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A B S T R A C T   

An increasing population of people, especially young adults who exercise, consume high protein 
diets along with carbonated drinks. While there are numerous studies on the effect of high protein 
diets, there is a need to understand how protein diets in combination with carbonated drinks 
impact physiology. In order to assess these effects on wistar rats’ phenotype, antioxidants and 
inflammatory profiles, 64 wistar rats were divided into dietary groups of 8 male and 8 female 
animals each. The animals were fed standard diet as control (chow), chow and carbonated soda, a 
high protein diet (48.1% energy from protein) and a high protein diet with carbonated soda 
according to their groups. 

Body measurements, blood glucose levels, serum insulin levels, lipid peroxidation, antioxidant 
activity, adipokines and inflammatory markers concentrations were all determined. At the end of 
the study, body measurements, inflammatory markers and adipokine concentration were 
increased in animals fed the high protein diet and high protein-soda diet. There was a decrease in 
antioxidant and lipid peroxidation levels in protein fed male and female animals but those fed 
protein in combination with soda had increased lipid peroxidation levels. 

In conclusion, high protein diet in combination with carbonated soda impacts physiology 
differently from a high protein diet alone, and may stimulate weight gain, oxidative stress and 
HPD-related inflammation in Wistar rats.   

1. Introduction 

Most meals, in both developed and developing countries, are a combination of the different food groups-carbohydrates, proteins, 
fats and oils, mineral salts, vitamins and water [1] in the right proportions with carbohydrates making up about 45–65% of total energy 
intake [2]. However, meals have changed over time as a result of environmental influences, changing economic conditions, and most 
importantly, health factors [3]. Health or more often ill-health is an important factor that determines dietary choices in humans. In 
order to combat diseases like obesity, cancers, neurodegenerative disorders like Alzheimer’s disease and epilepsy, and diabetes 
mellitus, customized or modified diets are taken into consideration [4]. One of such diets is the high protein diet, a diet in which intake 
of protein exceeds 2.0 g/kg/day [5]. 

In many parts of the world and especially in West Africa, the prevalent food group is carbohydrates, with the most common source 
of this being rice in countries like Nigeria [6]. Recently however, diets high in protein are becoming increasingly popular among 
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certain groups of people: obese individuals [7] and young adults looking to build muscles or following a workout regimen [8]. High 
protein diets are recommended for obese people because of the ability of protein to increase satiety [9] and its high thermic effect [10], 
which lead to a negative energy balance, calorie deficit and consequently, weight loss [11] For people looking to gain muscle mass, 
protein, in the form of shakes, smoothies, powder and bars, is often recommended [12], because its constituent amino acids are 
involved in repair and maintenance of muscle mass [13]. 

A growing population of young adults combine sugar sweetened beverages with their meals [14]. The average consumption of 
Coca-Cola, one of the leading manufacturers of soda, in 2012 was about 94 portions per person per year [15]. These drinks, commonly 
called soda, are a primary source of added sugar in the diet as they make up more than 40% of the added sugar in many diets [16], even 
though the recommended daily allowance for added sugar is about 25% of total caloric intake [17]. Most sugar sweetened beverages 
contain high fructose corn syrup [18], a type of sweetener that contains about 45–55% fructose, which has been implicated in the rise 
of obesity and metabolic syndrome [19]. Sugar sweetened beverages have been implicated in the development of obesity, metabolic 
syndrome and even increased systolic blood pressure [20]. 

Different combinations of diets are thought to affect the phenotypes of organisms, and studies have been carried out using 
experimental models to discover the effects of different dietary combinations on physiology and pathology. For instance, fatty diets 
may increase the risk of oxidative stress [21], while high carbohydrate diets and sugary foods (of which soda is a major example) are 
main contributors to the development of obesity and diabetes [22]. Both high protein diets [23] and sugar sweetened beverages [24] 
have been linked to insulin resistance, a major feature of diabetes [25], which can develop as a result of inflammation, obesity [26] etc. 

In this study, we assessed the effect(s) of a diet high in protein (48.1% of total energy derived from protein) combined with a sugar 
sweetened beverage (soda) on body measurements, mediators of inflammation and the reactive oxygen species as shown in Table 2. 
Our main aim was to investigate if the impact of a high protein and soda diet on these variables is different from that of a high protein 
diet only, while determining if the resultant effects exhibit sexual dimorphism. 

