects 
of green laser irradiation on hADMSCs.

Material and methods

Cell culture

hADMSCs supplied from Stem Cell Technology Research 
Center were used in this experiment. The hADMSCs were 
cultured in a low-glucose Dulbecco’s Modified Eagle’s 
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Medium (DMEM; BioMEDIA) containing 10% fetal bovine 
serum (FBS;  GibcoTM), 100 U/mL penicillin, and 100 µg/
mL streptomycin. The cells were plated into 75  cm2 tissue 
culture flasks and incubated at 37 °C in a humidified atmos-
phere with 5%  CO2, until reaching a confluence between 70 
and 80%. The culture medium was changed every 3 days. 
Fourth passage culture of cells were washed with PBS (Bio 
IDEA), then trypsinized and were plated in 4-well plates 
for laser irradiation. The experiment involved two groups 
of cells: the control group was cultured in DMEM FBS 10% 
medium without laser irradiation and laser group was cul-
tured in same condition with laser irradiation.

Laser irradiation

hADMSCs of laser group were plated in four 4-well plates at a 
density of 1 ×  104 cell/well. A diode laser (Takfam Sazan Shafa, 
MODEL BS-310) was used in this study to generate a visible 
green laser beam with the wavelength of 532 nm, the power of 
50 mW, and distance of 10 cm from the cells. The power den-
sity of the laser was 6 mW/cm2 and energy density was 44 mJ/
cm2. The spot size of laser beam was 0.5  cm2, so we designed 
a beam expander for this experiment, to increase the irradiated 
surface area to 1.39  cm2 and cover the entire surface of each 
well of culture plate, uniformly. The total surface of the plate 
was irradiated three times in total, for 7 s, every other day. Non-
irradiated control group were kept under the same conditions.

MTT assay

The MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetra-
zolium bromide) assay is a colorimetric test performed for 
evaluating the cellular viability. The cells at a density of 1 
×  104 cells/well from control and laser groups were seeded 
onto 4-well plates (4 well of each plate for each group), then 
were incubated for 24 h at 5%  CO2 and 37 °C. After 24 h of 
incubation, MTT was dissolved in sterile PBS at a concen-
tration of 5 mg/mL, added to the wells, and incubated for 
4 h. Then the supernatant was removed and 100 µL DMSO 
added as a solubilization solution to dissolve the insoluble 
formazan product into a colored solution.

The absorbance of this solution was monitored by meas-
uring at 570 nm by an ELISA reader. In this study, MTT 
assay was performed 24 h after each irradiation on days 
3, 5, and 7 of cell seeding, with 4 replicates for each day.

RNA extraction and cDNA library construction

Total RNA was extracted from human adipose-derived 
mesenchymal stem cells in the control and laser groups, 
on day 7 of treatment, using Qiagen RNeasy Mini Kit, 

according to the manufacturer’s instructions (QIAGEN, 
Germany), then samples were quantified using a Nan-
odrop ND-1000 (Thermo Fisher Scientific) spectro-
photometer. The integrity and concentration of isolated 
RNA were assessed using Agarose Gel Electrophoresis 
and Bioanalyzer 2100 (Agilent Technologies Inc., CA, 
USA) for evaluating the 28S and 18S ribosomal RNA 
bands (28S/18S ratio). The samples with RNA integrity 
number (RIN) of ≥8 were used for RNA library construc-
tion. RNA-seq library construction was performed using 
a Kapa Hyper Prep Kit (Kapa Biosystems) and subjected 
to 150 bp for sequencing.

RNA sequencing and data analysis

After library construction, RNA sequencing was per-
formed on an Illumina HiSeq 4000 platform at Bei-
jing Novogene Bioinformatics Technology Co., Ltd. 
(China). The quality control of sequencing reads was 
performed by FastQC v0.11.5 (http:// www. bioin forma 
tics. babra ham. ac. uk/ proje cts/ fastqc/) to remove poten-
tial contaminations with adapters and low-quality and 
noisy data. After filtering the raw data, sequences were 
aligned to the Homo sapiens (human) genome, GRCh38 
(hg38), using HISAT2 aligner v 2.1.0. Then Feature-
Counts v1.5.0 was used to count the number of uniquely 
mapped read pairs with gene annotations. Differential 
gene expression values were determined using NOISeq v 
2.22.0 based on an 80% probability threshold. Then dif-
ferentially expressed genes (DEGs) with a  log2 |FC| > = 
1 were selected to compare the groups of study.

