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Abstract: To address the problems of the high complexity and low security of the existing image
encryption algorithms, this paper proposes a dynamic key chaotic image encryption algorithm
with low complexity and high security associated with plaintext. Firstly, the RGB components
of the color image are read, and the RGB components are normalized to obtain the key that is
closely related to the plaintext, and then the Arnold transform is used to stretch and fold the RGB
components of the color image to change the position of the pixel points in space, so as to destroy
the correlation between the adjacent pixel points of the image. Next, the generated sequences are
independently encrypted with the Arnold-transformed RGB matrix. Finally, the three encrypted
images are combined to obtain the final encrypted image. Since the key acquisition of this encryption
algorithm is related to the plaintext, it is possible to achieve one key per image, so the key acquisition
is dynamic. This encryption algorithm introduces chaotic mapping, so that the key space size is 10180.
The key acquisition is closely related to the plaintext, which makes the ciphertext more random and
resistant to differential attacks, and ensures that the ciphertext is more secure after encryption. The
experiments show that the algorithm can encrypt the image effectively and can resist attack on the
encrypted image.

Keywords: image encryption; plaintext-related; dynamic keys; chaotic systems

1. Introduction

With the development of internet technology, a large amount of image information is
transmitted in the network, and people can gain the required image information quickly
through the internet. However, the internet is an open platform, and images can be easily
filched or attacked during their transmission, so finding how to transmit this information
securely has become an urgent issue, and also makes digital image encryption one of the
research hotspots in the field of encryption. Digital image encryption is an important means
to protect image information, and it is of great significance to protect the transmission secu-
rity of digital images. In recent years, many researchers have mainly studied gray images
and color images. Compared with gray images, color images contain rich information, and
the requirements for the security of encryption algorithms are more urgent. Due to the
non-periodic behavior of chaos, the sensitivity to initial values, and the unpredictability,
the chaos theory has been widely used in the image encryption process. Robert Matthews
first proposed the idea of encryption based on the chaos theory [1]. Since then, chaos has
been widely used in image encryption [2–5]. So far, many research results exist that are
based on chaotic image encryption, such as the Hopfield chaotic neural network [6–8],
which is a typical dynamic neural network with rich dynamic properties; however, the self-
feedback Hopfield network used to generate chaotic phenomena is complex in its structure,
computationally intensive with fixed parameters, DNA encryption [9–12], DNA compu-
tation with huge parallelism, and has huge storage and ultra-low power consumption.
The compressed sensing (CS) [13–16] compression feature allows multimedia encryption
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schemes with a much reduced length of ciphertext, and simple linear measurements make
the encryption process very efficient. Therefore, CS-based image encryption schemes have
also attracted a lot of attention in recent years. For wavelet transform (WT) [17,18], in
digital image encryption schemes, wavelet packet transform (WPT) is often used in the
preprocessing stage to decompose the plaintext image, to obtain different image signal com-
ponents, in order to eliminate some negative factors that are detrimental to the subsequent
processing steps and to improve the overall operational efficiency of the image processing
scheme. S-box systems [19,20] are used to replace the substitution cipher structure, as a
way to ensure the obfuscation performance of the block cipher and the nonlinearity of the
generated image, thus improving the performance of the encrypted image. Hyper-chaotic
systems [21,22], with multiple initial values and parameters, can greatly improve the key
space of encryption algorithms, but the corresponding algorithm complexity increases.
Hash functions [23–25] play an important role in image encryption systems, and, due to the
irreversibility of hash functions, they can resist known plaintext attacks, selective plaintext
attacks, and selective ciphertext attacks. In terms of quantum color image encryption
schemes [26–29], quantum-based encrypted images will play an important role as specific
and critical quantum information types in the future era of quantum computers. As well as
other methods, the literature [30] proposed an encryption, compression and transmission
scheme. The scheme is based on a fractional-order chaotic system combined with discrete
wavelet transform (DWT) and quadrature phase-shift keying (QPSK) modulation. The
cipher performs multiple rounds of digital operations between the vector state of the
fractional-order chaotic system and the original image. The transmission process is imple-
mented between a pair of software-defined radio modules, through a QPSK modulation
scheme. The literature [31] proposes a two-color image encryption algorithm based on
two-dimensional compression perception and wavelet basis, which can simultaneously
implement image encryption and compression, and this scheme can effectively reduce
the amount of data, and improve the efficiency of transmitting data and distributing keys.
However, the complexity is high. The literature [32] proposed a hybrid chaotic fractal
system based on a Julia fractal set, and a 3D Lorentzian chaotic system composed of a
hybrid chaotic fractal system that generates encrypted images by confusing and diffusing
the original image, which has lower computational complexity and provides higher secu-
rity. The literature [33] proposed a hybrid technique combining Mersenne Twister (MT),
deoxyribonucleic acid (DNA), and chaotic dynamical Rossler system (MT-DNA-Chaos),
in which the three encryption algorithms not only improve the overall efficiency of data
randomization, but the algorithm is more flexible in computation and more secure. The
literature [34] proposed a new discrete chaotic encryption algorithm based on DNA coding
and SHA-256, but the structure is more complex and there is still room to improve the
information entropy after encryption. The literature [35] proposed a novel encryption
algorithm based on multiple chaotic mappings, to encrypt the regions of interest (ROI) in
images, and this method greatly improves the speed and performance of encryption. The
literature [36] introduced an improved Hénon mapping with richer chaotic behavior and
better complexity, to improve the security of the color image encryption algorithm, but
it uses two-dimensional chaotic mapping with a small key space. Some classical attacks
on recently proposed encryption techniques (retrieving the key in a few computations by
using a choice plaintext attack and a known plaintext–ciphertext pair) were conducted in
the literature [37], to discover the flaws in some of these design structures and suggest
some improvements.

