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Background: The chemical part of the exposome, including drugs, may explain the

increase of health effects with outcomes such as infertility, allergies, metabolic disorders,

which cannot be only explained by the genetic changes. To better understand how drug

exposure can impact human health, the concepts of adverse outcome pathways (AOPs)

and AOP networks (AONs), which are representations of causally linked events at different

biological levels leading to adverse health, could be used for drug safety assessment.

Methods: To explore the action of drugs across multiple scales of the biological

organization, we investigated the use of a network-based approach in the known AOP

space. Considering the drugs and their associations to biological events, such as

molecular initiating event and key event, a bipartite network was developed. This bipartite

network was projected into a monopartite network capturing the event–event linkages.

Nevertheless, such transformation of a bipartite network to a monopartite network had

a huge risk of information loss. A way to solve this problem is to quantify the network

reduction. We calculated two scoring systems, one measuring the uncertainty and a

second one describing the loss of coverage on the developed event–event network to

better investigate events from AOPs linked to drugs.

Results: This AON analysis allowed us to identify biological events that are highly

connected to drugs, such as events involving nuclear receptors (ER, AR, and PXR/SXR).

Furthermore, we observed that the number of events involved in a linkage pattern

with drugs is a key factor that influences information loss during monopartite network

projection. Such scores have the potential to quantify the uncertainty of an event involved

in an AON, and could be valuable for the weight of evidence assessment of AOPs. A

case study related to infertility, more specifically to “decrease, male agenital distance”

is presented.

Conclusion: This study highlights that computational approaches based on network

science may help to understand the complexity of drug health effects, with the aim to

support drug safety assessment.
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INTRODUCTION

Nowadays, it is established that the increase of civilization
diseases such as obesity or type 2 diabetes is not only explained by
genetic changes in individuals, but may also be due to exposure
to environmental factors. The concept of the exposome was
proposed by Wild (1) and refined by Rappaport (2), which refers
to the totality of the environmental exposures an individual
is exposed to, during their entire lifetime from conception
until death. The exposome aims at capturing all non-genetic
factors such as physical stressors, biologicals, psychological, and
social stresses, as well as chemical exposure. The exposome is

therefore complementary to the genome, and the integration of
both, representing the exposome-genome paradigm will be very
useful to identify predictive markers for disease prevention at
the population level (3). Humans are daily exposed to a high

number of hazardous chemicals (drugs, toxicants, pollutants,
and nutrients) from various sources such as cosmetics, diet,

or medical treatments. The potential effect of the chemical
exposome may contribute to disease risks and adverse outcomes,
as it has been established in various biomonitoring and
epidemiological studies from European projects (e.g., HELIX,
HEALS, and HBM4EU) (4–6).

Even if drugs have been primarily designed to treat specific
diseases, they may also influence health effects by displaying
adverse effects. For example, aspirin and paracetamol are the
common drugs to treat pain and fever. However, both drugs
can lead to hepatoxicity with high doses (7). Analgesic use has
also been associated with endocrine and reproductive effects (8).
Many drugs interact with multiple biological targets, as referred
to the polypharmacy action of drugs, and these unintended
actions could cause adverse effects (9). Polypharmacy remains
one of the major challenges in drug development as the
modes of action of many drugs are not completely understood.
To overcome this limitation, network pharmacology, which
considers the drug action across multiple biological layers, is a
promising approach (10). A recent review investigated the drug–
exposome interaction, which shows how drugs can interact with
other chemicals to which humans are exposed, and therefore
how they may impact and influence human health (11). For
example, chemotherapeutics can negatively be impacted by drug-
exposome interactions, resulting in less drug efficacy, an increase
of drug resistance, and adverse effects.

Emerging technological advances (e.g., high throughput
screening (HTS) screening, omics) have supported the
generation of the high number of data, allowing the development
of computational studies, at cells and organs levels, to investigate
biological mechanisms and to predict potential adverse effects of
chemicals (including drugs). It is now possible to develop models
based on omics data obtained for drugs or other toxicants (12).
Therefore, exposomics can help in identifying novel chemical
exposure-health associations, which create opportunities to
prioritize relevant chemicals for risk assessment (13). Several
systems toxicology models were developed based on network
science to assess the chemical exposome effects on human health,
some being applied to predict the effects of endocrine disruptors
or persistent organic pollutants (14–18).