Real‑time PCR

To confirm RNA-seq data on a selected number of genes, 
RT-PCR was performed on day 7 of treatment. Total 
RNA was extracted using the Qiagen RNeasy Mini Kit, 
according to the manufacturer’s instructions (QIAGEN, 
Germany) and 1 μg of total RNA was transcribed to 
complementary DNA (cDNA) using the Qiagen Quanti-
Tect Reverse Transcription Kit. The quantitative real‐
time polymerase chain reaction (qPCR) was performed 
on a Rotor‐Gene 6000 real‐time PCR machine (Corbett 
Research, Qiagen, Germany) under the following condi-
tions: 95 °C for 90 s followed by 40 cycles, each cycle 
lasting 15 s at 95 °C and 30 s at 55 °C. Real-time PCR 
was performed in a 15 μL reaction mixture containing 
7.5 μL of MasterMix SYBR Green PCR (Applied Biosys-
tems), 0.75 μL of each primer (Table 1), 3 μL DNase- and 
RNase-free water, and 3 μL of cDNA from each sample. 
The primer sequences of the selected genes are listed in 
Table 1. GAPDH and β-actin were used as internal con-
trols to normalize target gene expressions.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Statistical analysis

All experiments were performed with four replicates. Sta-
tistical analyses were performed using SPSS (IBM SPSS 
Statistics, USA) software. p-value < 0.05 was considered 
statistically significant.

Results

The effect of laser irradiation on cell viability

Following seeding of hADMSCs, the cells were irradiated 
by a 532 nm green laser at days D2, D4, and D6, as shown 
in Figs. 1 and 2.

Based on MTT assay data, the survival of MSCs after 
green laser irradiation shows a significant increase compared 
to the control group from day 3 to day 5 after treatment 
(p-value < 0.01) and a significant decrease compared to the 
control group from day 5 to day 7 after treatment (p-value 
< 0.01) (Fig. 3A).

As shown in Fig. 3B, MTT assay shows that green light 
at 532 nm increased cell viability by 87%, 217%, and 103% 
(p-value < 0.01) on days 3, 5, and 7, respectively. However, 
cell viability showed a significant decrease on day 7 com-
pared to day 5. The highest increase in survival compared to 
the control group was observed on the fifth day.

Table 1  Primer sequences for 
RT-PCR

Primer name Forward sequence Reverse sequence

CXCL6 GCG AAC CCT CTC TTG ACC A CTT GTT TCC ACT GTC CAA 
CXCL8 TTT GCC AAG GAG TGC TAA AG GCA TCT GGC AAC CCT ACA AC
CXCL5 TGG ACG GTG GAA ACA AGG CTT CCC TGG GTT CAG AGA C
CSF2 AGA AAT GTT TGA CCT CCA GGA TTG CAC AGG AAG TTT CCG 
-Actinβ CAC CAT TGG CAA TGA GCG GTTC AGG TCT TTG CGG ATG TCC ACGT 
GAPDH GTC TCC TCT GAC TTC AAC AGCG ACC ACC CTG TTG CTG TAG CCAA 

Fig. 1  The time frame of our experimental design. Following seed-
ing of human adipose-derived mesenchymal stem cells, laser therapy 
was conducted at days D2, D4, and D6. To explore the effect of laser 
on the cells, MTT assay, RNA-seq, and RT-PCR were subsequently 
conducted

Fig. 2  C1-3: control MSCs; 
L1-3: laser-treated MSCs at 
days D2, D4, and D6
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Differential gene expression analysis

To determine the DEGs in 532 nm laser irradiated cells, 
RNA-seq analysis was performed using Illumina HiSeq 4000 
platform, 7 days after treatment. A total of 20.63 million and 
20.75 million reads with a read length of 150 bp were aligned 
to Homo sapience reference genome (GRCh38) in the control 
and laser groups, respectively. 268 transcript IDs were identi-
fied as differentially expressed genes with probability threshold 
of ≥80%. Among them, 8 DEGs were related to inflammatory 
genes (Table 2) that all of them showed significant down-regu-
lation. In addition, genes involved in cell cycle, proliferation, and 
apoptotic pathways such as CCND2 are down-regulated, while 
RIPK3, CCNA2, and CCNB2 are up-regulated.

Confirmation of DEGs by RT‑PCR

In order to investigate the gene expression changes generated by 
RNA‐seq analysis, the expression of four DEGs was examined 
using qRT-PCR on day 7 in both groups. The selection criteria for 
these genes were based on the fold change, and previously LLLT 
studies. As shown in Tables 2 and 3, RNA-seq results were con-
firmed by qRT-PCR and these 4 genes were significantly decreased 
(p < 0.05) in line with our RNA‐seq data (Fig. 4; Table 3).

