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A B S T R A C T   

Background: Acute myeloid leukemia (AML) is a malignant clonal proliferative disease of he-
matopoietic system. Despite tremendous progress in uncovering the AML genome, only a small 
number of mutations have been incorporated into risk stratification and used as therapeutic 
targets. In this research, we performed to construct a predictive prognosis risk model for AML 
patients according to gene mutations. 
Methods: Next-generation sequencing (NGS) technology was utilized to detect gene mutation from 
118 patients. mRNA expression profiles and related clinical information were mined from TCGA 
and GEO databases. Consensus cluster analysis was applied to obtain molecular subtypes, and 
differences in clinicopathological features, prognosis, and immune microenvironment of different 
clusters were systematically compared. According to the differentially expressed genes (DEGs) 
between clusters, univariate and LASSO regression analysis were applied to identify gene sig-
natures to build a prognostic risk model. Patients were classified into high-risk (HR) and low-risk 
(LR) groups according to the median risk score (RS). Differences in prognosis, immune profile, 
and therapeutic sensitivity between two groups were analyzed. The independent predictive value 
of RS was assessed and a nomogram was developed. 
Results: NGS detected 24 mutated genes, with higher mutation frequencies in CBL (63 %) and 
SETBP1 (49 %). Two clusters exhibited different immune microenvironments and survival 
probability (p = 0.0056) were identified. A total of 444 DEGs were screened in two clusters, and a 
mutation-associated risk model was constructed, including MPO, HGF, SH2B3, SETBP1, HLA- 
DRB1, LGALS1, and KDM5B. Patients in LR had a superior survival time compared to HR. Pre-
dictive performance of this model was confirmed and the developed nomogram further improved 
the applicability of the risk model with the AUCs for predicting 1-, 3-, 5-year survival rate were 
0.829, 0.81 and 0.811, respectively. HR cases were more sensitive to erlotinib, CI-1040, and 
AZD6244. 
Conclusion: These findings supplemented the understanding of gene mutations in AML, and 
constructed models had good application prospect to provide effective information for predicting 
prognosis and treatment response of AML.  
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1. Introduction 

As a heterogeneous hematological malignancy, acute myeloid leukemia (AML) is characterized by clonal expansion of immature 
myeloid cells in bone marrow and peripheral blood, accompanied by anemia, hemorrhage, and infection [1]. The disease is generally 
believed to be caused by acquired somatic mutations, and about 97.3 % of all patients have at least one driver gene mutation [2]. 
Although allogeneic stem cell transplantation and intensive induction chemotherapy have improved the survival time of AML young 
patients, the long-term survival in elderly patients remains elusive, where it plummets below 10 % [3]. Therefore, there is great in-
terest in understanding the pathobiology and molecular profile of AML. Gene mutations have been proved to possess practical value in 
the prediction of diagnosis, long-term prognosis, and treatment response among patients with AML [4]. Our previous studies have 
suggested that the gene mutations were closely associated with changed clinical features in AML patients [5,6]. With the advancement 
of high-throughput technologies, the utilization of next-generation sequencing (NGS) has facilitated the identification of various 
genetic abnormalities and has emerged as a crucial tool in clinical practice for patients with AML [7]. The study of Falk et al. has 
indicated that the single nucleotide polymorphisms in genes encoding cytidine deaminase and cytidine deaminase are closely asso-
ciated with poor prognosis in AML patients [8]. The expression of SEMA4D and CBFB has been reported to be modulated by copy 
number variation (CNV), of which the deletion expression is associated with the inhibitive effect on AML [9]. Yang et al. employed 
NGS to provide biological insights into the pathogenesis of AML, and they noted that the number of gene mutations in patients 
increased with age, and those with more mutations exhibit poor chemotherapy outcomes and are difficult to completely cure [10]. In 
addition, Cao et al. utilized NGS to reveal that AML patients with RUNX1-RUNX1T1 fusion gene mutations need to be actively arranged 
for induction chemotherapy with cytarabine and daunorubicin, which contribute to achieve complete remission [11]. Consequently, 
the application of NGS is expected to uncover the unique association between AML mutations and clinicopathologic prognosis, helping 
physicians to design the appropriate treatment plan for each patient [12]. Although NGS identifies numerous genetic abnormalities, 
only a limited number of mutations are included in risk stratification protocols and serve as therapeutic targets [13]. 

Accurately risk stratification in AML patients can guide a personalized treatment and improve the prognosis. Currently, many risk 
models were constructed. Sorror et al. developed a model by incorporating AML specific comorbidities to predict mortality after 
treatment [14]. Wang et al. had constructed a prognostic model of AML patients according to metabolic pathway-related gene sets 
retrieved from public database [15]. The recent study of Song et al. has constructed a ferroptosis-related prognostic model for AML. 
However, these models are unable to capture the complex interplay between mutations, immune microenvironment, and therapy 
response. 

Therefore, in this research, we established a new risk model of AML by integrating NGS mutation data obtained from 118 AML 
patients diagnosed in our hospital and gene expression datasets from TCGA database. Validation was performed in GSE12417 GEO 
dataset. The immune profiles and therapeutic responses of patients with different risk were analyzed. This finding revealed that gene 
mutation-based model will provide a reliable clinical prognostic tool for AML patients. The patients predicted in poor prognosis could 
be benefit from intensive treatment and novel innovative therapies. 