2. Materials and methods 

2.1. Animals 

A total of 64 Wistar rats (32 males and 32 females) with average initial weights of between 60 and 80 g were used in this study. Rats 
of the same sex were randomly sorted into groups of eight animals each at the beginning of the experimental period. The animals were 
housed in standard, well-lit and well-ventilated cages. Acclimatization period for the animals was the first twenty-one days of the study 
in which animals had access to standard rat chow and pure water ad libitum. Total duration of the experimental feeding period was 
fourteen (14) weeks. 

2.2. Ethics statement 

Animal care was conducted according to the National Institute of Health guidelines for the care and use of laboratory animals. All 
experiments were approved by the Ethics Committee of the Federal University of Technology Akure, and the protocols were designed 
and conducted to minimize suffering and discomfort to all animals involved. 

2.3. Animal feed composition 

The feed composition is shown in Table 1. Diet ingredients were obtained and pelletized by Ladokun Feeds® to facilitate even and 
easy consumption by all animals within each group. Pellet preparation was done with minimal heat treatment at every step of the 
process to prevent denaturing of essential vitamins and amino acids. The diets were designed by an in-house nutritionist in line with 
recommendations from the American Institute of Nutrition as previously described [27]. 

Table 1 
Feed composition (SD-Standard Diet; HPD-High Protein Diet).  

COMPONENT (kg) SD HPD 

Groundnut cake 10.0 10.0 
Soya 10.0 10.0 
Palm Kernel cake 4.0 4.0 
Maize 10.0 5.0 
Wheat offal 10.0 5.0 
Fish Meal 4.0 14.0 
Bone Meal 2.0 2.0 
Methionine 0.1 0.1 
Lysine 0.1 0.1 
Premix 0.1 0.1 
Salt 0.1 0.1 
Butter 0.0 0.0 
Total 50.4 50.4  
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2.4. Proximate analysis 

Proximate analysis for the macronutrient composition of the diets was done as previously described [28]. Moisture content of the 
diet was assessed by drying 5 g of feed in a pre-weighed crucible placed in an oven, heating to 100 ◦C followed by cooling repeatedly 
until a constant weight was observed. Moisture content (%) was calculated using Eq. (1) below: 

Initial weight(g) − Final weight(g)
Weight of sample(g)

× 100 (1) 

To determine the fat content of the diet, we mixed 1 g of the diet sample, methanol and chloroform (2:1) for 20 min using a vortex 
mixer, followed by addition of 1 ml of chloroform and 1.8 ml of distilled water. The mixture was centrifuged to evaporate the organic 
layer and the fat content determined by the weight differences before and after the procedure. 

For protein content determination, we mixed 100 mg of the diet sample with 1 g of a digestion mixture of Copper sulphate, Se-
lenium and Potassium sulphate (1:1:20). This mix was digested along with 20 ml of concentrated sulfuric acid in a Kjeldahl flask. 10 10 
ml of the digested sample and 10 ml of 40% Sodium hydroxide were distilled and the ammonia released was collected into a container 
with 25 ml of 4% Boric acid and methylene blue. Using 0.02 N Hydrochloric acid, we back-titrated the resultant mixture as well as a 
reagent blank, and then calculated protein content using Eq. (2) as follows: 

Acid required to neutralize diet sample (ml) X Acid required to neutralize blank (ml) X Final volume
Weight of sample (g) X aliquot volume (ml)

(2) 

To determine crude fibre content of the diet, we boiled a mixture of 2 g of moisture- and fat-free samples and 200 ml of 0.255 N 
Sulfuric acid for 30 min. After washing the residue with hot water, it was boiled with 200 ml 0.313 N Sodium hydroxide for 30 min. The 
precipitate was washed with hot water again, followed by washing with alcohol and ether wash (We) before drying overnight at 
80–100 ◦C and weighing. The crucible was heated again in at 600 ◦C for 2–3 h, cooled and weighed again (Wa). The difference in the 
weights (We-Wa) represented the weight of crude fibre. This was calculated using Eq. (3) below: 

Crude fibre=
{[100 − Moisture (g) + Fat (g)] X (We − Wa)}

Weight of moisture and fat − free sample
(3) 

For ash content of the diet, 5 g of feed was heated for 3–5 h at 600 ◦C repeatedly until a constant weight was obtained and the ash 
was white or grey white in colour. 