Discussion

Most PBM studies have shown that laser irradiation, espe-
cially in the red and NIR regions of the spectrum, can 
improve cell viability and proliferation, as documented 
in various cell types including fibroblasts, endothelial 
cells, skeletal cells, keratinocytes, myoblasts, and stem 
cells [37–39]. For example, 650 nm GaAlAs laser could 
increase the proliferation, differentiation, and secretion 
of the growth factors of the adipose-derived MSCs [40, 

41] while PBM at 660 nm (5 mW, 6, 10, 12 J/cm2) could 

significantly increase the proliferation and viability of 
the bone marrow MSCs (BMSCs) [42]. In another study, 

Fig. 3  A MTT assay shows a 
significant increase in optical 
density between the control and 
laser groups on day 3 and day 5 
after treatment (*p-value < 0.05) 
(**p-value < 0.001). B Cell 
viability shows a significant 
increase)***p-value < 0.0005 ( 
from day 3 to 5 after irradiation 
and a significant decrease)**p-
value < 0.001) from day 5 to day 
7 after treatment. The values are 
expressed as means (± SEM; 
n = 4)

Table 2  DEGs based on RNA-seq results

Gene symbol Gene name Log2 fold change
(RNA-seq)

CSF2 Colony-stimulating factor 2  − 5.72
CXCL8 C-X-C motif chemokine ligand 8  − 4.26
CXCL6 C-X-C motif chemokine ligand 6  − 4.04
CCL7 C–C motif chemokine 7  − 3.96
CXCL5 C-X-C motif chemokine ligand 5  − 2.51
CCL2 C–C motif chemokine 2  − 1.37
CXCL3 C-X-C motif chemokine ligand 3  − 1.27
CXCL2 C-X-C motif chemokine ligand 2  − 1.02
CCND2 Cyclin D2  − 1.75
CCNB2 Cyclin B2 1.25
CCNA2 Cyclin A2 1.56
RIPK3 Receptor-interacting serine/

threonine-protein kinase 3
1.85

Table 3  Selected inflammatory DEGs based on RNA-seq data which 
was confirmed by qPCR

Gene symbol Fold change
(RT-PCR)

Fold change
(RNA-seq)

CSF2 0.09 0.01
CXCL5 0.847 0.17
CXCL8 0.001 0.05
CXCL6 0.001 0.06
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low-level laser at 470 nm, 630 nm, and 660 nm promoted 
the proliferation and differentiation of BMSCs [43]. LLLT 
with 660 nm at 1–20 J/cm2 caused an increase in viabil-
ity and protein concentration of human umbilical vein 
endothelial cells (HUVECs), while infrared laser (780 
nm, 1–20 J/cm2) generally reduced cell viability [44]. In 
addition, the 660 and 810 nm laser at 3 J/cm2 can stimulate 
proliferation of hADSCs [45]. LED irradiation with 525, 
660, and 830 nm wavelengths at 5 J/cm2 and 415, 525, 
660, and 830 nm wavelengths at 10 J/  cm2 significantly 
enhanced outer root sheath cells (ORSCs) proliferation 
[29]. Our data, as shown by the MTT assay, indicated that 
532 nm green light could increase ADSCs proliferation 
from day 3 to day 5 and decrease it from day 5 to day 
7. This increase in cell proliferation on day 5 compared 
to day 3 can be explained by the increased expression of 
CCNA2 and CCNB2 according to RNA-seq and RT-PCR 
results. The protein encoded by CCNA2 (cyclin A2) acts 
as a regulator of the cell cycle. This protein binds and acti-
vates cyclin-dependent kinase 2 and enhances transition 
through G1/S and G2/M [46].

Additionally, the protein encoded by CCNB2, cyclin 
B2, is essential for the control of the cell cycle at the G2/M 
(mitosis) transition. Cyclin B2 is primarily associated with 
the Golgi region and also binds to transforming growth 
factor beta and thus cyclin B2/cdc2 may play a key role in 