Combining the above literature and addressing some of the problems that appear in
the literature, this paper proposes a simple color image encryption algorithm that is closely
related to the plaintext image and has high security with low complexity. The algorithm
introduces the plaintext information and chaotic mapping, which not only improves the
key space greatly, but, also, the encrypted result is closely related to the plaintext image,
and the key of each image can be guaranteed to be completely different. Moreover, it
improves the performance of encrypted image randomness and resistance to differential
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attack, which ensures that the encrypted ciphertext is more secure. Because the acquisition
of the key is closely related to the plaintext, the encryption algorithm proposed in this
paper can resist the selected plaintext attack and the known plaintext attack. When the
plaintext changes after the dislocation and diffusion operation of the encryption algorithm,
the obtained key will also change dynamically, and the correct key will not be obtained.
The experiments show that the encryption algorithm proposed in this paper can effectively
resist a variety of attacks on encrypted images.

2. Basic Theory

This section describes the two chaotic systems, Lorenz system [38] and Arnold map-
ping [39], required for the encryption algorithm proposed in this paper.

2.1. Lorenz System

The Lorenz system, discovered by the American scientist Lorenz in 1963 while study-
ing weather forecasting, is the world’s first dynamical system that exhibits singular at-
tractors and possesses an extremely rich and complex nonlinear dynamical behavior.
The dynamic equation of the three-dimensional Lorenz system is shown in Equation (1),
as follows: 

dx
dt = a(y− x)

dy
dt = cx− xz− y

dz
dt = xy− bz

, (1)

where a, b, and c are system parameters, taking any value greater than zero, often taking
a = 10, b = 8/3, and c as variables. When c > 24.74, the system enters a chaotic state. When
c = 28, the system enters the optimal chaotic state [40]. In this state, when the initial value
is x(1) = 0.1, y(1) = 1 and z(1) = 1, the chaotic attractors generated are shown in Figure 1.

The variation in the three variables x, y, and z with time is nonperiodic and unpre-
dictable, and, as can be observed from the figure, the dynamical orbit is a double helix
structure in three dimensions. The helix curves are always confined to a finite space on a
plane and they never cut.

From Figure 1, we can see that the values of x(t), y(t), and z(t) take a good randomness
after a certain number of iterations. Therefore, when performing data interception, it is
better to avoid the more preceding data, to eliminate the initial state effect. In this paper,
the interception starts from the 1000th point to ensure the randomness of the data.