As phenotypes are the results of the complex interplay
between chemicals and genetic factors, understanding the
interactions between chemicals and diseases is essential. Recently,
the tool “phexpo” was designed to explore bidirectional
chemical and phenotype interactions (19). Also, the HExpoChem
webserver allows exploring and predicting human health
risks from various chemical exposure sources (20). All these
integrative and computational approaches are complementary
to existing approaches (pharmacogenomics), and combined
together could be very useful for drug assessment. Yet,
there is still a need to improve our understanding of
the adverse effects of drugs in humans and the biological
pathways they may perturbto fully assess their real impacts
on humans.

Recently, a new concept has emerged in the field of
toxicology, which is adverse outcome pathways (AOP) (21).
AOPs are linear representations of biological perturbations
[molecular initiating events (MIEs) and key events (KEs)]
at different levels of the biological organization caused by a
stressor (that could be a chemical), which lead to an adverse
outcome (AO). The Organization for Economic Cooperation
and Development (OECD) has classified MIEs and AOs as
two specific KEs in AOPs. When evidences exist, KEs are
linked together through Key Event Relationships (KERs), that
are the causal linkages between two events. Even if AOPs
are chemical agnostics, they are recognized as a tool for risk
assessment of chemical effects to better understand their modes
of action, and therefore could be also translated to the drug
exposome. KEs are not uniquely associated with one AOP but
can be shared between several AOPs, leading therefore to AOP
networks (AONs) that reflect the real complexity of biological
systems (22).

Using the concept of AOP, we proposed a systems
toxicological approach to investigate, in a systematic way,
linkages between drugs and biological events (MIE, KE, and
AO) with the development of a network-based model. First, a
bipartite network was generated by integrating known drug–
event associations extracted from various data sources. This
bipartite network was then transformed into an event–event
monopartite network to explore the AOP space of drugs.
A recently published method measuring the uncertainty
and information loss of network was applied to assess the
conservation of the information from the bipartite to the
monopartite network (22), and the obtained results in our study
are discussed below.

MATERIALS AND METHODS

The developed systems biology approach, to explore the drug
effects in the biological space of AOPs, is a multistep procedure.
A workflow of the proposed strategy is illustrated in Figure 1.

Data Set
Drug-event associations were extracted from two complementary
datasets: the AOP-wiki database (https://aopwiki.org/, as of
August 2020) (23) and the U.S. Environmental Protection
Agency web-based CompTox Chemistry dashboard (https://
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FIGURE 1 | Workflow of the procedure to assess AOPs in the drug exposome. A multistep procedure was developed: (1) Data compilation: drug–event associations

were extracted from various data sources (solid lines). Several event types were considered, which are molecular initiating events (MIEs) (purple circles), key events

(KEs) (light green circles), and adverse outcomes (AOs) (red circles); (2) Bipartite network development: a bipartite drug-event network was created based on the

compiled data. To enrich the created network, KE relationships (KERs) (dash lines) extracted from the AOP-wiki database were identified, allowing to add other KEs

(green circles); (3) Generation of the monopartite network: if two events shared at least one drug in the bipartite network, a link was created between these two events

in the monopartite network. The transformation of the bipartite network to a monopartite network was done by using the “guilt by association” principle; (4) Network

analysis: the loss of information from the bipartite network to the monopartite network was quantified by calculating the “increase of uncertainty” and the “loss of

coverage.”

comptox.epa.gov/dashboard/, as of March 2021) (24). The AOP-
wiki database is a data source developed by the OECD. From
this data source, 316 AOPs and 1,393 relevant events (i.e., MIE,
KE, and AO) that are known to be linked to 615 stressors
were extracted. All defined AOPs were taken into consideration,
even if they are not yet validated by the OECD. The CompTox
database contains a wide range of data related to chemical
toxicity including, AOP information, human exposure, and
other kwnoledge for over 88,300 chemicals. Direct and putative
associations between 22,038 chemicals and 103 AOPs are stored
in this database (25). As both databases provided information
related to various stressor types (drugs, pollutants, etc) we
matched the drug names and CAS numbers obtained from the
DrugBank (26) and the DrugCentral databases (27) to be able
to keep only information related to drugs, without loosing or
duplicating knowledge. Consequently, we were able to extract
unique drug-event and drug-AOP associations from these two
data sources (Comptox and AOP-wiki).

To enrich our list of drug-AOP associations, an additional
manual curation of the literature using the PubMed database
(https://pubmed.ncbi.nlm.nih.gov/) (as of September 2020)
was performed. The searches were done using the exact
terms of interest for which we were missing links from the
previous data integration step. As an example, cooccurence
between ciprofibrate and activation, PPAR alpha was
investigated, and identified publications were fully read
for validation.