2. Materials and methods 

2.1. NGS assay 

118 cases with AML were recruited in this research. Data on clinical characteristics were obtained from the electronic medical 
records. In addition, cytogenetics risk was classified according to Medical Research Council criteria [16]. This research was authorized 
via the ethics committee of our hospital. 

The peripheral blood or bone marrow specimens from AML cases were obtained at diagnosis with informed consent. NGS of 118 
samples were conducted using an Illumina standard DNA library under an Illumina Miseq sequencer. The detailed materials and 
methods for NGS were listed in Supplementary file 1. 

2.2. Raw data acquisition 

TCGA database is the largest public collection of gene expression, somatic mutation datasets for thousands of tumor specimens 
[17]. The RNA-seq data and whole-exome sequencing data of 150 AML samples (of total 176 samples) were available on TCGA 
database. The raw gene expression information and corresponding clinical and somatic mutation information were downloaded from 
UCSX Xena website (https://xenabrowser.net/datapages/). Transcripts per million normalized values were used for subsequent 
analysis. GTEx database is the public resource of the gene expression data of normal tissues and cells from donors [18]. Given that there 
is a lack of datasets of normal samples corresponding to AML in TCGA database, the gene expression datasets of 337 healthy blood 
samples and normal bone marrow samples were gathered from the GTEx database. The Gene Expression Omnibus (GEO) database 
contains various types of gene expression information, including transcriptome, microarray and proteome [19]. Further, the micro-
array data of 163 AML patients with prognostic information were retrieved from GEO database (accession number: GSE12417), which 
were used as the validation dataset. The characteristics of each dataset was summarized in Table S1. 
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2.3. Analysis of mutation information based on TCGA data 

Based on the average mutation frequency of the 24 genes obtained from NGS, the mean mutation frequency of each gene was 
displayed using the ggplot2 package (Version 3.3.5) [20] and the gene maps were made by RCircos (Version 1.2.2) [21]. To explore 
these genes’ biological functions, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were 
executed through “clusterProfiler” package (Version 4.0.5) [22] to determine the biological function of these genes. Also, Benjamini & 
Hochberg method was used to correct the calculated p-value, and results with corrected p-values <0.05 was considered significantly 
enriched. In addition, the differential expression of 24 genes in AML compared with normal samples was analyzed based on the 
TCGA-AML data, and the mutation frequency of genes was counted employing the R maftools package (Version 2.8.0) [23]. 

2.4. Prediction of molecular clusters for AML based on mutated genes 

Based on the expression level of the 24 mutated genes, unsupervised hierarchical clustering of AML patients from TCGA was 
performed employing the ConsensusClusterPlus [24]. Cluster number k values were set from 2 to 9 and repeated 1000 times to acquire 
the optimal and stable cluster number. 

2.5. Association analysis of different clusters and clinical features 

The Kaplan-Meier (KM) curve method in the survival package (Version 2.41-1) [25] of R was applied to evaluate the discrepancies 
in survival outcomes among cases in different clusters. Moreover, basic clinical information of TCGA-AML patients was collected, and 
the differences of these indicators in clusters were compared employing the chi-square test. 

2.6. Analysis of immune infiltration and immune checkpoints among different clusters 

Understanding the types and composition of immune cells is helpful to explore the pathological mechanism of tumors and guide 
immunotherapy. Here, we used the CIBERSORT [26] and ssGSEA [27] to evaluate the type and proportion of immune cells in cancer 
specimens, followed by calculation of the ESTIMATE, immune, and stroma scores employing the ESTIMATE package in R [28]. 
Subsequently, Wilcoxon detected the differences of immune cell infiltration and immune score among the groups. In addition, the 
expression discrepancies of immune checkpoint genes (including PD-L1, SLAMF4, CD96, CSF1R, TIM3, IL10RB, KIR2DL1, KIR2DL3, 
LGALS9, PD-1, PD-L2, TGFB1, B7–H3, CD48, CD70, B7.2, CXCR4, IL6R, MICB, TMIGD2, GITR, DR3, OX40, CD30, 4-1BB, APRIL, BAFF, 
LIGHT, TL1A and 4-1BB-L) and HLA family genes (including HLA-A, HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, 
HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-E, HLA-F, and HLA-G) 
among different clusters were compared. 

2.7. Gene set enrichment analysis (GSEA) of clusters 

GSEA was conducted to observe the cross-cluster enrichment. P value and |NES|>1 were set as thresholds to screen for significant 
results. Moreover, GSVA algorithm was performed to estimate the enrichment scores of hallmark gene sets and compare the 
enrichment differences among clusters. 

2.8. Identification of differential expressed genes (DEGs) between two clusters 

According to the above two clusters, differential expression analysis of cluster 1 vs. cluster 2 was achieved by employing the limma 
package (Version 3.34.7), and genes with log2|FC| ≥ 1 and p.adjust value < 0.05 (corrected by Benjamini & Hochberg) were regarded 
as DEGs [29]. Then, the GO terms and KEGG pathways of DEGs were analyzed via clusterProfiler. 

2.9. Establishment of prognostic risk score (RS) model on the basis of DEGs 

Univariate cox regression analysis of DEGs was adopted to employing the R (Version 2.41-1) survival package, and genes with p 
value < 0.01 were selected as prognosis key genes for subsequently analyses. 