Carbohydrate content was calculated using Eq. (4): 

100–[Moisturecontent(g/100g)+Proteincontent(g/100g)+Fatcontent(g/100g)+Ashcontent(g/100g)+Crudefibrecontent(g/100g)]
(4) 

The caloric composition of constituent macronutrients for the pelletized feeds in each dietary group was determined and is shown 
in Table 2. The quantity of each purified macronutrient (carbohydrates, fats, and proteins) per 100 g, from the mix, was used to 
calculate the calorie contribution of each diet. 

Calorie content = quantity (g) x energy content of 1 g of macronutrient (kcal) 
where: 

1g fat= 9kcal, 1g carbohydrate = 4kcal, and 1g protein = 4kcal. (5)  

Total diet calorie content= kcal (CHO+ protein+ fat) (6)  

Calories (%) from a macronutrient= kcal macronutrient/kcal (CHO+ protein+ fat) (7)  

Energy intake / rat = Daily ingestion (g) x macronutrient calorie content (8) 

A popular high fructose corn syrup-sweetened carbonated soda drink was given ad libitum to animals in the treatment groups and 
continued throughout the study. Animals taking water also had ad libitum access to clean water throughout the entire duration of the 
study. A serving 100 ml size bottle of carbonated soda according to the manufacturer contains 1.79 kJ/ml; 0.11 g/ml carbohydrate, 
0.05 mg/ml of sodium. 

Table 2 
The caloric composition of constituent macronutrients for the pelletized feeds.   

Standard Chow (% of diet/E%) High Protein Diet (% of diet/E%) 

Protein 26.5%/20.1% 55%/48.1% 
Carbohydrates 40%/30.4% 25.5%/22% 
Fat 29%/49.5% 15%/30% 
Crude Fiber 4.5%/0% 4.5%/0% 
Total Calories 5.27 kcal/g 4.57 kcal/g  
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2.5. Animal groupings 

Animals of both sexes were divided into four dietary groups (control, control + soda, high protein diet (HPD), and high protein diet 
+ soda (HPD + soda) as shown in Table 3. 

2.6. Experimental procedure 

The sixty-four weanlings were grouped according to their dietary interventions after three weeks of acclimatization (Table 3). Each 
group had eight animals of the same sex and a total of eight groups (four for each sex) were formed. 150 g of each feed was weighed and 
served to each group each day, and at the end of each 24-h period, the feed remaining was weighed. At the end of the study, the average 
feed, soda and calorie intake of the animals in each dietary group was calculated (Table 4). 

A common carbonated soda was provided ad libitum to the animals in the soda groups while the animals being treated with water 
had free access to clean water throughout the day. Body measurements comprising of body weight, thoracic circumference and 
abdominal circumference were conducted weekly. At the end of the period of study, the animals were euthanized by CO2 inhalation, 
and tissues were collected for experimental analysis. 

2.7. Body measurements 

At the end of each week, the body weight of each animal was taken with the aid of a Camry® electronic weighing scale, which has a 
capacity of 1500 g and an accuracy of 1 g. To measure the abdominal and thoracic circumference, a non-elastic tape measure was used. 
The largest zone of each animal’s abdomen was measured with the non-extensible tape to assess the abdominal circumference while 
thoracic circumference was measured at the site immediately behind the fore-leg. 

2.8. Measurement of blood glucose 

Blood glucose was assessed once every third week with the aid of an Accuchek® glucometer through the capillary blood glucose 
method [29]. 

2.9. Collection of blood and serum 

After thirteen weeks of study, blood samples were collected from each animal via the retro-orbital sinus. The blood samples were 
centrifuged at 8000 g for 10 min, serum was aspirated and then stored at − 20oc for further assays. 

2.10. Sacrifice of animals 

At the end of the 14-week period, animals were euthanized by CO2 inhalation. The liver of each animal was harvested for anti-
oxidant and inflammatory assays. 