Development of the Drug-Event Bipartite
Network
A drug-event bipartite network was created using the R software
(version 3.5.23) based on the previously compiled data from
the different data sources. Each node in the network represents
either a drug or an event (MIE, KE, or AO). To enrich the
connections between drugs and events, and to have a more
comprehensive mapping of the drugs in the AOP space, KERs
were investigated using the AOP-wiki database (as of September
2020). Globally, if a KER exists between two events (MIE,
KE, AO) that are present in the bipartite network, then the
biological events linking this KER was selected and included to
the network.

Creation of the Monopartite Network of
Events in the Drug Space
To analyze the relationships of events targeted by drugs, the
bipartite network was projected into a monopartite network
using the guilt by association principle (28), i.e., linking events
through the shared connections between drugs, MIE, KE, and
AO. With this projection, some information might be lost.
Therefore, some scores measuring the uncertainty and the
loss of coverage of the monopartite network were developed.
For better visualization of the obtained complex networks, we
exported both networks (bipartite andmonopartite) to Cytoscape
V3.7.2 which is an open-source library for network analysis and
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visualization (29). This tool allows displaying of an interactive
representation of the drug–event and event–event networks.

Analysis of the AOP Monopartite Network
The relevance of the relations between nodes (events) might be
underestimated when generating a monopartite network, and
quantifying the importance of associations between pairs of
events could be of interest for AOPs construction (Figure 2). To
evaluate this issue in the developed AOP network, we applied the
approach of loss of information as defined previously by Vogt
and Mestres (30) and implemented two measures that are the
“increase of uncertainty” and the “loss of coverage”.

Increase in Uncertainty
The concept of “uncertainty” came from the Shannon entropy
(31). It measures how many associations between drugs and
events are spread over all possible connections in a bipartite
network. In the bipartite network of the present study, the
associations between two types of nodes (i.e., drugs and events)
define a “linkage pattern.” After a projection to a monopartite
network, only pairs of events having at least one common drug
will be kept. Using the Shannon entropy theory, the distribution
and the occurrence of each linkage pattern in the bipartite
network can then be estimated in the projected monopartite
network providing a measure of the increase in uncertainty (or
loss of information) as presented in the equation below:

Hbefore = −

|LG
b
|

∑

i=1

p(Ii) · [ln p(Ii)], Ii ∈ LG
b

Hafter = −

|cliques(Gm)|
∑

i=1

p(Ci) · [ln p(Ci)],

1H = Hafter −Hbefore

where Hbefore indicates the uncertainty of the linkage patterns

of events in bipartite network (Gb); LG
b

represents the
linkage patterns in the bipartite network including events; and
p (Ii) means the probability of each linkage pattern among all
the linkage patterns in the bipartite network. After projection
into the monopartite network Gm, Hafteris used to estimate the
uncertainty of Gm. Since Gm is the undirected uncertain network,
if a set of nodes are fully interconnected in a subnetwork of
Gm, this subnetwork is defined as “clique”. A clique in the
uncertain network tends to be a deterministic subnetwork (32).
Here,

∣

∣cliques (Gm)
∣

∣ indicates all the cliques in the monopartite
network. p(Ci) represents the probability of each clique in Gm.
1H describes quantitatively information in Gm compared with
Gb. The unit of increase in uncertainty 1H (nats) is based on the
natural logarithm. The lower the nats value, the lower amount of
information is lost in the monopartite network.

Compared with the calculation of Hbefore for which all

possible linkage patterns (LG
b
) in the bipartite network are

considered, Hafter focus on all possible cliques (
∣

∣cliques (Gm)
∣

∣)
in monopartite network. For a monopartite network with a
huge number of events, it is difficult to count manually the

number of cliques. Thus
∣

∣cliques (Gm)
∣

∣ can be represented as
the number of subcliques for a maximal clique in Gm. A
“maximal clique” is a clique that cannot be extended by adding
another node of the network. For example, in Figure 2, the
cliques in Gm1 are {A},{A,B},{A,C}, {A,B,C}, while the maximal
clique is only {A,B,C}. The number of events included in a
maximal clique is defined as the “size of a maximal clique.” Thus
the size of maximal clique in Gm1 is 3 (i.e., {A,B,C}). Then,
for the calculation of subcliques, we applied the formulation:
Number of subcliques for a maximal clique = 2|c|, where |c| is
denoted as the size of a maximal clique (30). For example, with
Gm1, it suggests that there exists 2|3| possible subcliques in the
monopartite network. Although the calculation of the number
of subcliques by these formulas can lead to bias compared with
the reality (8 subcliques vs. 3 subcliques), it can still provide
approximate values by calculating the maximal clique for the
monopartite network of large size.

