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Abstract

The study of biological pathways is key to a large number of systems analyses. However,

many relevant tools consider a limited number of pathway sources, missing out on

many genes and gene-to-gene connections. Simply pooling several pathways sources

would result in redundancy and the lack of systematic pathway interrelations.

To address this, we exercised a combination of hierarchical clustering and nearest neigh-

bor graph representation, with judiciously selected cutoff values, thereby consolidating

3215 human pathways from 12 sources into a set of 1073 SuperPaths. Our unification

algorithm finds a balance between reducing redundancy and optimizing the level of path-

way-related informativeness for individual genes. We show a substantial enhancement

of the SuperPaths’ capacity to infer gene-to-gene relationships when compared with indi-

vidual pathway sources, separately or taken together. Further, we demonstrate that the

chosen 12 sources entail nearly exhaustive gene coverage. The computed SuperPaths

are presented in a new online database, PathCards, showing each SuperPath, its con-

stituent network of pathways, and its contained genes. This provides researchers with a

rich, searchable systems analysis resource.

Database URL: http://pathcards.genecards.org/

Introduction

The systematic analysis of biological pathways has ever-

increasing significance in an age of growing systems

analyses and omics data. Mapping genes onto pathways

may contribute to a better understanding of biological and

biomedical mechanisms. The literature provides a large

collection of pathway definition sources (1). Pathway

knowledge bases represent the careful collection of genes

and their interactions, mapped onto biological processes.

These repositories, which include both academic and com-

mercial resources (Figure 1A), provide lists of pathways

and their cellular components, each with an idiosyncratic

view of the pathway universe.

Indeed, the definition of the boundaries of biological

pathways differs among sources, as exemplified by the

highly studied processes of fatty acid metabolism (2) or the
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TCA cycle (the tricarboxylic acid cycle) (3). Further, the

same pathway name may have widely dissimilar gene con-

tent in different sources (4). At present, there is no defini-

tive analysis of pathway similarities, either between or

within sources. Thus the multitude of pathway resources

can often be confusing when portraying gene-pathway

affiliations.

Previous attempts to unify pathways from several sour-

ces include NCBI’s Biosystems (5), PathwayCommons (6),

PathJam (7), HPD (8), ConsensusPathDB (9), hiPathDB

(10) and Pathway Distiller (11). But none of these efforts

entail a standardized method to unify numerous sources

into a consolidated global repository.

Here, we describe an approach aimed at generating

an integrated view across multiple pathway sources. We

applied a combination of nearest neighbor graph and

hierarchical clustering, utilizing a gene-content metric, to

generate a manageable set of 1073 unified pathways

(SuperPaths). These optimally encompass all of the infor-

mation contained in the individual sources, striving to min-

imize pathway redundancy while maximizing gene-related

pathway informativeness. The resultant SuperPaths are inte-

grated into GeneCards (12), enabling clear portrayal of a

gene’s set of unified pathways. Finally, these SuperPaths,

together with diverse related biological data, are provided in

PathCards—a new pathway-centric online database, ena-

bling quick in-depth analysis of each human SuperPath.

Materials and methods

Pathway mining and comparison

Pathway gene sets were generated based on the GeneCards

platform (12), implementing the gene symbolization pro-

cess allowing for comparison of pathway gene sets,

from 12 different manually curated sources, including:

Reactome (13), KEGG (14), PharmGKB (15),

WikiPathways (16) QIAGEN, HumanCyc (17), Pathway

Interaction Database (18), Tocris Bioscience, GeneGO,

Cell Signaling Technologies (CST), R&D Systems and Sino

Biological (see Table 1). A binary matrix was generated for

all 3125 pathways, where each column represents a gene

indicated by 1 for presence in the pathway and 0 for

absence. Additionally, six sources were analysed for their

cumulative tallying of genes content, including: BioCarta

(19), SMPDB (20), INOH (21), NetPath (22), EHMN (23)

and SignaLink (24).

Pathway similarity assessment

In the analyses performed, we utilized gene content overlap

to estimate pathway similarity. This was done based on

the Jaccard coefficient, that measures similarity between

finite sample sets, and defined as the size of the inter-

section divided by the size of the union of the sets.

To examine the legitimacy of this method, we performed a

Figure 1. The gene-content network of pathway sources. Eighteen sources are shown, 12 of which (colored) are included in SuperPaths generation.