transforming growth factor beta-mediated cell cycle con-
trol [47]. Therefore, it can be concluded that up-regulation 
of these two genes leads to increased proliferation from 
day 3 to 5 of treatment. As shown in Table 3, CCND2 
showed a significant down-regulation according to the 
RNA-seq results  (log2 FC = −1.75). The protein encoded 
by CCND2 (cyclinD2) functions as a regulatory subunit 
of the complex CDK4-cyclinD2 or CDK6-cyclinD2. The 
activity of cyclinD2 is required for cell cycle G1/S transi-
tion and interact with and be involved in the phosphoryla-
tion of tumor suppressor protein Rb [48]. This gene is also 
contributed in many biological processes such as positive 
regulation of cell population proliferation, positive regula-
tion of G1/S mitotic cell cycle transduction, positive regu-
lation of protein phosphorylation, and negative regulation 
of apoptotic process. Therefore, decreased expression of 
this gene on day 7 and after could explain why cell pro-
liferation decreased compared to day 5 of treatment. We 
found green light at 532 nm also increased the expression 
of RIPK3 (receptor-interacting serine/threonine-protein 
kinase 3) gene  (log2 FC = 1.85). The product of this gene 
is a member of the receptor-interacting protein (RIP) fam-
ily of serine/threonine protein kinases, which activates 
necroptosis and apoptosis. It is a component of the tumor 
necrosis factor (TNF) receptor-I signaling complex, and 
can induce apoptosis and weakly activate the NF-κB tran-
scription factor [47]. So we can conclude that increased 
expression of RIPK3 leads to decreasing in cell prolifera-
tion on day 7 comparing to day 5 of treatment.

Recent studies have shown that PBM plays an important 
role in regulating inflammatory gene expression and protein 
production in a variety of cells including stem cells [25–35]. 
But a few studies showed the effect of green light PBM as an 
inhibitory factor for inflammation on MSCs. Our results by 
RNA-seq and qRT-PCR suggested that 532 nm light could 
inhibit the expression of inflammatory genes like CSF2, 
CXCL2, 3, 5, 6, 8, and CCL2, 7.

CSF2, also known as granulocyte-macrophage colony-
stimulating factor (GM-CSF), plays a role in promoting tis-
sue inflammation and stimulates survival, production, dif-
ferentiation, and function of hematopoietic precursor cells, 
including granulocytes and monocytes [49]. GM-CSF also 
has some effects on mature cells of the immune system, 
for example, enhancing neutrophil migration and causing 
an alteration of the receptors expressed on the cells surface 
[50]. Therefore, down-regulation of this gene showed anti-
inflammatory effect of green laser therapy.

Our results showed down-regulation of 5 members of the 
CXC receptor ligand family. Among them, CXCL2 (C-X-C 
motif chemokine ligand 2) also known as macrophage 
inflammation protein 2 alpha (MIP-2α) [51] is a chemokine 
produced by activated monocytes and neutrophils that is 
involved in various immune and inflammatory processes. It 

Fig. 4  The expression levels for the candidate genes relative to 
β-actin as control (see Table 2). The values are expressed as means 
(± SEM; n = 3), (**p < 0.001); (*p < 0.05)
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is expressed at sites of inflammation and may suppress the 
proliferation of hematopoietic progenitor cells [48].

Another down-regulated gene, CXCL3 (C-X-C motif 
chemokine ligand 3), is an antimicrobial gene which encodes 
a protein that signals through the G-protein coupled receptor, 
CXC receptor 2. The encoded protein is involved in inflamma-
tion process and has chemotactic activity for neutrophils [52, 
53]. Gene set enrichment analysis (GSEA) indicated that the 
overexpression of CXCL3 was closely associated with DNA 
repair, cell cycle process, cell apoptosis process, and the P53 
regulation pathway [54]. This gene plays a multifaceted role 
in development and metastasis of various human cancers, such 
as uterine cervical cancer (UCC) [55], colon cancer (CC) [54], 
and prostate cancer [56]. In addition, CXCL3 and its receptor 
CXCR2 are overexpressed in prostate cancer cells, prostate 
epithelial cells, and prostate cancer tissues, which may play 
multiple roles in prostate cancer progression and metastasis 
[57]. Therefore, due to down-regulation of this gene by green 
laser light, green PBM can be considered as a potential treat-
ment for these types of cancers.

CXCL5 is a member of the CXC subfamily of chemokines 
that has shown a significant down-regulation in both RNA-seq 
and RT-PCR data  (log2 FC = −2.51). The protein encoded by 
this gene has been suggested to bind the G-protein coupled 
receptor chemokine (C-X-C motif) receptor 2 to recruit neu-
trophils, to promote angiogenesis, and to remodel connective 
tissues. This protein is thought to play a role in cancer cell 
proliferation, migration, and invasion [58]. In this regard, some 
in vitro and in vivo experiments revealed that CXCL5 is one 
of the important chemokines in tumor microenvironment and 
overexpression of CXCL5 is closely related to the survival 
time, recurrence, angiogenesis, and metastasis of cancers such 
as colorectal cancer (CRC) and gastric cancer [59–62]. CXCL5 
also promotes hepatocellular carcinoma cells (HCC) prolifera-
tion and invasion, as well as intratumoral neutrophil infiltra-
tion [63]. Moreover, CXCL5 and CXCR2 expression levels 
increased in atherosclerotic coronary arteries plaque than in 
the normal coronary arteries [64].