In our work, we calculated two kinds of uncertainty, Hbefore,
both in terms of global network uncertainty and nodes (events)
uncertainty. Hbefore

network is defined as the initial uncertainty of

the global network. The calculation of Hbefore
network takes into

account all the linkage patterns in the bipartite network. Thus
Hbefore

Gb1 = −
[

ln
(

1
2

)

×
(

1
2

)

+ ln
(

1
2

)

×
(

1
2

)]

= 0.69 nats. At the

difference, Hbefore
nodes (the initial uncertainty in terms of nodes) only

considers the linkage patterns related to a specific node (event)
for the calculation. For example, to calculate Hbefore

C for C in Gb1,
only linkage pattern related to the event “A,B,C” was considered
in the calculation. Thus, Hbefore

C = −
[

ln
(

1
2

)

×
(

1
2

)]

= 0.35 nats.
Similarly, after the projection to the monopartite network,
Hafter

network will include all the cliques for the calculation i.e.,

Hafter
Gm1 = −

[

ln
(

1
8

)

×
(

1
8

)

× 8
]

= 2.08 nats. For the nodes, Hafter
nodes

considers the maximal clique contained in a specific node.
So in theory, Hafter

C = −
[

ln
(

1
8

)

×
(

1
8

)

× 8
]

= 2.08 nats for the
event C in Gm1. Overall, the resulting 1Hnetwork = 1.39 nats
represents an increase in uncertainty for the global network
during the transformation from Gb1 to Gm1. The Hnodes for C
(1HC = 1.73 nats) indicates that linkage patterns related to the C
event has an increase in uncertainty of 1.73 nats after translating
into cliques.

A high 1H means that the monopartite network projection
of the bipartite network has lost information during the
transformation, suggesting an increase of uncertainty on
the linkage pattern between events. Also, for the nodes,
a high 1H (like for C) depicts a low linkage of this
event compared with the other events inside the clique.
Therefore, these 1H values can quantify the reliability
of a connection between an event and other events
depending on the drug–event information integrated into the
original network.

Loss of Coverage
In addition to the loss of information estimation, it is also
possible to determine the degree of involvement of each edge
during the projection, which indicates the original properties of
the linkage pattern lost during monopartite network projection.
This is the “loss of coverage,” and it is calculated using the
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FIGURE 2 | Illustration of bipartite network projection to a monopartite network. In a bipartite network Gb, containing two types of nodes (events represented as

circles and drugs as diamonds), the associations between drugs and events are defined as “linkage patterns”. For example, in Gb1, the A, B, C events are connected

to a drug 1 via 3 edges, which define a linkage pattern ABC with a linkage profile of 1 (occurrence of 1). In the meantime, the A and B events are both connected to

drug 2 one time, therefore defining another linkage pattern AB with a linkage profile of 1. Similarity, in Gb2, the linkage pattern AB has a linkage profile of 2 as it

appears two times (drugs 1 and 2). The linkage profile of linkage pattern ABCDE is 1 (drug 3). Then, from the bipartite network, a projection to a monopartite network

Gm is performed for the events. If two events share at least one common drug in the bipartite network, an association between these two events is generated. Finally,

Gb1 and Gb2 were transformed into Gm1, Gm2, respectively. As observed, Gm1 and Gm2 are present as “cliques” meaning that all the events in Gm1 and Gm2 are fully

interconnected. It is showed that the linkage pattern AB appears twice in Gb2 while oit is overlapping as an edge AB in Gm2, thus resulting in the information loss.

formulations below:

COVEdge =

∑

∣

∣

∣
Lbvw

∣

∣

∣

ni ·
2
IiV

∑|Lbvw| ni
, with COVEdge ∈ (0, 1)

¬COVEdge = 1− COVEdge, with ¬COVEdge ∈ (0, 1)

The term COVEdge is the coverage for each edge between events

v and w in Gm. Lbvw is the amount of linkage patterns, IiV
contains both events v,w in the bipartite network. Here, ni is the
occurrence of IiV.¬COVEdge indicate the loss of coverage for the
edge between event v and w in Gm. A high¬COVEdge (maximum
is 1) indicates that the edge between the two events presented
in the monopartite network cover few commun information (for
example few number of drugs) and a¬COVEdge close to 0, which
means that many drugs are linked to two events in the bipartite
network. For example, to calculate COVEdge(A,B) for Gm1, the
linkage patterns containing A and B are “AB” and “ABC”. Both
linkage patterns appear once in the Gb1. So, for COVEdge(A,B) =

[

1×
(

2
2

)

+1×( 23 )
]

1 + 1 = 0.83 ¬COVEdge(AB) = 0.17. Doing a similar
analysis between B and C, we obtained a ¬COVEdge(BC) = (0.33)

in Gm1. So, the coverage is more important between events A and
B than between B and C.