Edge widths are proportional to the pairwise Jaccard similarity coefficient computed for the gene contents of the entire source. The sources, depicted

in GeneCards Version 3.12, are: Reactome (13), KEGG (14), PharmGKB (15), WikiPathways (16), QIAGEN, HumanCyc (17), Pathway Interaction

Database (18), Tocris Bioscience, GeneGO, Cell Signaling Technologies (CST), R&D Systems and Sino Biological (see Table 1). White circles

correspond to sources not included in the SuperPath generation process: BioCarta (19), SMPDB (20), INOH (21), NetPath (22), EHMN (23) and

SignaLink (24).
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comparison to an alternative methodology, embodied in

MetaPathwayHunter pathway comparison, that incorpor-

ates topology in pairwise pathway alignment (25). For

such analysis, we used a set of 151 yeast pathways avail-

able in MetaPathwayHunter, and computed Jaccard simi-

larity coefficients (J) for all 11 325 pathway pairs. We then

selected a sample of 30 pairs containing 28 unique path-

ways out of a total of 87 pairs with J�0.3, ensuring max-

imal representation for larger pathways. Each of the 28

pathways was queried in MetaPathwayHunter against the

entire gamut of 151 with default parameters (a total of

4228 comparisons). We found that 29 out of the 30 sample

pathway pairs obtained a significant MetaPathwayHunter

alignment (P� 0.01). As only 64 of the 4228 comparisons

showed such a P-value, the probability of obtaining this re-

sult at random is 1.6�10�53 (Supplementary Table S1).

Thus, Jaccard scores appear as excellent predictors for the

results of the more elaborate method. A full account of

interpathway pairwise similarity is available upon request.

Clustering algorithm

For the main pathway clustering algorithm, we applied a

method described elsewhere (26), which includes the fol-

lowing steps: i) The generation of cluster cores by joining

all pathway pairs with Jaccard coefficient �T2, the upper

cutoff, equivalent to hierarchical clustering. ii) Performing

cluster extension by generating new best edges, i.e. joining

every pathway to a pathway showing the highest score, as

long as it is �T1, the lower cutoff, akin to nearest neighbor

joining. If two or more target pathways have the same

best score, all are joined. Each resultant connected compo-

nent is defined to be a pathway cluster (SuperPath).

Identical pathway sets were joined without considering

each other as nearest neighbors (i.e. the best scoring non-

identical pathway gene-set is chosen as the nearest neigh-

bor). This clustering algorithm is order independent.

Determination of cutoffs

Uniqueness of a SuperPath Us is defined as log10

P
1

Np

Ng

� �

where Np is the number of pathways that include a certain

gene, averaging for each pathway over all genes in the

SuperPath (divided by the number of genes Ng).

Uniqueness of genes Isis symmetrically defined per

SuperPath as log10

P
1

Ng

Np

� �
where each Ng is the number of

genes included in the relevant pathway, averaging for each

gene over all SuperPaths including a gene. In order to then

find the best tradeoff between the two scores, we summed

up the average Us and Is for each set of T1 and T2 cutoff

parameters. Thus Usþ Is was calculated for each set of par-

ameters to find the two parameters for which the tradeoff

between pathway and gene uniqueness would be optimal.

The best cutoffs by maximizing Usþ Is were T1¼ 0.3 and

T2� 0.5. Further fine tuning of the upper cutoff was per-

formed by resampling of the data, a technique employed

by Levin and Domany (27). We used two dilutions (0.75

and 0.9), i.e. randomly sampling 75% and 90% of the

pathways (resampling 100 times for each dilution) and per-

forming the clustering algorithm on each sample, each

time calculating the percent of the edges present in the ori-

ginal clustering—the percent of cases that two pathways

belonged to the same cluster as in the full dataset. In both

dilutions, the upper cutoff of 0.7 was found to recover a

Table 1. Pathway sources

Source Number

of pathways

Number

of genes

Pathway

size average

Pathwaysize

stdev

% of

singletons

Reference

Reactome 1411 7157 46.2 105.5 2.5 13

KEGG 284 6746 81.9 91.2 28.8 14

QIAGEN 317 3626 123.1 124.2 17.6 http://www.qiagen.com/geneglobe/

HumanCyc 319 831 6.5 7.6 10.0 17

GeneGO 250 3413 48.7 22.1 22.8 http://lsresearch.thomsonreuters.com/maps/

WikiPathways 229 4504 48.1 46.0 41.5 16

Pathway Interaction

Database

186 2239 34.9 21.1 62.9 18

PharmGKB 102 2239 16.4 14.5 29.4 15

RnD systems 36 863 52.1 28.6 22.2 http://www.rndsystems.com/Pathways.aspx

Cell signaling

technologies

21 1820 127.4 63.4 80.1 http://www.cellsignal.com/contents/science/

cst-pathways/science-pathways

Tocris 12 263 55.6 29.2 8.3 http://www.tocris.com/signallingPathways.php

Sino Biological 11 450 64.9 34.9 27.3 http://www.sinobiological.com/
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higher percent of the edges in the original clustering algo-

rithm (Figure 4C).