The chaotic sequences generated by this system have the following advantages: first,
the dynamics of the system are more complex than those of the low-dimensional chaotic
system, and the resulting numerical sequences have better randomness; second, there are
six parameters and initial values of the system, all of which can be used as keys, which
greatly enhances the key space; third, there are three chaotic real-valued sequences, which
can meet the demand for the direct chaos displacement of the three parameters proposed in
this chapter. It can be observed that the set of dynamical equations of the three-dimensional
Lorenz system is a ternary system of ordinary differential equations, which requires the
solution of this system of ordinary differential equations, and when it is used in digital
image encryption, its numerical solution is required, which comes down to the problem of
the numerical solution of ordinary differential equations.
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Figure 1. Attractors of Lorentz chaotic system in various dimensions. (a) 3D plot; (b) x–z; (c) x–y; (d) y–z.

2.2. Arnold Mapping

Arnold mapping, also known as Cat mapping, was proposed by the Russian mathe-
matician Vladimir Igorevich Arnold. It is a chaotic mapping method with repeated folding
and stretching transformations in a finite area, and is generally used in multimedia chaotic
encryption [41].

According to Arnold mapping, the pixels of the original image being transformed
are random. However, if the number of iterations is large enough, the original image can
eventually be reproduced. This number of iterations is called the Arnold period. The
period depends on the size of the image, that is, the Arnold period varies with the size of
the image.

Arnold is also considered to be one of the major dislocation algorithms and the
algorithm is generated by the following transformation of Equation (2):[

xn+1
yn+1

]
=

[
1 e
d de + 1

][
xn
yn

]
mod(N). (2)

Among them, xn,yn denotes the position of the pixel in the grayscale map before the
transformation, and xn+1,yn+1 denotes the position of the pixel after the transformation,
and d,e are positive integer parameters, n denotes the number of current transformations,
N is the length or width of the image, and mod(·) is the modulus operation.
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With the forward transformation formula, this algorithm also needs the inverse trans-
formation formula. The inverse transformation formula is shown in Equation (3) below.[

xn+1
yn+1

]
=

[
de + 1 −e
−d 1

][
xn
yn

]
mod(N), (3)

The relationship between two matrices transformed into inverse.
The digital image can be seen as a two-dimensional matrix. After the Arnold trans-

formation, the pixel positions of the image will be rearranged, so that the image will be
disorganized, thus realizing the scrambling and encryption effect of the image. Arnold
transformation has periodicity, that is, after many iterations of Arnold transformation, it
will return to the original state. Arnold mapping is generally used for image scrambling.
It is mapping from the regular position to a random position, that is, the original strong
correlation between the adjacent pixels is replaced by the pixel position, so that the pixels
are evenly distributed on the whole image and the correlation between the adjacent pixels is
weak. The number of iterations required to repeat the original image is different depending
on the size of the image. For a given positive integer N, the period of the transformation
is denoted as Tm, and when N > 2, the period Tm satisfies Tm ≤ N2 / 2. The periods of
Arnold transformations for different orders N Tm are shown in Table 1.

Table 1. Periods of Arnold transformations of different orders N Tm [42].

N 2 3 4 5 6 7 8
Tm 3 4 3 10 12 8 6
N 9 10 11 12 25 50 60
Tm 12 30 5 12 50 150 60
N 100 120 125 128 256 480 512
Tm 150 60 250 96 192 240 384

3. Encryption and Decryption Algorithm Design
3.1. Encryption Scheme

The system proposed in this paper mainly has the following two stages: firstly, the
pixel position of the original image is changed by Arnold mapping; secondly, the matrix
after Arnold transformation is scrambled by using three chaotic sequences generated by
the Lorenz chaotic system; finally, the scrambled RGB components are synthesized into
the final encrypted image. Figure 2 is the flow chart of the image encryption algorithm
designed in this paper. The specific operation process of the encryption algorithm proposed
in this paper is summarized as follows:

Step 1: Extract the RGB component of the color image. The extracted RGB is respec-
tively converted into three 8-bit binary matrices, as follows: I1, I2, and I3.