Finally, we computed the loss of coverage for nodes
¬COVNode in the monopartite projection. It considers the
average of all the edges in Gm1 that are linked to a node.
For example, the event C is linked to the event B and A.
Therefore, the loss of coverage for the event C is ¬COVC =
¬COVEdge(B,C) + ¬COVEdge(A,C)

2 = 0.33. This value can then be
compared with the loss of coverage for all other events within
the aim to assess the coverage associated with each event in the
monopartite network.

Visualization and Analysis of the Loss
Information of the Developed Network
In both the methods, an increase in uncertainty and loss of
coverage were implemented under python 3.7 and R, using the R
package Reticule as an interface provider between R and Python
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(https://cran.r-project.org/web/packages/reticulate/reticulate.
pdf) (R version 3.5.3). All implementedmethods and applications
in this work are available on GitHub (https://github.com/
QierWU/drug-AOP). Results were visualized and analyzed in
Cytoscape V3.7.2.

RESULTS

Drug–Event Data
Drug–event associations were compiled from two
complementary data sources and merged to obtain unique
relationships. From the CompTox database, we were able to
collect 248 drugs associated with 23 unique MIEs (as of March
2021) (Supplementary Table S1). From the AOP-wiki database,
we extracted 117 unique drugs having at least one corresponding
event (as of August 2020) (Supplementary Table S1). However,
46 among these 117 drugs were only connected to an AOP, with
no information concerning the event linkage (MIE, KE, AO). For
example, meclofenamic acid was associated with the AOP 152
’Interference with thyroid serum binding protein transthyretin
and subsequent adverse human neurodevelopmental toxicity,”
but no KE was specified. Therefore, to develop a more
complete network, we manually explored the literature using
the PubMed database to enrich the connection between the
drugs and the 11 events known to be involved in the AOP
152 (Supplementary Table S2). For meclofenamic acid, 1,158
publications were identifided. Then, we searched among these
abstracts, those mentioning KE of interest. As an example, the
MIE 957 “Binding, Transthyretin in serum,” which is know to
be linked to the AOP 152 (33) was retrieved in 5 out of the
1,158 abstracts. With this curation, we were able to decipher the
linkage between 46 drugs and 18 events via 41 publications. As
a result, drugs were connected to 89 unique events (52 MIEs,
31KEs, 6 AOs).

In addition, to enrich the drug–event associations network,
we used KERs information that link event pairs from the AOP–
wiki database (as of September 2020) (Supplementary Table S3).
For example, the MIE 718 “Binding, Tubulin” and the AO 728
“Increase, Aneuploid offspring” were present in the developed
bipartite network (Supplementary Table S1). From the AOP–
wiki, both are also part of the AOP 106 “Chemical binding
to tubulin in oocytes leading to aneuploid offspring” (https://
aopwiki.org/aops/106, as of September 2021). Therefore, events
involved in AOP106 were added into our bipartite network. This
step allowed to integrate information related to 13 KEs. Overall,
all obtained information were merged to keep only unique
information to build the bipartite network, which consists of 321
drugs, 66 MIE, 44 KE, and 6 AO (Supplementary Table S4).

Development of the Drug–Event Bipartite
Network
All the 321 drugs and their direct associations to events were
connected through 981 edges in the bipartite network (Figure 3).
All the events were classified into three groups based on
their different event types (MIE, KE, and AO). Interestingly,
many drugs were linked to at least one nuclear receptor: 134
drugs were connected to the MIE 1181 “Activation, Estrogen

receptor,” 131 drugs were connected to theMIE 1134 “Irreversible
inhibition of hepatic VKOR by binding of AR at tyrosine
139, Failure to cycle vitamin K epoxide to vitamin K to form
vitamin K hydroquinone,” and 110 drugs were connected to
the MIE 245 “Activation, PXR/SXR.” Among the most linked
drugs, propylthiouracil, used to treat hyperthyroidism was
connected to the maximum number of events (12 events). The
antifungal agent, clotrimazole, was connected to 11 events, and
the antiinflammatory drug, betamethasone, was connected to 9
events. It was also observed that 134 drugs were only associated
with a unique event (e.g., Sertraline, Topiramate). Globally, the
drug–event network emphasized that most of the studies focused
on interactions between drugs and adverse protein targets.