2.11. Determination of hormone levels 

Serum concentrations of insulin, TNF-α, leptin and adiponectin were determined via Enzyme Linked Immunosorbent Assays 
(ELISA) [30]. The kits for this procedure were purchased from Bioassay Laboratory technology in Wuhan, China. 

2.12. Assessment of lipid peroxidation 

Malondialdehyde levels were determined via the Thiobarbituric acid (TBA) method [31]. 

2.13. Assessment of antioxidant levels 

Catalase levels were determined using Claiborne’s method which assesses the decomposition of H2O2 at 240 nm [32], while Su-
peroxide dismutase was evaluated by the indirect spectrophotometry method of Pyrogallol [33]. Glutathione levels were determined 
by the method of Beutler et al. [34]. 

Table 3 
Animal groupings according to Dietary interventions (HPD- High Protein Diet).  

S/N Animal Groupings Dietary Intervention 

1 Chow Group Standard Chow and water 
2. Soda Group Standard chow and carbonated soda 
3. HPD group High Protein Diet and water 
4. HPD + Soda group High Protein Diet and Carbonated Soda  
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2.14. Statistical analysis 

For data analysis, GraphPad prism version 9.0 was used. The values were presented as Mean ± SEM and analyzed using one or two- 
way ANOVA. Tukey’s posthoc Multiple comparisons was used to detect significant differences between the means with P < 0.05. 

3. Results 

3.1. Feed consumption, soda and calorie intake 

In male rats, average feed intake was lower in all treatment groups when compared individually with control, with the lowest feed 
consumption observed in HPD-soda rats (Table 4). Calorie intake from feed was also significantly decreased in all groups, even without 
soda consumption. Total calorie intake (a combination of feed and soda calorie contributions) was significantly decreased only in HPD 
diet rats, with increased intake observed in the soda group. Soda intake (Table 5) was high in all soda groups; however HPD-soda 
consumed less soda than the soda group fed with chow. 

There was no significant change in feed consumption of female rats and soda intake was relatively lower compared to male animals. 
However, just like male animals, female rats fed the HPD-soda combination consumed less soda than the soda group and therefore had 
a lower calorie contribution from soda. Total calorie intake was significantly elevated in the soda group when compared with the 
control. 

3.2. Effect(s) of diet on body weight of wistar rats 

A steady increase in body weight was recorded throughout the duration of the experiment. An increase in body weight among male 
rats was recorded starting from the 8th week in the soda group when compared with the control group. Significant body weight 
elevation was also seen in the HPD-soda group starting from the 9th week, while the HPD group had lower body weight when 
compared with the control. The weight of the female animals also increased over the course of the 14 weeks, however a significant 
increase was recorded only in the HPD-soda group in relation to the control group (Fig. 1). 

3.3. Diet-induced changes in abdominal circumference of wistar rats 

There was a significant increase in the abdominal circumference of male animals in the Soda group in comparison with control 
animals. In the HPD group, abdominal circumference spiked in weeks 8,9,10, but the overall effect by the end of the study was lower 
abdominal circumference in rats fed the diet. HPD-soda animals, on the other hand, recorded a significant increase in abdominal 
circumference in the final weeks of the study. In female rats fed the HPD soda diet, abdominal circumference decreased significantly 

Table 4 
Average feed and calorie intake.  

Diet Average Feed Intake (g) Feed Calorie intake kcal.g.d− 1 Total (feed + soda) Calorie intake kcal.g.d− 1 

Chow (M) 18.3 ± 0.6 96.3 ± 6.1 96.3 ± 6.1 
Chow + Soda (M) 14.2 ± 1.2* 74.8 ± 7.5* 111.8 ± 5.6 
HPD (M) 13.7 ± 0.8* 62.5 ± 5.4*** 62.5 ± 5.4* 
HPD + Soda (M) 11.8 ± 1.4*** 53.7 ± 6.2**** 83.7 ± 7.3 
Chow (F) 15.6 ± 1.7 82.2 ± 5.8 82.2 ± 5.8 
Chow + Soda (F) 14.8 ± 2.0 77.9 ± 5.5 109.1 ± 7.7* 
HPD (F) 12.9 ± 1.2 59.0 ± 6.8* 59.0 ± 6.8 
HPD + Soda (F) 11.5 ± 0.9 52.6 ± 5.0** 80.1 ± 8.2 

(M-Male; F-Female; HPD-High Protein Diet). 
Values are Mean ± SEM for male and female animals per dietary group; P < 0.05. n = 8. 