Step 2: Combine the generated matrix I1, I2, and I3, and normalize it to produce the
following three keys associated with the plaintext: a1, a2, and a3. These three values are
multiplied by the random key q (to enlarge the key space, the value of q can take three
different values) as the plaintext-related keys. The multiple keys obtained here are dynamic
keys. According to the different images read, the key obtained changes accordingly, that is,
the key changes dynamically with the image.

Step 3: set the parameters in the Arnold mapping d, e, N = the width of the image (512
in this paper), the n number of transformations.

Step 4: The generated matrices I1, I2, and I3 are transformed by Arnold mapping in
step 3, and the RGB matrix components are stretched and folded to change the positions of
the pixels in the space, thus destroying the correlation between the adjacent pixel points of
the image and generating new matrices I′1, I′2, and I′3.
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Figure 2. Flow of the designed encryption algorithm.

Step 5: a′1,a′2,a′3,x0, y0, z0 are the plaintext-independent keys of the chaotic system.
x0, y0, z0 are the initial values of the Lorenz system, respectively, and the parameters of the
Lorenz system are generated by Equations (4)–(6). Three chaotic sequences are generated
according to the above conditions, and a sequence of length 512 × 512 is selected as the
sequence needed to encrypt the image x(i), y(i), z(i).

a′1 + q1a1 = a, (4)

a′2 + q2a2 = b, (5)

a′3 + q3a3 = c, (6)

Step 6: Convert the resulting chaotic sequence x(i), y(i), z(i) elements in the resulting
chaotic sequence into a sequence consisting of data between 0 and 255. The formula used
here is shown below:

(a(i)× 1000)mod256, (7)

Step 7: the sequences x(i), y(i), and z(i), generated at the end of step 6, are composed
from top to bottom and left to right into three 512× 512 matrices, which are E1, E2 , and E3,
respectively, as encryption matrices.

Step 8: Convert the E1, E2 and E3 data in the encryption matrix into the same type of
data as the color image matrix read in step 1.

Step 9: The matrices E1, E2, and E3 converted in step 8 are XOR calculated with the
matrices I′1, I′2, and I′3, generated in step 3, and then the encrypted matrix is combined to
generate the final encrypted image.

3.2. Decryption Scheme

The decryption algorithm is the inverse of the encryption algorithm, which first reads
the ciphertext image, then uses the key transmitted through the secure channel to obtain
the chaotic sequence needed for the decryption process, and then XOR the read ciphertext
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data with the chaotic sequence to obtain the final image after the Arnold-transformed key
is inverted by the Arnold transform.

4. Simulation Experiments and Performance Analysis

The performance of the proposed image encryption algorithm is analyzed after en-
crypting and decrypting the Lena color image separately, following the steps given in
Section 3. The operating environment of the algorithm is a Windows 10 operating system
with a 2.5 GHz Intel CPU I5-4200, 4 GB RAM, and Matlab 2020b.

4.1. Encryption and Decryption

In this section, we use Lena color images (512 × 512) to evaluate the performance of
our scheme. During encryption and decryption, our keys are chosen as a′1 = 9.3, a′2 = 27.5,
a′3 = 5/3, x0 = 3.21, y0 = 6.27, and z0 = 1.35 constants q1 = q2 = q3 = 1. In Arnold
transform, d = 3, e = 9, N = the width of the image (512 in this paper), n = 10. Figure 2
shows the encryption and decryption results using our method. From Figure 3, it can be
observed that the Lena picture is successfully encrypted and decrypted, and the encrypted
image is completely different with respect to the original image.

Figure 3. Encrypted and decrypted image of Lena graph. (a) The original image; (b) encryption image; (c) decryption image.

4.2. Histogram Analysis

Histogram analysis is an important security analysis tool in image encryption algo-
rithms, to measure the performance of an encryption scheme in preventing an attacker from
accessing the characteristic pixels of an image. Figure 4 shows the histograms of the Lena
image (512 × 512), and Figure 5 shows the histograms of the cryptographic image. It can
be observed, from the images, that the encryption scheme produces uniform histograms,
which implies that our encryption method has good performance against statistical attacks.
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Figure 4. Histogram of components of the original image. (a) Original image; (b) R-channel his-
togram; (c) G-channel histogram; (d) B-channel histogram.