Monopartite Network of Events in the Drug
Space
The developed monopartite network projection from the drug-
AOP bipartite network is represented in Figure 4. It was built
based on the assumption that if two events in the drug-event
network shared at least one common drug or event, a link
between these two events can be depicted in the monopartite
network. Fourteen events (1AO, 2KEs, 11MIEs) were linked to a
unique drug and were not included in themonopartite projection
(as these KEs were not interacting with other KEs). At the end,102
events were connected through 515 edges.

Considering the increase in uncertainty (Figure 4A), nodes
with thicker widths indicated more information loss. The MIE
9 “Activation, 5HT2c” and MIE 1009 “Inhibition, Deiodinase
1” had the highest increase in uncertainty (7.60 nats), reflecting
that these two events have a linkage to a unique (or few)
drug(s), but this (or these) drug(s) are connected to many events.
The high value of an increase in uncertainty is related to the
maximum size of linkage pattern associated with the MIE 9 or
MIE 1009 in the bipartite network. In fact, the MIE 9 was
only connected to the drug “clove leaf oil” in the bipartite
network. Moreover, this drug was also linked to 10 other MIEs.
It suggested that 210possible linkage patterns relevant to the
MIE 9 could exist in the bipartite network. Obviously, the
number of linkage patterns related to the MIE 9 projected
in the monopartite network is less. Thus, the uncertainty for
the linkage patterns relevant to the MIE 9 increased largely
after monopartite network projection. On the contrary, it is
observed that the KE 1614 “Decrease, AR activation” had the
lowest increase in uncertainty (1.34 nats), meaning that this KE
had a small size of linkage patterns in the bipartite network,
thus resulting in low uncertainty in the monopartite network.
Regarding loss of coverage (Figure 4B), the nodes with thicker
width and purple edges had high information loss. The value
of ¬COVEdge gives the coverage loss between two nodes in a
monopartite network, whereas the value of ¬COVNode defines
the mean of ¬COVEdge associated with a node. For example, the
edge between the MIE 9 and the MIE 18 “Activation, AhR” has a
value of ¬COVEdge(MIE 9, MIE 18) = 0.82. Such ¬COVEdge can be
considered as high because it is close to 1. On the opposite, the
MIE 167 “Activation, LXR” and the MIE 468 “Inhibition, PPAR
alpha” shared 10 drugs. The loss of coverage will be lower with
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FIGURE 3 | Representation of the bipartite network. The network illustrates the drug–event associations data compiled from the CompTox and the AOP-wiki

databases. Each circle node represents one event, colored by the event type to which it belongs (MIE, KE or AO). Each yellow diamond node represents one drug.

The size of the event node corresponds to the number of drugs known to be linked to event(s) (from 1 to 134). The size of the drug node corresponds to the number

of events associated with this drug (from 1 to 12). The added KEs, using the KERs information from the AOP-wiki database, are in directed green dash lines. Directed

solid lines indicate direct drug–event associations extracted during te compilation phase. These edges are colored by the event type to which drugs are connected

i.e., drug-MIE in purple, drug-KE in green, and drug-AO in red.

¬COVEdge (MIE 167, KE 468) = 0.75, leading to a higher confidence
about the relationship between these two events. Similarly, the
drug propylthiouracil, which targets the MIE 1009, is also linked
to 10 other events, among them the MIE 18 “Activation, AhR”
and the MIE 245 “Activation, PXR/SXR.” These two MIEs have
19 drugs in common, resulting in a weak loss of coverage
(¬COVEdge(MIE 18,MIE 245) = 0.61) between these two events, and
a higher chance that a drug impacting one of this event might has
also an effect on the second event (Supplementary Figure S1).
Similarly, for the edge between MIE 1181 “Activation, Estrogen
receptor” and MIE 1543 “Mitochondrial Complex IV inhibition,”
the ¬COVEdge(MIE 1181, MIE 1543) = 0.33, meaning a limited loss
of coverage.