The prognostic genes were analyzed employing the LASSO-Cox algorithm in the glmnet package (Version 1.2) [30] of R, and the 
penalty parameter was adjusted via 10-fold cross validation to screen the appropriate gene combinations to create the prognostic risk 
model. Then, the expression level (X) and regression coefficients (β) of the model genes were utilized to calculate RS. The formula is as 
follows: RS = β1X1 + β2X2 + … +βnXn. Calculate the RS of every specimens in TCGA and GEO dataset, and samples were categorized 
into low- (LR) or high-risk (HR) groups. KM method was employed to evaluate the association between different RS groups and clinical 
results. Moreover, the survival ROC package (Version 1.0.3) was applied to perform receiver operating characteristic (ROC) analysis 
and calculated the area under the curve (AUC), which was applied to evaluate the predictive value of the model for survival at 1, 3, and 
5 years. Besides, differences in the clinical information between two RS groups were analyzed. 
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2.10. Development of nomogram model 

To further explore whether RS and clinical prognostic factors were independently predictive, these indicators in TCGA were 
included in univariate and multivariate COX analyses. Index with p value < 0.05 was regarded as independent prognostic factor. Next, 
these factors were integrated to establish nomogram employing the rms package (Version 5.1-2) [31] in R. Briefly, the model assigns a 
value to each variable and then sums the scores to get a total score, that predicted the probability of overall survival at 1, 3, and 5 years 
for patients with AML. Moreover, calibration curve and ROC were applied to estimate the predictive value of the model. 

2.11. Association analysis between RS and immune features 

To compare the discrepancies in immune characteristics between the LR and HR groups, the infiltration levels of 28 immune cells in 
TCGA samples was evaluated using ssGSEA algorithm, and then ggplot2 package (Version 3.3.5) in R was employed to calculate the 
relationship between RS or model gene and immune cells. 

2.12. Predictive analysis of response to immunotherapy and drug sensitivity 

We then investigated the potential guidance of RS for immunotherapy or chemotherapy. For immunotherapy, the response of 
individual cases to immune checkpoint therapy was predicted via calculating tumor immune dysfunction and rejection (TIDE) score. 
Meanwhile, scores for the three immunophenotypic scores (IPS) were estimated, and Wilcoxon test was applied to compare the dif-
ferences of the above scores between the two groups. In drug sensitivity, according to the genomic data in the GDSC database, the IC50 
values of drugs were quantified via pRRophetic package [32] in R, and then the discrepancies in the sensitivity to 138 chemotherapy 
drugs between two groups were analyzed. 

2.13. Statistical analysis 

R (Version 4.2.2) used for statistical analyses. The chi-square test was employed for the clinical characterization analysis, while the 
Wilcoxon test was applied for the comparison of differences between groups. Prognostic differences were compared employing the KM 
method and log-rank test in the survival package (Version 2.41-1). LASSO-COX was employed to screen appropriate prognostic sig-
natures for the construction of RS model. In addition, univariate combined with multivariate analyses were performed to identify 
useful prognostic indicators for forming nomogram. ROC and AUC value were applied to determine the predictive accuracy of the 
models. P value < 0.05 in all analyses represented statistical significance. 

Fig. 1. Genetic mutation profiles obtained by NGS. (A) Distribution of average mutation frequency of 24 mutated genes. (B) Location of CNV 
alterations on chromosomes. (C) GO_BP enrichment analyses of 24 genes. (D) GO_MF enrichment analyses of 24 genes. (E) GO_MF enrichment 
analyses of 24 genes. (F) KEGG enrichment analyses. 

Y. Liu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e31249

5

3. Results 

3.1. Spectrum of gene mutations in AML 

The specific NGS results for the 118 AML cases are displayed in Table S2. As illustrated in Fig. 1A, mutations were present in all 118 
cases, and alterations of 24 genes were analyzed. The three genes with the highest mutation frequency were CBL (63 %), SETBP1 (49 
%) and SH2B3 (8.42 %). Copy number variants (CNVs) for the 24 genes on the chromosome are shown in Fig. 1B. Besides, the bio-
logical roles of these genes were explored. According to the cutoff value of p.adjust value < 0.05, the 24 genes were significantly 
enriched in 414 GO_biological processes (BP) terms, 66 GO_molecular function (MF) terms, and 32 GO_cell component (CC) terms. The 
top 8 GO terms ranked by p.adjust value in each category were displayed in Fig. 1C–E, which included positive regulation of phos-
phatidylinositol 3-kinase signaling (GO-BP, KIT/JAK2/FLT3/CBL), DNA-binding transcription factor binding (GO-MF, ASXL1/TP53/ 
NPM1/FLT3/DNMT3A/CEBPA), and spliceosomal complex (GO-CC, SF3B1/ZRSR2/U2AF1/SRSF2). For KEGG pathway enrichment 
analysis, results indicated that there were 17 significant pathways, such as PI3K-Akt signaling pathway (involved with TP53/NRAS/ 
KIT/JAK2/FLT3) and AML pathway (enriched by NRAS/KIT/FLT3/CEBPA/RUNX1) (Fig. 1F). A previous study indicated that the 
activation of PI3K-Akt related signaling is related to clonal heterogeneity and prognosis in AML [33]. Thus, we speculate that the 
mutated genes involved in significant functions or pathways may confer the classification of AML patients with different prognosis. 
Following, we analyzed the mutation status of 24 genes based on TCGA database. Results showed that DNMT3A had the highest 
mutation frequency (13.6 %), followed by FLT3 (11.4 %), dominated by missense mutations, which was consistent with previous 
studies [34,35]. Moreover, RUNX1 and NPM1 mutations were common in AML (9.3 %), mainly dominated by frameshift and missense 
mutations (Fig. 2A). Among the 24 genes, only IDH1 is present with loss CNVs, and the remaining ones are present with both gain and 
loss CNVs in AMLs. U2AF1, RUNX1, and CBL had extensive gain CNVs, whereas EZH2, TP53, and ETV6 had loss CNVs (Fig. 2B). 
Besides, mRNA expression levels of 24 genes in the normal and tumor samples from TCGA were observed. All genes were differentially 
expressed between two groups. Specifically, all genes except U2AF1 were markedly overexpressed in AML (Fig. 2C). The role of 
de-expression of U2AF1 should be further explored in AML. 