Table 5 
Average soda intake.  

Diet Average Intake of Soda (ml/day) Average Energy Intake (kcal.g.d− 1) 

Chow (M) – – 
Chow + Soda (M) 86.4 ± 2.2 37.0 ± 0.8 
HPD (M) – – 
HPD + Soda (M) 69.8 ± 1.8 30.0 ± 0.6 
Chow (F) – – 
Chow + Soda (F) 72.9 ± 1.4 31.2 ± 0.6 
HPD (F) – – 
HPD + Soda (F) 64.3 ± 1.2 27.5 ± 1.2 

(M-Male; F-Female; HPD-High Protein Diet). 
Values are Mean ± SEM for male and female animals per dietary group. n = 8. 
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from about the 7th week of feeding. (Fig. 2). 

3.4. Diet-induced changes in thoracic circumference of wistar rats 

In both Soda and HPD-Soda fed male animals, the thoracic circumference was significantly increased when compared indepen-
dently with the control rats. The HPD-fed rats however began to show a significant decline in thoracic circumference from the 10th 
week of feeding. In female rats, the HPD-Soda group had decreased thoracic circumference from the 6th week when compared with the 
control group (Fig. 3). 

3.5. Diet-induced changes in blood glucose levels of wistar rats 

Blood glucose in male rats spiked in the early weeks of the test period but subsequently declined to sub-control levels by the end of 
the study. We however observed a sustained decline in blood glucose in both HPD groups (HPD and HPD-Soda), which, although 
increased by the midpoint of the experimental period, ended lower than the control group. In female rats, the soda-fed rats had higher 
blood glucose concentration by the midpoint of the experimental period, eventually ending with higher blood glucose level when 
compared with the control group. Both HPD groups initially had increased blood glucose by the first test week when samples were 
taken. Subsequently, both the HPD and HPD-soda groups had a decline in their glucose concentrations (when individually compared 
with the control) until the end of the study. The HPD-soda group however had a higher decline in blood glucose concentration towards 
the latter parts of the study period, even though both groups had similar blood glucose concentrations at the end of the test period. 
(Fig. 4). 

3.6. Diet-induced changes in serum insulin levels of wistar rats 

Only male soda group animals reflected a significant decrease in serum insulin concentration. In female rats, the HPD-soda group 

Fig. 1. Diet induced changes in weight of Wistar rats (A-male, B-female). Values are Mean ± SEM for male and female animals per dietary group; P 
< 0.05. n = 8 *Significant in comparison with control (Chow). 
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showed a significant increase in serum insulin concentration. (Fig. 5). 

3.7. Diet-induced changes in malondialdehyde (MDA) levels of wistar rats 

All male animals in the dietary groups (soda, HPD, HPD-soda) had a significant decrease in malondialdehyde levels, however no 
significant change was recorded in female animals. (Fig. 6). 

3.8. Diet-induced changes in antioxidant levels of wistar rats 

A significant decrease in catalase concentration was recorded in male animals of the soda group. In female animals, a significant 
decrease in catalase was seen only in the HPD-soda group. 

No significant changes were recorded in reduced Glutathione levels. 
There were no significant changes in Superoxide dismutase activity in male animals, however female animals in the HPD-soda 

group experienced a significant decrease in SOD levels (Table 6). 

3.9. Diet-induced changes in leptin levels of wistar rats 

In both male and female dietary groups, no significant changes in leptin concentration were recorded. (Fig. 7). 

3.10. Diet-induced changes in adiponectin levels of wistar rats 

Although a significant increase in adiponectin level was recorded in the male animals fed the high protein diet, no significant 

Fig. 2. Diet induced changes in Abdominal circumference of Wistar rats (A-male, B-female). Values are Mean ± SEM male and female animals per 
dietary group; P < 0.05. n = 8 *Significant in comparison with control (Chow). 
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changes were seen in female animals. (Fig. 8). 