Figure 5. Histogram of each component of an encrypted image. (a) Encrypted image; (b) R-channel
histogram; (c) G-channel histogram; (d) B-channel histogram.
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4.3. Correlation Analysis

The 8-bit nature of digital images results in high correlation between the adjacent
pixels. Image encryption schemes can solve this problem by effective pixel dislocation. In
this paper, the image is scrambled by Arnold transform and Lorenz chaotic sequence, and
the correlation coefficient is used to measure whether the encryption algorithm proposed
in this paper has good performance. A good encryption algorithm should generate an
encrypted image with low correlation. In this section, we analyze the images before and
after encryption by Equation (8).

r(X, Y) =
cov(X, Y)
σ(X)σ(Y)

, (8)

where X and Y are two adjacent pixel sequences, cov(X, Y) is the covariance of X and
Y, and σ(·) is the standard deviation. When Y is the adjacent horizontal, vertical, and
diagonal pixel of each X, r(X, Y) is the horizontal correlation coefficient, vertical correlation
coefficient, and diagonal correlation coefficient, respectively. Next, r(X, Y) is used to
measure the correlation of two adjacent pixels according to the following criteria: horizontal,
vertical, and diagonal. If r(X, Y) is close to one, there is a high correlation between the
adjacent pixels. On the contrary, if r(X, Y) is close to zero, the correlation between the
adjacent pixels is very small.

Five thousand randomly selected pairs of adjacent points were used to calculate the
correlation coefficients for each direction (horizontal, vertical, and diagonal). As observed
in Figures 6–8, the pixels of the plain image (512 × 512) are similar to each other, which
depicts that they are highly correlated to each other. However, the adjacent pixels of the
encrypted cipher image are not correlated (Figures 9–11). Table 2 shows that the correlation
coefficient of the original image is close to one, which indicates that the image has a
very high correlation for different directions. However, the correlation coefficients for all
directions of the encrypted image are close to zero, which indicates that there is almost
no relationship between the neighboring pixels. This implies that our encryption method
achieves a good encryption effect. In addition, it can be observed from Table 2 that our
method has a lower correlation coefficient than that obtained after encrypting the image in
the reference, so it shows that the algorithm proposed in this paper has better resistance to
statistical attacks.

Figure 6. Scatter plot of RGB channels in the horizontal direction of the original image. (a) R-channel scatter plot;
(b) G-channel scatter plot; (c) B-channel scatter plot.



Entropy 2021, 23, 1159 10 of 19

Figure 7. Scatter plot of RGB channels in the vertical direction of the original image. (a) R-channel scatter plot; (b) G-channel
scatter plot; (c) B-channel scatter plot.

Figure 8. Scatter plot of RGB channels in the diagonal direction of the original image. (a) R-channel scatter plot;
(b) G-channel scatter plot; (c) B-channel scatter plot.

Figure 9. Scatter plot of horizontal RGB component of encrypted image. (a) R-channel scatter plot; (b) G-channel scatter
plot; (c) B-channel scatter plot.
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Figure 10. Scatter plot of vertical RGB component of encrypted image. (a) R-channel scatter plot; (b) G-channel scatter plot;
(c) B-channel scatter plot.

Figure 11. Scatter plot of diagonal RGB component of encrypted image. (a) R-channel scatter plot; (b) G-channel scatter
plot; (c) B-channel scatter plot.

Table 2. Correlation of color image components in each direction.