3.2. Determination of two clusters in AML based on the expression of 24 mutated genes 

To understand the molecular biological characteristics of the 24 mutations in AML, unsupervised cluster analysis was performed on 
AML specimens in TCGA according to their expression information. Results showed that the cumulative distribution function (CDF) 

Fig. 2. Genetic mutation and expression of 24 genes in AML based on TCGA data. (A) Mutation frequencies of 24 genes. (B) Frequencies of CNV gain 
and loss among genes. (C) Difference in mRNA expression level of genes between normal and tumor samples. **, P < 0.01; ****, P < 0.0001. 
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Fig. 3. Identification of 24 mutations-associated molecular subtypes. (A) Consensus CDF when k = 2–9. (B) Heat map of the consensus matrix 
revealing that the optimal value for consensus clustering is k = 2. (C) PCA plot of two clusters. (D) KM survival curve of patients in the cluster 1 and 
cluster 2. (E) Heat map of clinicopathological features and expression level of 24 genes. (F) Difference in mRNA expression level of genes between 
cluster 1 and cluster 2. *, P < 0.05; **, P < 0.01; ***P < 0.001; ****, P < 0.0001. 
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distribution was relatively flat and close to the maximum at k = 2 (Fig. 1A). The consistency and stability were the best, when patients 
were clustered into two subgroups (Fig. 1B). The proportion of ambiguous clustering was calculated to be the lowest when k = 2 
(Supplementary Fig. 1). Thus, it was the best choice for classification with k = 2. Specimens were grouped into cluster 1 (n = 51) and 
cluster 2 (n = 99) (Fig. 3A and B). PCA plot displayed a clear separation of the two clusters (Fig. 3C). There was a obvious variation in 
the prognosis between the two clusters, with a survival advantage for individuals in the cluster 2 (p value = 0.0056) (Fig. 3D). A heat 
map of the association of clusters with clinical information is demonstrated in Fig. 3E. Chi-square test or T test was employed to 
compare the variation of clinical features between cluster 1 and cluster 2. The age and peripheral blood (PB) blast percentage of 
patients were obvious different between cluster 1 and cluster 2. The numbers of cases in different subtypes according to French- 
American-British (FAB) classification were markedly different between two groups. Patients between two clusters showed signifi-
cantly differential cytogenetic risk and molecular risk. No significant difference was observed in the remaining clinical characteristics 
(Table 1). Moreover, we observed distinct discrepancies in the expression of 20 genes between two clusters, and most of them were up- 
regulated in the cluster 2 (13/20) (Fig. 3F). 

3.3. Two clusters displayed different immune infiltration 

Immune escape is a major challenge in AML immunotherapy. To elucidate the immune response of each cluster, tumor infiltration 
analysis was performed. ESTIMATE analysis revealed that compared with cluster 2, the stromal score (− 217.11 ± 631.56 vs. − 821.06 
± 678.72), immune score (7100.23 ± 592.30 vs. 6123.85 ± 839.02) and ESTIMATE score (6883.13 ± 1146.41 vs. 5302.79 ±
1370.50) of cluster 1 were obviously up-regulated (Fig. 4A). Further, the degree of immune cell infiltration between the two clusters 
was compared employing CIBERSORT and ssGSEA, and the difference in most immune cell enrichment scores between the two groups 
was statistically significant (Figure 4B and C). For instance, compared with cluster 1, the infiltration levels of macrophages, mono-
cytes, and CD8 T cells in cluster 2 decreased. Besides, several common immune checkpoints levels in cluster 2, such as CD48, PD-1, and 
TGFB1, were obviously reduced. (Fig. 4D). For HLA family genes, except HLA-DOA, the expression of other genes was different in two 
cluster groups, and most of them showed low expression in cluster 2 (Fig. 4E). The reduced immune checkpoint genes and HLA family 

Table 1 
Comparation of clinical characteristics between cluster 1 and cluster 2.  