3.11. Diet-induced changes in TNF-α levels of wistar rats 

Male animals fed the high protein and high protein-soda diets had significant increases in TNF-α concentrations. (Fig. 9). 

3.12. Diet-induced changes in Interleukin-6 levels of wistar rats 

Only male animals fed the high protein diet showed a significant increase in Interleukin-6 levels. (Fig. 10). 

4. Discussion 

To achieve healthy-eating goals and outcomes, an increasing population (especially young people) in both developed and devel-
oping societies are opting for diets high in protein [35], with diets like the Atkins diet, the south beach diet and others, becoming 
increasingly popular [36]. These diets hold the promise of reduced body weight, higher muscle mass and disease (e.g diabetes) 
management [37]. While most protein diets are often accompanied by a restriction in carbohydrates, a large proportion of the age 
group that consume this diet for its health and exercise benefits are also high consumers of fructose-sweetened drinks such as 
carbonated soda [38]. In this study, we examined the effects of a high protein diet accompanied by increased added dietary sugar in the 
form of carbonated soda. 

High protein diets increase satiety which leads to lesser consumption of food, and consequently reduced caloric intake (Table 4) 
and lesser weight [39], as we confirm in this study. Average feed intake declined in all the groups, but the effect was most pronounced 
in the HPD groups, especially the HPD-soda group. Our results suggest that high protein content reduced how much of the diet was 
consumed, although soda also seems to have an additional effect, as observed in the soda group which consumed copious amounts of 

Fig. 3. Diet induced changes in Thoracic Circumference of Wistar Rats (A-male, B-female). Values are Mean ± SEM for male and female animals per 
dietary group; P < 0.05. n = 8. 

T.G. Adedeji et al.                                                                                                                                                                                                     



Heliyon 9 (2023) e15781

9

soda but had significantly lower chow intake. This effect of proteins has been attributed to their ability to increase stimulation and 
production of satiety hormones including glucagon, glucagon-like peptide-1, and peptide YY 3–36. The composition of the 
high-protein diet in our study also incorporates a reduction in fat content compared to the control diet. Studies have shown that diets 
low in fat promote a decrease in weight by altering several factors including: reduction in satiety from foods rich in fat, reduced 
thermic effect of fat that leads to lower energy expenditure and a positive energy balance [40], increased absorption of fat from the 
intestine and higher number of calories in 1 g of fat than in carbohydrates or protein [41]. Our study reports increase in both weight 
and abdominal circumference in male HPD + soda animals. The soda component of the diet, although lowering feed intake, was 
consumed in large quantities and contributed in large part to the increase in total calorie intake observed in male rats. Carbonated 
soda, a source of added sugar in the diet is associated with increased weight gain [42]. Energy-rich foods in liquid form provide low 
satiety [43], which would cause animals to consume more food, increasing calorie intake and consequently, favouring a positive 
energy balance that ultimately leads to weight gain [43]. A constant increase in weight gain overtime results in obesity [44], a 
condition associated with inflammation and insulin resistance [45]. These are implicated in several disorders including diabetes 
mellitus [46] and cardiovascular diseases [47]. Of interest is the observed sexual dimorphism in the observed effects of the HPD-soda 
diet in male and female animals. Female rats consumed less amounts of soda compared to the male animals, and since the average feed 
intake was lower in HPD groups (similar to male rats), this accounted for the lower total calorie intake we report. Although, both males 
and females had increased body weight when fed the HPD-soda diet, thoracic circumference was increased in males but decreased in 
female rats. This is also true for the soda-fed rats, the male animals had an increase in thoracic circumference, but a decrease was 
observed in female animals. Sexual dimorphism has been well reported in literature in response to diet treatment in rats [48–50] This 
study suggests that male animals seem to respond more to diet treatment, in this case a HPD-soda diet. 