Additionally, a loss of information can be computed on
each node (¬COVNode). ¬COVNode is the mean of ¬COVEdge

associated with a node. For example, the MIE 9 and the MIE 18
are connected with a ¬COVEdge(MIE 9, MIE 18) = 0.82, resulting
at the node level to ¬COVMIE 9 = 0.82 and also ¬COVMIE 18 =

0.72. This suggests that the putative associations related to the
MIE 9 and the MIE 18 in the monopartite network simplified the
real situation of connections in the bipartite network.

Finally, we noticed a loss of coverage equal to zero between the
two events, the MIE 1529 “Blockade, L-Type Calcium Channels”
and the MIE 593 “Inhibition, Ether-a-go-go (ERG) voltage-gated
potassium channel.” It means there is no loss of information

during the projection. This suggests a very strong relationship
between these two events. However, in very specific cases, the loss
of coverage might be equal to zero when a linkage pattern has
a size of two, and the linkage profile is more than once. In this
case, loss of coverage does not reflect the reality. For example,
the KE 1614 “Decrease, AR activation” and AO 1688 “decrease,
male anogenital distance” shared with two common KEs that are
very similar (KE 1687 “decrease, transcription of genes by AR”
and KE 286 “Altered, Transcription of genes by AR”). The size of
the linkage pattern as well as the linkage profile is two. As these
associations are merged as one unique edge in the monopartite
network, the value of loss of coverage at the edge is 0. To better
illustrate the use of this events network, a case study related to
infertility is presented in Supplementary Material.

In a global overview, the information loss for the full
monopartite network and each type of event (MIE, KE, and AO)
are summarized in Table 1. The initial uncertainty (Hbefore

network)

for the network is 5.00 nats, and for the nodes (Hbefore
nodes ) is

0.05 nats. Among the subnetworks of Hbefore
nodes , the MIE nodes

showed the largest initial uncertainty value (0.08 nats), whereas
the KE and AO showed the lowest value (0.03 nats). This
indicated that the linkage patterns related to nodes in the MIE
subgroup had a higher initial uncertainty compared with the
AO and KE subgroups. All the nats values for the 3 subgroups
are close to 0 and so the initial uncertainty at node level is
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FIGURE 4 | Uncertainty increase (A) and loss of coverage (B) of the monopartite network. (A) Illustrates the increase in uncertainty, and (B) represents the loss of

coverage, both for the monopartite network of events. Each circle node represents one event, colored by the event type to which it belongs (MIE, KE, AO). Solid

edges indicate event–event associations. In (A), the width of nodes increase according to the value of the increase in uncertainty. In (B), the width of nodes is raised

with the value of loss of coverage. The dark color of the edges shows the highest value of loss of coverage.
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TABLE 1 | Information loss for the monopartite network.

H1before
network H2before

nodes H3after
network H4after

nodes 1H5
network 1H6

nodes ¬COV7
Edge ¬COV8

Node

Network 5.00 0.05 11.28 5.06 6.28 5.01 0.67 0.58

AO – 0.03 – 5.82 – 5.79 0.68 0.64

KE – 0.03 – 4.18 – 4.15 0.62 0.50

MIE – 0.08 – 5.19 – 5.11 0.68 0.59

Adverse outcome (AO), key event (KE), and molecular initiating event (MIE).

low. After the monopartite projection, the uncertainty at the
global network (Hafter

network) and nodes (Hafter
nodes) is 11.28 and 5.06

nats, respectively. This means that the uncertainty increased
by 6.28 nats (1Hnetwork) for the monopartite network. A 5.01
nats increase is observed in terms of nodes (1Hnodes). For
subnetworks, the increase in uncertainty (1Hnodes) is of 5.79
nats for the AO and 4.15 nats for the KE. This reflects that the
projection procedure has more impact on the AO than the KE.

The average loss of coverage for edges (¬COVedge) and nodes
(¬COVnode) after projection in themonopartite network are 0.67
and 0.58 respectively. Higher values of¬COVedge and¬COVnode

are observed for AO compared with KE and MIE, revealing a
higher loss of information for AO.

H1before
network: initial uncertainty in terms of the network, H2before

nodes :
initial uncertainty in terms of nodes. The value of each subgroup
was an average of Hbefore for each node in the given subgroup;

H3after
network: uncertainty after projection for the network; H4after

nodes:
uncertainty after projection for nodes. Value of each subgroup
was average of Hafter for each node in the given subgroup;
1H5

network: increase in uncertainty for the network; 1H6
nodes:

increase in uncertainty for nodes; ¬COV7
Edge: loss of coverage

at the level of edge. For the value of each subgroup, considering
all the edges that link nodes belonged to the target subgroup,
the average of loss of coverage for each edge was calculated;
¬COV8

Node: loss of coverage for nodes. The value of each
subgroup was the average of loss of coverage for each node in
the given subgroup.