Characteristics C1 (n = 51) C2 (n = 99) Total (n = 150) P value 

Age    8.80E-03 
Mean ± SD 58.80 ± 15.75 51.65 ± 15.84 54.08 ± 16.12 
Median[min-max] 62.00 [25.00,88.00] 53.00 [21.00,81.00] 56.00 [21.00,88.00] 
Sex    0.57 
Female 21 (14.00 %) 47 (31.33 %) 68 (45.33 %) 
Male 30 (20.00 %) 52 (34.67 %) 82 (54.67 %) 
BM_Blast Percentage   
Mean ± SD 67.14 ± 21.20 68.95 ± 18.61 68.33 ± 19.47 
Median[min-max] 71.00 [30.00,98.00] 72.00 [30.00,100.00] 72.00 [30.00,100.00] 
FAB    2.60E-08 
M0 5 (3.33 %) 10 (6.67 %) 15 (10.00 %) 
M1 7 (4.67 %) 29 (19.33 %) 36 (24.00 %) 
M2 5 (3.33 %) 32 (21.33 %) 37 (24.67 %) 
M3 1 (0.67 %) 14 (9.33 %) 15 (10.00 %) 
M4 19 (12.67 %) 10 (6.67 %) 29 (19.33 %) 
M5 13 (8.67 %) 1 (0.67 %) 14 (9.33 %) 
M6 1 (0.67 %) 1 (0.67 %) 2 (1.33 %)  
M7 0 (0 %) 1 (0.67 %) 1 (0.67 %)  
Mutation_Count   0.22 
Mean ± SD 8.57 ± 5.53 9.78 ± 5.48 9.37 ± 5.50 
Median[min-max] 8.00 [1.00,21.00] 10.00 [1.00,34.00] 9.00 [1.00,34.00] 
PB Blast Percentage  3.20E-03 
Mean ± SD 28.49 ± 26.58 45.10 ± 32.07 39.38 ± 31.22 
Median[min-max] 17.00 [0.0e+0,90.00] 46.00 [0.0e+0,97.00] 39.00 [0.0e+0,97.00] 
Risk (Cyto)   4.80E-03 
Good 3 (2.00 %) 28 (18.67 %) 31 (20.67 %) 
Intermediate 35 (23.33 %) 46 (30.67 %) 81 (54.00 %) 
N.D. 0 (0 %) 3 (2.00 %) 3 (2.00 %)  
Poor 13 (8.67 %) 22 (14.67 %) 35 (23.33 %) 
Risk (Molecular)   3.60E-03 
Good 3 (2.00 %) 29 (19.33 %) 32 (21.33 %) 
Intermediate 33 (22.00 %) 43 (28.67 %) 76 (50.67 %) 
N.D. 0 (0 %) 3 (2.00 %) 3 (2.00 %)  
Poor 15 (10.00 %) 24 (16.00 %) 39 (26.00 %) 
WBC    0.17 
Mean ± SD 35.89 ± 38.27 33.10 ± 42.43 34.05 ± 40.96 
Median[min-max] 15.10 [2.30,137.20] 18.70 [0.40,223.80] 16.50 [0.40,223.80] 

BM: bone marrow; FAB: French-American-British; PB: peripheral blood; WBC: white blood cell. 
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Fig. 4. Differences in immune profiles between two molecular clusters. (A) Distributions of stromal, immune, ESTIMATE scores between cluster 1 
and cluster 2. (B) Differences in immune cell infiltration between two clusters via CIBERSORT algorithm. (C) Differences in immune cell between 
two clusters via ssGSEA analysis. (D) Expression of immune checkpoints in cluster 1 and cluster 2. (E) Expression of HLA family genes in cluster 1 
and cluster 2. (F) GSEA for cluster 1 and cluster 2. -, not significant; *, P < 0.05; **, P < 0.01; ***P < 0.001; ****, P < 0.0001. 

Fig. 5. Differential expression analysis and functional enrichment analysis. (A) Volcano plot showing DEGs between cluster 1 and cluster 2. (B–D) 
GO_BP, GO_MF, and GO_CC analysis of DEGs. (E) KEGG pathway analysis of DEGs. 
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genes were markedly involved in antigen processing and presentation related BPs and pathways, and MHC protein complex binding 
related MFs (Supplementary Fig. 2). The immune checkpoints molecules expressed in tumor cells mediated immune evasion by 
maintaining anti-apoptosis, metastasis, and cell proliferation [36]. The reduced expression of immune checkpoint genes in cluster 2 
may be related reduced malignant behaviors and immune evasion of cancer cells. The deregulation of HLA genes is associated with 
immune evasion and affects the response to anti-cancer treatments. Enhancing the function of HLA genes may facilitate immune escape 
and immune resistance of tumor cells [37]. Most of the HLA genes were reduced in cluster 2, suggesting that patients in cluster 2 may 
be benefit for immune therapies. Overall, these findings indicated a strong association between clusters and TME. Moreover, GSEA 
indicated that antigen processing and presentation was mainly enriched in cluster 1, and glycosylphosphatidylinositol GPI anchor 
biosynthesis was mainly involved in cluster 2 (Fig. 4F). It is reported that the impaired antigen processing and presentation is an 

Fig. 6. Establishment and validation of prognostic risk model. (A) LASSO regression analysis of DEGs for construction of prognostic model. (B) 
Distribution of coefficients for seven genes in the model. KM survival curve of patients in the low-risk and high-risk groups in TCGA (C) and 
GSE12417 (F). Distribution of risk score and survival status in TCGA (D) and GSE12417 (G). ROC curves for predicting 1, 3, and 5-year overall 
survival in TCGA (E) and GSE12417 (H). 
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implication of AML [38]. Myeloid leukemic blasts expressing HLA class II molecules, are present with dysregulation of antigens 
processing signaling, resulting in impaired HLA class II-restricted antigen presentation to T cells, which could explain the immune 
evasion of tumor cells [38]. Besides, some glycosylphosphatidylinositol (GPI)-anchored proteins are found to be implicated in the 
occurrence and development of cancers, which have been served as the biomarkers for cancers [39]. The deficiency of GPI anchor 
biosynthesis is related with the reduced GPI- anchored complement regulatory proteins delay-accelerating factor (DAF) and decay-
accelerating factor 59 (CD59), which may be responsible for the pathogenesis of AML [40]. The related mechanism driving the 
impaired antigen processing and presentation in cluster 1 and GPI anchor biosynthesis in cluster 2 needs to be further explored. 