Horizontal
Correlation

Vertical
Correlation

Diagonal
Correlation

Original image
R 0.97247 0.98656 0.96164
G 0.97322 0.98675 0.96296
B 0.94617 0.97208 0.92864

The encryption
method proposed in

this paper

R –0.0096211 –0.011037 –0.00084143
G 0.00096321 –0.0014868 –0.012429
B 0.0022199 0.0015614 0.0045217

Literature [31]
R 0.0046 0.0046 0.0005
G 0.0052 0.0058 0.0031
B 0.0063 0.0084 0.0102

The large aerial
images in the
literature [33]

RGB
average

correlation
–0.0014 0.0039 –0.0027
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4.4. Information Entropy

In this subsection, color images are used to test the information entropy. The informa-
tion entropy reflects the degree of confusion of the pixel values of the whole image, and
the higher the degree of confusion of the image, the higher the information entropy, and
vice versa for the lower the information entropy. The information entropy is calculated by
the following formula:

H = −
L

∑
i=0

p(i) log2 p(i), (9)

where L is the gray level of the image and p(i) is the probability of the occurrence of the
gray value i. From Table 3, the information entropy of the original Lena image and the
information entropy of the encrypted image can be observed.

Table 3. Information entropy of color images.

Information Entropy

Image R G B

original image 7.2682 7.5901 6.9951

Image encrypted in this article 7.9992 7.9993 7.9994

Literature [32] 7.9974 7.9971 7.9975

Literature [34] 7.9973 7.9972 7.9966

It can be observed from Table 3 that the results obtained by our method are close to
the theoretical value of eight, which means that the cipher images will be more uniformly
distributed and our encryption system is effective for encryption. In addition, according to
the data in Table 3, it can be found that the encryption algorithm proposed in this paper
has higher information entropy compared with other methods in the literature, which also
shows that the encryption algorithm in this paper has a high degree of randomness.

5. Security Analysis

In this section, various known analytical methods are used to verify the security of
our image encryption method.

5.1. Key Space Analysis

For every encryption system, the size of its key space is very important. The larger the
key space is, the more it can prevent brute force attacks and increase the time cost of brute
force attacks.

In the algorithm proposed in this paper, the key space consists of the following two
parts: one is the key space of the Lorenz system and the other is the key space of Arnold
mapping. The keys of the Lorenz system are q1,q2,q3,a1,a2,a3, a′1,a′2,a′3,x0, y0, z0; the keys
of Arnold mapping are d, e, n. The system enters the chaotic state when a′1 + q1a1=10,
a′2 + q2a2=8/3,a′3 + q3a3> 24.74 , introduced by the Lorenz system in Section 2.1. When
a′3 + q3a3=28, the system enters the optimal chaotic state. So, the key of this chaotic system
is chosen as close to the ideal value as possible. Where q1,q2,q3,a1,a2,a3, a′1,a′2,a′3,x0, y0, z0,
the key space of the proposed encryption algorithm in this paper is much larger than 2100 if
calculated with the computer precision of 10(−15), and the key space of the superimposed
Arnold mapping and the key space of the Lorenz chaos mapping make the key space much
larger than the key space of the Lorenz chaos system, so it is known that the system can
effectively prevent brute force attacks.

5.2. Key Sensitivity Analysis

Key sensitivity is an important measure of the security of an encryption algorithm.
The more sensitive the key is to the value of the initial state of the system, the more secure
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the algorithm is. Since the generation of chaotic sequences is closely related to each key, any
change in the value of any key will lead to the generation of different chaotic sequences, so
changing the value of any key can be used as a means to verify the key sensitivity; therefore,
in this paper, the key a′2 is chosen to verify the key sensitivity of this encryption algorithm.
The main two aspects of verification are as follows: first, for the same plaintext image,
the computer-processable accuracy is 16 bits, as concluded in the key space analysis in
Section 5.1, and the smallest computer-processable accuracy is 10(−14) for the key a′2 = 27.5,
so the other δ = 10(−14) (the value of a′2 is converted from 27.5 to 27.5+(10(−14)) ) by an
order of magnitude, to visually observe the difference between correctly decrypted and
incorrectly decrypted encrypted images.

From Figure 12, it can be observed that any small change in the key cannot be de-
crypted correctly, which also shows that the encryption algorithm is key-sensitive.

Figure 12. Key sensitivity test image: (a) Original picture l; (b) encrypted image; (c) decrypt image correctly; (d) decrypted
image after small key change.