Another down-regulated gene in our results is CXCL6 
(C-X-C motif chemokine ligand 6) also known as granulo-
cyte chemotactic protein 2 (GCP-2). It is a CXC chemokine 
expressed by epithelial cells of the airways, eyes, gastroin-
testinal tract, mammary glands, tonsils, macrophages, and 
mesenchymal cells, in particular during inflammation. It 
exerts chemotactic activity for neutrophil granulocytes and 
angiogenic properties. In addition, CXCL6 possess strong 
antibacterial activity against Gram-positive and Gram-neg-
ative bacteria, 90-fold higher than CXC chemokines CXCL5 
and CXCL7 during localized infection [65]. CXCL6 has 
been shown to be a potent mediator in neo-angiogenesis 
[66] and can enhance tumor cell migration and invasion by 
accelerating MMP-9 activity, as well as tumor growth and 
metastasis [67]. In non-inflammatory conditions, CXCL6 in 

many cancers such as breast cancer [68], colorectal cancer 
[69, 70], osteosarcoma [70], non-small cell lung [71, 72], 
and endometrial cancer are highly expressed [67].

Finally, CXCL8 as the last member of the CXC receptor 
ligand family in our RNA-seq data had significant down-
regulation  (log2 FC = −4.26). The CXCL8 chemokine, also 
known as interleukin-8, is a major mediator of the inflamma-
tory response and acts as a chemotactic agent for neutrophils, 
basophils, and T-cells, but not monocytes, to the site of infec-
tion. CXCL8 encode the interleukin-8 (IL-8) protein which is 
secreted by several cell types in response to an inflammatory 
stimulus including mononuclear macrophages, neutrophils, 
eosinophils, T lymphocytes, epithelial cells, and fibroblasts. 
This pro-inflammatory protein is thought to play a role in lung 
inflammation, coronary artery disease, and endothelial dysfunc-
tion. This protein promotes tumor cell proliferation, migration, 
invasion, angiogenesis, and metastasis in gastric and colon can-
cers [68, 73, 74]. Therefore, anti-CXCL8-targeted therapies for 
gastric and colon cancers can be an effective treatment [74].

CCL2 and CCL7 are two chemokines of the CC subfamily 
which showed down-regulation in RNA-seq data. CCL2 (C-C 
motif chemokine ligand 2) displays chemotactic activity for 
monocytes and basophils but not for neutrophils or eosinophils. 
It is involved in the pathogenesis of diseases such as psoriasis, 
rheumatoid arthritis [73], and atherosclerosis, which are char-
acterized by monocyte recruitment and infiltration [75]. The 
overexpression of CCL2 is associated with severe acute respira-
tory syndrome coronavirus 2 infection [73] as well as increased 
tumor growth in breast [76, 77], ovarian [78], esophageal [79], 
gastric [80], renal cell [81], lung [82], colon [83], and papil-
lary thyroid cancers [84–86]. Thus, CCL2 could be a potential 
therapeutic target for these cancers treatment.

CCL7 (CC motif chemokine ligand 7), also known 
as monocyte chemotactic protein 3 (MCP-3), is a CC 
chemokine that acts as a chemotactic factor and mediates 
the recruitment of various kinds of leukocytes, including 
monocytes, eosinophils, basophils, dendritic cells (DCs), 
NK cells, and activated T lymphocytes. CCL7 is involved 
in anti-inflammatory responses and tumorigenesis. CCL7 
can promote tumor invasion and metastasis which leads to 
tumor progression [87]. CCL7 is up-regulated in metastatic 
renal cell carcinoma (RCC) [88], lung adenomas [87], and 
CRC [88, 89]. Increased expression of CCL7 also causes 
CRC metastasis in the liver [87, 90].

Conclusion

In conclusion, our results suggested that green light with 
a wavelength of 532 nm (44 mJ/cm2, 50 mW) has both 
enhancing and inhibitory effects on hADMSCs prolifera-
tion, in a timely dependent manner. We also found decreased 
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expression of inflammatory cytokines and chemokines in 
laser irradiated cells compared with control which show 
anti-inflammatory potential of green laser light. In addition, 
considering the role of these inflammatory genes in various 
cancers and inflammatory diseases, it can be concluded that 
PBM with the parameters used in this study can be applied as 
a potential treatment in several stem cell therapy and regen-
eration approaches to reduce inflammation and enhance tis-
sue repair as well as improving chronic inflammatory and 
cancers.
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