DISCUSSION

Assessment of the chemical toxicity at an early stage remains a
tremendous challenge for the pharmaceutical industries and the
regulatory agencies. To have a better picture of the effects of
the chemical exposome on human health, new and innovative
concepts and methods are needed. Even if various systems
toxicological models have been developed to decipher chemical
toxicity in humans, there is still a need to increase our
understanding (34, 35).

In this study, we proposed a network-based approach that
supports the concept of integrated approaches to testing and
assessment (IATA) proposed by the OECD (36). Based on our
method, we explored the potential biological mechanisms of
drugs that lead to adverse effects by analyzing AON that result
from AOPs. Network-based modeling has the advantage of
being a chemical structural information free and can be used

to establish toxicological profiling for substances. The developed
process is part of a new approach methodology (NAM), which
supports the use of alternative methods to animal testing
for the identification of biological perturbation from chemical
exposure (37).

Here, we first developed a bipartite network model to capture
the behaviors of drug–event associations described by the AOP
concept based on the assumption that the real-world complex
networks have bipartite structures (38, 39). The bipartite network
was then projected into a monopartite network to analyze the
relationship between the two events. However, this translation is
often accompanied by a loss of information (40), and we decided
to quantify the loss of information and the coverage obtained
within this events network.

The generated events network was evaluated using a method
that quantifies the reduction with probability in two ways:
“increase of uncertainty” and “loss of coverage.” Results indicated
that the level of information loss during monopartite projection
mainly depends on the number of events involved in a linkage
pattern (also called the size of linkage pattern), which is
illustrated by a case study with the health effect “infertility”
(Supplementary Material). Therefore, such methods allow to
identify uncertainties and data gaps between the different events
involved in an AON, and also to quantify the confidence of a
relation between the two events.

Although this method is able to illustrate links between drugs
and AOPs, one limitation of the developed network is that it
relies on existing information. Some causal linkages may have
been overlooked or disregarded because of missing or incomplete
information. Morever such modeling study should take into
consideration the so-called “Matthew effect,” that reflects the
difference, in terms of available knowledge (database, literature),
between the very well investigated drugs and the ones less studied
(41). Therefore, an extension of such model could be done by
integrating more data, including quantitative information, and
to fully evaluate the toxicological effects of drugs. One way could
be to adapt existing tools such as AOP-helpFinder, which uses
artificial intelligence and text mining to automatically screen the
literature, to compile more data (42, 43). For example, this tool
was successfully applied to a set of pesticides by automatically
identifying among the 32million abstracts present in the PubMed
database, links between pesticides and events (44). Another way
would be to gather information from publicly available databases,
which should become more accessible within the next few years
following the interoperability of the data based on the goals
established by Findable, Accessible, Interoperable, and Reusable
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(FAIR) data principles (45). There is a need to implement
standardization of data to facilitate the use of multiple data
sources, as a lack of interporability between all existing databases
increases the difficulties for developping integrative models.

Other data types could also be considered to have a
more complete model as possible, reflecting therefore the
biological “true.” As an example, environmental chemicals,
pharmacogenomics, or drug–drug interactions could also be
taken into consideration.

All these data should allow the development of predictive
models and emerging tools. Nevertheless, the challenge will
be on how to integrate all these heterogeneous data (from
various species, different technologies. . . ) in a common platform
(46). Finally, our study relies on the available names of the
KEs extracted from existing databases, and some KEs may
have a similar biological meaning (e.g., in AOP-wiki, KE1608
“Increase, Oxidative DNA damage” and KE1634 “Increase,
Oxidative damage to DNA”). Therefore, there is a need to
harmonize the KE nomenclature to develop the best predictive
models possible.

CONCLUSIONS

A network-based model was developed to explore in a systematic
manner how drugs may be linked to biologic events (MIE,
KE, and AO), and to quantify the uncertainty of a relation
between events within an AOP. This method could be of
interest as a weight of evidence (WoE) evaluation and could be
complementary to the systematic WoE analysis provided so far
(47). Overall our analysis highlights that such systems’ toxicology

science can help to improve the knowledge of interactions
between drugs and biological systems, which can be of great
interest for animal-free next generation risk assessment (NGRA).
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