Second, compare the MSE (mean absolute error) values of the original image and the
decrypted image to determine the key sensitivity. The mean square error is an IQA (image
quality assessment) method, based on signal fidelity (or error signal sensitivity). The MSE
is used to calculate the difference between a normal image and a cryptographic image. The
degree of similarity between the decrypted image and the original image can be analyzed
objectively, and the MAE is calculated as follows:

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

[ f (i, j)− g(i, j)]2, (10)

where f and g are the normal image and its encrypted image, respectively, and M and N
are the width and height of the image, respectively. MSE expresses the degree of distortion
of an image, according to the statistical characteristics of the signal error, and a larger MSE
indicates that the average squared error value of the two images at all pixel positions is
larger, i.e., the more the distorted image deviates from the reference image, and the lower
its degree of similarity. Conversely, the smaller the MSE value, the smaller the distortion
and the higher the degree of similarity. In this paper, the average MSE of the image is
used to test the key sensitivity of the image, and the change curve of the average mean
square error between the decrypted image and the original image, corresponding to our
encryption algorithm when the key a′2 is varied between δ ∈

[
−5× 10−9, 5× 10−9], is

given in Figure 13. The two arrows on the left side of Figure 13 show the details of the
change in the average MSE of the image between –5 × 10ˆ(–9) and –1 × 10ˆ(–9), and the
two arrows on the right side of Figure 13 show the details of the change in the average MSE
of the image between−1× 10(−14) and 1× 10(−14), and the images show that when the key
is changed very slightly, the average MSE of the decrypted image and the original image
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will change dramatically, and the average MSE of the decrypted image and the original
image after the key change is always above 8700.

Figure 13. Average MSE corresponding to small change in key.

From Figure 13, we can observe that when the key a′2 is correct, the MSE value of
the decrypted image and the original image is zero, which indicates that the decrypted
image is consistent with the original image. When the key a′2 changes the δ = 10(−14),
the MSE changes greatly, which shows that the encryption algorithm proposed in this
paper has very high key sensitivity. In Table 4, by comparing the MSE values of the
original and encrypted images in the encryption algorithm proposed in this paper and the
previously existing encryption algorithms, it is found that the MSE values of the encryption
algorithm proposed in this paper are better. This also indicates that the confidentiality of
the encryption algorithm proposed in this paper is higher.

Table 4. MSE values for different algorithms.

Algorithms MSE Values

Methodology of this article 8932.0

Literature [35] 7775.0

Literature [33] 9875.5

AES 4600

5.3. Differential Attacks

To test the differential attack of our method, a number of color images were measured
using the number of pixel change range (NPCR) and the uniform average change intensity
(UACI), which are defined as follows:

NPCR= 1
M×N

M
∑

i=1

N
∑

j=1
D(i,j)

UACI= 1
M×N

M
∑

i=1

N
∑

j=1

|C1(i,j)−C2(i,j)|
255

, (11)
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where D(i, j) is a Haveside function, and D(i, j) = 0 when C1(i, j) = C2(i, , j) and
D(i, j) = 1 when C1(i, j) 6= C2(i, j), according to the ranges provided in the literature [35].
First, we encrypt the original image to obtain a cryptographic image C1. Then, we choose
a value and modify it in the original plain image, to obtain another cryptographic image
C2. Finally, the NPCR and UACI are calculated by means of Equation (11). The simulation
results are shown in Table 5. From Table 5, we can observe that when the image size is
512 × 512, the NPCR value is greater than 0.996 and the UACI values are in the range of
0.33329–0.335541. Therefore, the proposed encryption system can pass a test according to
the range proposed in the literature [43], which shows that our image encryption system
can effectively resist differential attacks. Moreover, Table 5 shows the NPCR values and
UACI values of different image encryption schemes. It can be observed, by Table 5, that
these test results are within the acceptable interval, and our encryption method is closer to
the theoretical values than other works.

Table 5. Performance against differential attacks.