Consumption of soda added between 25 and 40 kcal (depending on group’s average daily intake) extra to the average daily calorie 
intake of experimental animals. Feed consumption data suggest that consumption patterns were lower in the soda groups fed on chow, 

Fig. 4. Diet induced changes in blood glucose levels of Wistar rats (A-male, B-female). Values are Mean ± SEM for male and female animals per 
dietary group; P < 0.05. n = 8 *Significant in comparison with control (Chow). 
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however this group had higher rates of soda intake, which would account for the increased body weight in males, and maintenance of 
body weight in spite of lower feed consumption in females. The HPD especially reflects the increased calorie intake from soda and its 
resultant effects. This group of animals had increased body weight despite reduced intake of feed (common to all the HPD fed animals). 
This effect can be adduced to their increased intake of soda, with a resultant increase in calories [51], obvious on individual com-
parisons with the HPD group, whose body weight decreased significantly. 

Protein diets have been shown to have an insulinotropic effect, promoting the secretion of insulin [52]. In this study, there was no 
significant change in insulin concentration in the HPD, although in female rats fed the HPD-soda diet, insulin level was significantly 
elevated. This suggests that this combined diet might have an enhancing effect on insulin secretion within the experimental timeline 
we employed in this study. This can be attributed to the fact that high protein diets [53] and sugars [54] increase the release of GLP-1, 
an incretin hormone that increases insulin secretion [55]. Increased insulin levels promote better clearance of blood glucose [56] 
which was observed in male animals fed the HPD-soda diet. This could be an indication that a diet high in protein could have a 
balancing effect on the spike in glucose gotten from added dietary sugars, especially since there were significant increases in glucose 
concentration in male and female rats in the soda group. It is important to note however that some studies have suggested that a 
prolonged diet of high protein is linked to the development of type 2 diabetes as a result of insulin resistance [57]. 

We assessed the influence of the experimental diets on a factor that can increase the risk of insulin resistance: inflammation [58]. 
According to Wu and Ballantyne, inflammation and insulin resistance have a direct relationship with each other [59]. In order to 
evaluate the effects of our formulated diets on this relationship, we assayed the tissue samples for TNF-α and IL-6 in male wistar rats. 
These inflammatory markers were both increased in animals fed the high protein and high protein + soda diet; diets that can stimulate 
an increased secretion of insulin. While diets with reduced fat content are thought to reduce inflammation, our experimental protein 
diet, which is low in fat caused an increase in both TNF-α and IL-6. This effect can be attributed to the long-term consumption of diets 
rich in protein in relation to other dietary constituents [60] Although, high sugar intake is thought to increase the secretion of in-
flammatory markers [61] and we report that animals in both high protein and high protein + soda diet groups had significantly 
elevated TNF-α levels, an increase in IL-6 was only observed in the HPD-fed rats. This suggests that the HPD has a greater impact than 
the soda in the diet in influencing inflammation. This corroborates reports by Reitman et al. [52]. 

The composition of a diet is important for several reasons one of which is the secretion and function of hormones [62]. In this study, 
we assessed the effects of different diet combinations on a pair of adipokines, leptin and adiponectin. Leptin is a hormone secreted from 
fat cells [63] that regulates energy homeostasis and metabolism [64]. Increased insulin secretion is one of the factors that stimulate the 
secretion of leptin through a posttranscriptional mechanism or through glucose metabolism [65]. Leptin is also a factor in combating 

Fig. 5. Diet induced changes in Serum Insulin levels of Wistar rats (A-male, B-female). Values are Mean ± SEM for male and female animals per 
dietary group; P < 0.05. n = 8 *Significant in comparison with control (Chow). 
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insulin resistance. In our study, leptin levels in both males and females remained unchanged. Adiponectin is another adipokine that has 
roles in insulin sensitivity and metabolism [66] Adiponectin has an indirect relationship with obesity [67] and low levels of adipo-
nectin are implicated in the development of type 2 diabetes [68] however, circulating adiponectin was significantly higher in male 
animals fed the High protein diet-animals that had the lowest average weight. 

Malondialdehyde is a biomarker of oxidative stress, a condition implicated in diseases like cardiovascular disorders, cancers and 
diabetes [69]. Oxidative stress occurs as a result of an imbalance between free radicals, of which malondialdehyde is an example, and 
antioxidants [70]. In this study we investigated the effect our experimental diets on malondialdehyde levels in both male and female 
animals. The low MDA levels in high protein diet groups confirms previous findings that protein has an inverse relationship with lipid 
peroxidation as previous research has shown that diets low in protein increase markers of lipid peroxidation [71,72]. 