3.4. Identification of DEGs within two clusters and functional enrichment analysis 

According to the set threshold, 444 DEGs were identified between cluster 1 and cluster 2 (Fig. 5A). Functional enrichment analysis 
was used for all the DEGs. The DEGs were markedly enriched in multiple GO terms or KEGG pathways, and we presented the top 10 
results. As illustrated in Fig. 5B–E, DEGs were mainly involved in positive regulation of cytokine production (GO_BP), immune receptor 
activity (GO_MF), secretory granule membrane (GO_CC), as well as phagosome and neutrophil extracellular trap formation (KEGG 
pathways). 

3.5. Construction of a seven-gene risk model 

80 genes with prognostic significance were selected from 444 DEGs through Univariate Cox regression analysis. Then, the best 
prognostic signatures were identified from these genes by LASSO-COX regression. Results showed that the partial likelihood bias 
reached the minimum when the model included seven factors (Fig. 6A). Hence, a prognostic model was established based on seven 
genes (MPO, HGF, SH2B3, SETBP1, HLA-DRB1, LGALS1, KDM5B). GSEA pathway analysis was performed for each model gene and the 
results were listed in Supplementary Fig. 3. HGF was enriched in pathways in cancer. MPO, SH2B3, SETP1, LGALS1 and KDM5B were 
closely associated with chemokine signaling pathway. HLA-DRB1, LGALS1 and KDM5B were involved in antigen processing and 
presentation related pathway. The final RS formula was as follows: RS = MPO * (− 0.1443) + HGF * (− 0.1480) + SH2B3 * (− 0.3292) +
SETBP1 * 0.1938 + HLA-DRB1 * 0.1539 + LGALS1 * 0.3319 + KDM5B * 0.3457 (Fig. 6B). 

According to the median RS, the AML patients in TCGA or GSE12417 (validation set) were classified into LR and HR groups, and 
survival analysis as well as ROC analysis were applied to evaluate the predictive ability of the risk model. In TCGA cohort, we observed 
that the survival time of LR group was longer than that of HR group (p value < 0.001, Fig. 6C). High RS scores were accompanied by a 

Fig. 7. Association analysis between RS and clinical features (A), immune cells (B), as well as immune checkpoints (C).  
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distribution of more death samples (Fig. 6D). Time-dependent ROC indicated that the model predicted 1-, 3-, 5-year survival rate with 
AUCs of 0.806, 0.784, and 0.789, respectively (Fig. 6E). Similarly, a consistent trend was obtained in the validation set, indicating that 
HR group cases had a poorer prognosis compared to LR group cases (p value < 0.001, Fig. 6F), and mortality rate elevated with 
increasing RS (Fig. 6G). ROC analysis of GSE12417 showed AUC values for model predicting 1-, 3-, and 5-year survival rates were 
0.758, 0.733, and 0.732, respectively (Fig. 6H). Taken together, this model had the advantage of predicting prognosis. 

3.6. Association between RS and clinical characteristics or immune features 

We also observed relationship between RS and clinical features. As listed in Fig. 7A, cluster 2 had a lower RS value than cluster 1 (p 
= 1.3e-09). RS was significantly different between good risk stratification and other prognostic-risk groups according to cytogenetic 
and molecular abnormalities (all p < 0.05). RS was significantly different among various FAB (French American British) subtypes (p =

Fig. 8. Construction and validation of nomogram model. Univariate (A) and multivariate (B) analyses of risk score and clinical characteristics. (C) 
Nomogram model for predicting the 1, 3, and 5-year survival of AML patients. (D) ROC curves for predicting 1/3/5 years survival possibility. (E) 
Calibration plot of the nomogram model for predicting 1/3/5 years overall survival. (F) KM survival curve of patients in low and high scores based 
on nomogram. 

Y. Liu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e31249

12

1.6e-9). RS value was positively correlated with white blood cell (WBC) (p = 7.2e-3, r = 0.22). In addition, seven genes in model was 
connected with immune cells and immune checkpoints (Fig. 7B and C). There was a significantly positive association between SH2B3 
and most immune cells, while negative correlation between KDM5B and immune cells. The target gene expression was associated with 
the immune cell types and cancer risk. SH2B3 exerts function in altering several immune cell types and increases the risk of malignant 
tumor [41]. Consistent results were also obtained in the correlation analysis of immune checkpoints. As described in the previous 
study, the expression level of prognostic biomarker genes was related to several immune checkpoints in different types of cancers [42]. 
However, the specific mechanism underlying the effect of biomarker genes in mediating checkpoint gene expression remains to be 
clarified in the near future. 

3.7. RS as an independent prognostic factor for AML cases 

Univariate and multivariate Cox regression analyses of clinical features and RS were used to identify useful prognostic indicators. 
Two analyses confirmed that age, risk (molecular), and RS could serve as independent prognostic factors (Fig. 8A and B). Subsequently, 
these indicators were incorporated into a nomogram to predict the survival ability of cases at 1, 3, and 5 years (Fig. 8C). The C-index of 
this model was 0.705. ROC validation indicated that AUC values of 1, 3, and 5-year were 0.829, 0.81, and 0.811, respectively, sug-
gesting that this model had high predictive ability (Fig. 8D). Moreover, the calibration curves showed a high degree of agreement 
between model-predicted overall survival and actual data at 1, 3, and 5 years (Fig. 8E). Further, KM curve indicated that the nomogram 
was significantly connected with survival probability (p value < 0.0001), with high scores predicting poor prognosis (Fig. 8F). 