Lena (512 × 512) NPCR UACI

R G B R G B

Methodology of this article 0.99611 0.99627 0.99616 0.33400 0.33329 0.33483

Tiffany image in the
literature [32] 0.9961 0.9961 0.9961 0.3626 0.3626 0.3626

Literature [44] 0.99602 0.99607 0.99601 0.334689 0.334965 0.334155

Literature [45] 0.99640 0.99633 0.99647 0.33488 0.33493 0.33509

5.4. Anti-Noise Capability Analysis

In this subsection, the color image Lena with a size of 512 × 512 is used as the
original image, and will be used for encryption by our method. Pepper noise with different
noise densities is added to the encrypted image, as shown in Figure 14, and the resulting
decrypted image is shown in Figure 15. From these figures, it can be observed that the
decrypted image can recover the original image information well when the pepper noise
density changes from 0.0001 to 0.01, indicating that the algorithm has some resistance to
noise attacks.

The higher the PSNR, the lower the distortion after compression, and the PSNR is the
most common and widely used objective measurement to evaluate the image quality.

PSNR = 10 · lg( L2

MSE
) = 10 · lg

 L2

1
M×N

M
∑

i=1

N
∑

j=1
( f (i, j)− g(i, j))2

, (12)

Figure 14. Encrypted image of different salt and pepper noise density: (a) salt and pepper noise density 0.0001; (b) salt and
pepper noise density 0.001; (c) salt and pepper noise density 0.01.
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Figure 15. Decryption image for different pretzel noise densities;(a) salt and pepper noise density 0.0001 decryption image;
(b) salt and pepper noise density 0.001 decryption image; (c) salt and pepper noise density 0.01 decryption image.

According to Table 6, when the pepper noise density changes from 0.0001 to 0.01, the
PSNR of the decrypted image and the original image gradually decreases, but its value is
always greater than 27. Generally speaking, it is difficult to observe the distortion when
the PSNR of the distorted image is above 35, which indicates the high quality of the image.
When the PSNR value of the distorted image is between 28 and 35, the quality of the image
will decrease, so the Figure 15, shows that the algorithm has some resistance to noise attack.

Table 6. PSNR corresponding to different pretzel noise decryption images.

Image (PSNR) R G B

Pepper noise density 0.0001 48.0455 47.0210 50.5779

Pepper noise density 0.001 37.9455 38.6270 40.1578

Pepper noise density 0.01 27.6638 28.3126 29.5434

5.5. Analysis of Shear Resistance

To test the performance of the proposed encryption algorithm against clipping attacks,
(a), (b), and (c) in Figure 16 show the encrypted Lena image (512 × 512) after some
of the data are clipped off, and (a), (b), and (c) in Figure 17 show the decrypted images
corresponding to Figure 16. It can be observed, from the decrypted images, that the cropped
encrypted image can also be well recovered by the decryption algorithm, and, therefore, the
proposed encryption algorithm has good performance against cropping aggressiveness.

Figure 16. Data loss encryption image.
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Figure 17. Data loss decryption image.

6. Conclusions

The algorithm used in this paper introduces the Lorenz system and Arnold mapping;
it combines the plaintext key with the image and the key independent of the image as
the parameters and initial values of the Lorenz system, so that the key space is greatly
improved and the ciphertext is more random and resistant to attack, ensuring that the
encrypted ciphertext is more secure. As the key acquisition is related to the plaintext,
the key is acquired dynamically, and it is possible to achieve one key per image, which
makes the proposed algorithm significantly more secure. Experiments have shown that the
algorithm can not only encrypt the image effectively, but can also effectively prevent all
kinds of attacks against the encrypted image, such as differential attack, shearing attack,
noise attack, etc. Since the plaintext key acquisition in this paper is easier to implement,
and the encryption does not decrease due to the reduction in system complexity, the image
encryption system proposed in this paper will have better application prospects in the
future. However, in the proposed image encryption algorithm, the complexity of the
Lorenz system is high and takes up most of the time in encrypting the image information,
so, in the future research process, we hope to find a chaotic system with better chaotic
characteristics and lower complexity, to replace the Lorenz system, so that the proposed
encryption algorithm can be more widely used in subsequent research.
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