To battle the effects of oxidative stress, antioxidants such as catalase, GSH and superoxide dismutase protect against reactive 
oxygen species [73]. Both catalase and superoxide dismutase were reduced in the HPD-soda groups of both male and female animals, 
which shows a consistent effect in both sexes. Catalase was also decreased in the Soda group. This would suggest an effect that might be 
more dependent on the effect of the soda in the diets, an effect which would enhance the damaging effect of reactive oxygen species as 

Fig. 6. Diet induced changes in Malondialdehyde levels of Wistar rats (A-male, B-female). Values are Mean ± SEM for male and female animals per 
dietary group; P < 0.05. n = 8 *Significant in comparison with control (Chow). 

Table 6 
Diet-induced changes in Antioxidant Levels of Wistar rats.  

Dietary groups (Male and Female) Superoxide Dismutase (u/ml) Catalase (umol/ml/mins) Reduced Glutathione (mM) 

Chow (M) 1.646 ± 0.0846 90.45 ± 0.10 2.127 ± 0.147 
Chow + soda (M) 1.710 ± 0.124 73.44 ± 5.57* 2.017 ± 0.294 
HPD (M) 1.514 ± 0.069 86.82 ± 1.074 1.978 ± 0.263 
HPD + Soda (M) 1.416 ± 0.076 83.50 ± 11.06 2.122 ± 0.246 
Chow (F) 1.794 ± 0.082 97.34 ± 0.164 0.994 ± 0.036 
Chow + Soda (F) 1.721 ± 0.063 97.15 ± 0.105 1.138 ± 0.111 
HPD (F) 1.689 ± 0.038 92.35 ± 3.538 1.530 ± 0.086 
HPD + Soda (F) 1.493 ± 0.016* 75.17 ± 11.53**** 1.475 ± 0.156 

(M-Male; F-Female; HPD-High Protein Diet). 
Values are Mean ± SEM for male and female animals per dietary group; P < 0.05. n = 8 *Significant in comparison with control. 
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a result of its fructose content [74]. GSH, the reduced form of glutathione [75] reduces lipid peroxidation in cells [76]. While sig-
nificant changes were not recorded in GSH concentration, the male and female animals in the HPD and HPD-soda groups had a higher 
GSH concentration. 

Studies in rodents immediately after weaning report that quantity of aerobic and anaerobic bacteria in feces increased when the 
protein level in diet is increased two-fold (100–200 g/kg). They describe increased Lactobacilli and decreased Coliforms and Staph-
ylococci abundance in these animals. Reportedly, there are elevated populations of pathogens such as Coliforms, Streptococcus and 
Bacillus [77], while probiotics such as Lactobacilli, Bifidobacteria [78] and Saccharolytic bacteria such as Megasphaera, Mitsuokella 
decrease in abundance. Populations of butyrate-producing bacteria [79,80] are also decreased. This is important because prebiotics 
function as anti-inflammatory agents [81], which proffers a possible mechanism for the observed HPD-related increases in inflam-
matory mediators we report in this study. In humans, high protein diets in healthy participants have been associated with increase in 
Bacteroides spp-predominant microbiota [82], while in mice, studies have revealed changes in the gut microbiome, favoring bacteria 
with an inverse correlation with body fat mass [83], adiposity and hyperglycemia [84,85]. Conversely, consumption of a refined sugar 
diet (e.g. high fructose corn syrup found in soda) is negatively correlated with abundance of Christensenellaceae, a member of the 
bacteria phylum Firmicutes [86]. This bacterial group is negatively correlated with body weight and visceral fat content. This provides 
a possible explanation for the increased body weight HPD + soda groups, which can be explored in future studies. 

5. Conclusion 

The results of this study suggest that high protein/soda dietary combination increases body weight and worsens body measure-
ments in Wistar rats. This combination influences the antioxidant defence systems negatively and might also increase inflammation. 
Thus, high protein diet in combination with carbonated soda impacts physiology differently from a high protein diet alone, and may 
stimulate weight gain, oxidative stress and HPD-related inflammation in Wistar rats. 
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