3.8. RS may be applied to predict immune or drug therapy sensitivity in AML patients 

To determine whether RS can predict the response of AML cases to immunotherapy, we compared the TIDE, and IPS scores between 
HR and LR groups. Undoubtedly, there was a dramatic variation between the two risk groups in response to immunotherapy. Spe-
cifically, the LR group presented markedly higher TIDE values, immunosuppressive cells IPS, and immune checkpoints IPS, while 
lower MHC molecular IPS score (Fig. 9A and B). Furthermore, we evaluated the sensitivity of patients to chemotherapy drugs based on 
assessed IC50. The results showed that 30 drugs elicited differential drug sensitivities between the two groups. Here, we displayed the 
top four drugs with the most different sensitivities between HR and LR groups. HR patients were highly sensitive to erlotinib, PD- 
0325901, CI-1040, and AZD6244, compared with LR patients (all p value < 0.05, Fig. 9C). 

4. Discussion 

NGS technology is a useful tool for discovering the genetic landscape and gene mutations of AML, and provides new molecular 
biomarkers for disease prognosis classification and targeted therapy [43]. Nevertheless, genetic mutations with prognostic value in 
AML patients have not been fully elucidated. Hence, we utilized NGS to identify pathogenic gene mutations in AML cases; subse-
quently, according to these mutations, a risk model for predicting prognosis was constructed. Among 118 patients, NGS detected 24 
gene mutations, with the top three being CBL (63 %), SETBP1 (49 %), and SH2B3 (8.42 %). Functional enrichment analysis indicated 

Fig. 9. Differences in the therapeutic response of the two risk groups to immunotherapy or chemotherapeutics. (A) TIDE scores. (B) IPS scores of 
MHC molecular, immunesuppressive cells, immune checkpoints. (C) Differences in drug sensitivity between two groups (P < 0.05). ***P < 0.001; 
****, P < 0.0001. 
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that these mutated genes were closely related to AML. Subsequently, the 24 genes were categorized into two major clusters. Based on 
DEGs between two clusters, a risk model consisting of seven genes was finally established by combining univariate Cox regression and 
LASSO algorithm. This model acted as a useful indicator influencing the prognosis of AML patients, and its predictive performance was 
validated to be good. Furthermore, this risk model was valuable for predicting the treatment response of patients. 

An increasing number of genetic signatures have been established that provide useful clues for risk classification in AML. For 
example, researchers have constructed prognostic models based on genes related to senescence, cuproptosis, ferroptosis, or autophagy, 
which provide clinical value for monitoring the clinical outcome and evaluating new therapies of AML patients [44–47]. A large 
number of mutated genes in predicting AML prognosis have been identified. Based on a targeted NGS technique, Wang et al. found that 
concurrent DNMT3A, FLT3-ITD, and NPM1 mutations were related to worse prognosis of AML cases [48]. NPM1 gene mutation has 
been found to be related to the prognosis of AML, and the single gene mutation is proposed as the unique classification of AML [49]. 
However, few risk models of AML were developed by combining several prognostic mutated genes. Thus, for the first time, we 
developed a novel model for predicting AML prognosis through a series of mutated genes obtained from NGS. AML cases were 
categorized into LR and HR groups based on RS, and the survival time of LR group was obviously superior to that of the HR group. 
Meanwhile, RS was included in the nomogram construction, and the survival probability predicted by nomogram was accordance with 
the actual occurrence, suggesting that prediction performance of the model was stable and accurate. 

The risk model we obtained contained the following seven genes: MPO, HGF, SH2B3, SETBP1, HLA-DRB1, LGALS1, and KDM5B. 
Myeloperoxidase (MPO) is a heme protein synthesized during myeloid differentiation, and its expression is considered to represent the 
gold marker for AML diagnosis [50]. MPO expression provides critical information about the phenotype of AML cells and patient 
prognosis. It has been reported that cases with a high percentage of MPO-positive cells or high mRNA expression level exhibit better 
response to intensive chemotherapy, resulting in a superior prognosis than those with low expression level [51]. Hence, we speculated 
that better prognosis of cluster C2 might be related to the high level of MPO. Hepatocyte growth factor (HGF) serves as a potent 
proangiogenic indicator by activating tyrosine kinase signaling cascades to regulate cell growth, morphogenesis, and motility [52]. 
Verstovsek et al. found that HGF levels were significantly elevated in AML patients than in healthy individuals, and its high levels were 
associated with poor performance status and adverse overall survival [53]. The protein encoded by SH2B adaptor protein 3 (SH2B3) is 
an important regulator of cytokine signaling and serves a critical role in hematopoiesis [54]. Recent study has established a prognostic 
model including SH2B3 gene of AML among Chinese population, which can classify patients into good, intermediate, and poor 
prognosis groups [55]. SET binding protein 1 (SETBP1) is a SET-binding protein considered as a major cancer gene in myeloid tumors 
that acts synergistically with multiple cytogenetic markers [56]. Previous research has demonstrated a high frequency of somatic 
SETBP1 mutations in AML cases, which is similar to our results [57]. Furthermore, SETBP1 has a negative impact on the prognosis of 
AML patients, especially in elderly patients [58]. Major histocompatibility complex, class II, DR beta 1 (HLA-DRB1) mismatch is 
connected with a reduced risk of relapse in AML patients, leading to improved overall survival in patients receiving cord blood 
transplants [59]. Lectin, galactoside-binding, soluble 1 (LGALS1) is a family of β-galactosidase binding proteins participated in 
regulating cell-cell and cell matrix interactions [60]. Research has shown that it produce a marked effect in the AML microenviron-
ment, and elevated mRNA levels are related to low disease-free survival [61]. Lysine (K)-specific demethylase 5B (KDM5B) mediates 
the maintenance of stemness in normal hematopoietic stem cells, and multiple clinical data have revealed that low expression of 
KDM5B is markedly related to bad prognosis [62]. Besides, GSEA analysis showed that HGF was enriched in pathways in cancer, which 
indicated that our findings were significant. MPO, SH2B3, SETP1, LGALS1 and KDM5B were closely associated with chemokine 
signaling pathway. Previous evidence revealed that chemokines play key roles in regulating migration and cell interactions [63]. The 
chemokine signaling axis are involved in leukemia microenvironment and is related to the prognosis of acute lymphoblastic leukemia. 
In addition, the antigen processing and presentation is a complex process, which interacts cancer with the adaptive immune system 
[64]. The reduced antigen presentation in tumor cells facilitates immune evasion and influences the treatment and outcomes of cancers 
[65]. Our data revealed that HLA-DRB1, LGALS1 and KDM5B were participated in antigen processing and presentation pathway. Thus, 
HLA-DRB1, LGALS1 and KDM5B may mediate the prognosis of AML patients through antigen processing and presentation pathway. 
Collectively, the genes selected can affect the clinical outcome of AML, further supporting the possibility of clinical application of this 
model. 

Following, we assessed clinical treatment responses in different populations. The data revealed that cases in the LR group had 
higher TIDE score compared with HR group, suggesting that cases in the LR group were more likely to have immune escape, and had 
limited benefit from immunotherapy. Moreover, the drug analysis revealed that HR cases were more sensitive to erlotinib, CI-1040, 
and AZD6244. Erlotinib has a potential therapeutic role in AML, with the therapeutic benefit achieved by targeting FLT3 [66]. As 
MEK inhibitors, CI-1040 and AZD6244 exert therapeutic effects by enhancing the ability to induce apoptosis in AML cells [67,68]. 
Considering the epigenetic/intrinsic genetic and clonal complexity of AML, it is challenging to identify the optimal predictive bio-
markers for AML patients to respond to therapy [69]. Therefore, the prognostic signatures obtained in this research can provide 
recommendations for precise treatment of patients at different risks. According to the median RS calculated in TCGA cohort, AML 
patients can be classified in HR or LR group. Based on TIDE score, patients in HR group are inclined to benefit from immunotherapy. 
Thus, it is speculated that a rational combination of immunotherapy and chemotherapeutic drugs will be promising in the treatment of 
AML in HR group. 

Our study has an advantage in terms of dataset. In this study, the mutated genes were obtained from NGS of 118 AML patients 
recruited from our hospital. The prognostic signature was discovered based on our dataset combined with publicly available datasets, 
which increases the authenticity and reliability of the prognostic model than others using single public databases. Considering many 
mutated genes identified in AML, it is difficult to integrate all the prognostic mutated genes into a risk classification model. Our risk 
model with limited gene signature is feasible in clinical practice. However, there are unresolved issues in this study. The special 
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biological functions of the signature genes in AML remains to be clarified. Although there are several cohorts in this study, the limited 
sample size may result in selected bias. Thus, the conclusions need to be validated in a large-scale independent trials. 

5. Conclusion 

In summary, we constructed a seven-gene prognostic signature (MPO, HGF, SH2B3, SETBP1, HLA-DRB1, LGALS1, and KDM5B) for 
AML patients relied on mutation-associated genes. This model can classify AML patients into two risk clusters. The HR and LR groups 
presented with significantly different survival time and immunotherapy responses, which can guide the individual-based treatment of 
AML cases. The patients in HR group may be benefit from immunotherapy combined with chemotherapeutic drugs. These findings 
provided a tool in clinical application for the prediction of survival status, immune microenvironment, and therapeutic efficacy in AML 
cases. Besides, this work has laid the foundation for improving the precision treatment of AML. Further validation and refinement of 
this model in larger patient cohort are imperative. 
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Abbreviation 

AML: Acute myeloid leukemia 
NGS Next-generation sequencing 
DEGs Differentially expressed genes 
RS Risk score 
HR High-risk 
LR Low-risk 
GEO Gene Expression Omnibus 
TCGA The Cancer Genome Atlas 
KEGG Kyoto Encyclopedia of Genes and Genomes 
GO Gene Ontology 
KM Kaplan-Meier 
GSEA Gene set enrichment analysis 
TME Tumor microenvironment 
AUC Area under the curve 
ROC: Receiver operating characteristic 
IPS Immunophenotypic scores 
TIDE Tumor immune dysfunction and rejection 
CC Cell component 
MF Molecular function 
BP Biological processes 
CNVs Copy number variants 
CDF Cumulative distribution function 
FAB French-American-British 
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PB peripheral blood 
WBC White blood cell 
MPO Myeloperoxidase 
HGF Hepatocyte growth factor 
SH2B3 SH2B adaptor protein 3 
SETBP1 SET binding protein 1 
HLA-DRB1 Major histocompatibility complex, class II, DR beta 1 
LGALS1 Lectin, galactoside-binding, soluble 1 
KDM5B Lysine (K)-specific demethylase 5B 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e31249. 
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