Name similarity calculation and concordance

with gene similarity

Name similarity was calculated as the Jaccard coefficients

of the shared words in the two pathway names, after omit-

ting trivial words and using stemming to identify words

with the same root. The cutoff between similar and non-

similar names (as well as gene content in regard to

comparison with name similarity) was set to J¼ 0.5.

Name similarity was compared with gene content similar-

ity to find the level of concordance between the two.

Shared publications and PPI data

Publication and Protein-Protein Interactions (PPI) data for

each gene were obtained from the GeneCards database,

including several combined sources. Publications sources of

GeneCards include both manually curated publications (e.g.

UniProtKB/Swiss-Prot) as well as text mining approaches

that report connections between a gene and a list of publica-

tions. A shared publication between two genes is an associ-

ation of both genes to the same publication and does not

indicate a direct interaction between the genes. PPI scores

between pairs of genes are also based on several interaction

sources in GeneCards. Unlike shared publications, PPIs

reflect direct interactions between the two gene products.

Randomization and comparison

A randomized set of pseudo-SuperPaths was generated,

such that the pseudo-SuperPaths are the same size and

quantity as the SuperPaths, albeit with genes assigned at

random (from the list of genes with any pathway annota-

tion). Gene pairs that belong to at least one SuperPath, but

do not belong together in any individual pathway (the test

set) were analysed for the number of shared publications

and PPI scores for each pair. In comparison, gene pairs

that belong to at least one pseudo-SuperPath, but do not

belong together in any individual pathway (the control set)

were analysed for the same attributes. To compare the two

sets which are of different sizes, a random sample of the

larger set (the control set) of the same size as the smaller

set (the test set) was compared with the smaller set. A one-

sided Kolmogorov–Smirnoff test was performed to com-

pare between the test and control sets.

Gene enrichment analysis comparison

Differentially expressed sets of genes were obtained from

the GeneCards database (12) containing 830 different

embryonic tissues based on manual curation (28). For the

comparison of SuperPaths and their pathway constituents,

89 SuperPaths that contained exactly two pathways with

Jaccard similarity coefficient <0.6 were chosen, a value se-

lected to include pairs of relatively dissimilar pathways

in order to enhance comparative power. Two gene set en-

richment analyses were run for all 830 gene sets: one with

SuperPaths and the other with their constituent pathways.

Whenever both SuperPath and the constituent pathways

received a statistical enrichment score, the difference be-

tween negative log P values was computed.

GeneCards and PathCards

SuperPaths have been implemented in GeneCards and

are now included in the standard procedure of GeneCards

generation. PathCards is an online compendium of human

pathways, based on the GeneCards database, presenting

SuperPath-related data in each page.

Results

Pathway sources

We analysed 12 pathway sources included in GeneCards

http://www.genecards.org/ (12) with a total of 3215 biolo-

gical pathways (Table 1 and Figure 1A). The total number

of genes covered by these sources is 11 478, nearly twice as

large as the gene count in the largest source (Figure 1B),

suggesting the power of analysing multiple sources.

Asymptotic behavior is observed in the change of total

gene count with increasing number of sources. When con-

sidering the incorporation of six additional sources

(Supplementary Figure S1), we found that the gene

count increment is �2% of the currently analysed total.

This is an indication that the chosen 12 sources provide ad-

equate coverage of human gene-pathway mappings.

Switching between the six non-included sources and six

included sources of similar size give a very similar graph,

with merely 4% increment in gene count (Supplementary

Figure S1).

Analysing the gene repertoires of the four largest sour-

ces (Figure 2A), we found that among the 10 770 genes

contained within these sources, only 1413 genes were

jointly covered by all four sources, and that more than

4000 were unique to one of the four sources. This high-

lights the notion that source unification is essential to ob-

tain maximal gene coverage. In its simplest embodiment,

source unification would entail presenting a unified list of

the 3215 pathways included in all 12 sources. This how-

ever would ignore the extensive gene-content connectivity

embodied in the network representation of this pathway

collection (Figure 3A). Further, the original pathway
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collection has considerable inconsistencies of relations be-

tween pathway name and pathway gene content, as exem-

plified in Figure 2B and C. The summary in Table 2A

suggests that only �9.4% of all pathway pairs with a simi-

lar name have similar gene content, and likewise, only

9.8% of all pathway pairs with similar gene content are

named similarly (Supplementary Figure S2).

Pathway clustering

We performed global pathway analysis aimed at assigning

maximally informative pathway-related annotation to

every human gene. For this, we converted the pathway

compendium into a set of connected components

(SuperPaths), each being a limited-size cluster of pathways.

We aimed at controlling the size of the resulting

Figure 2. Discrepancies between pathway sources. (A) Incomplete gene overlap among sources. Venn diagram (created using VENNY http://bioin-

fogp.cnb.csic.es/tools/venny/) showing the number of shared genes among the four largest pathway sources. For a total of 10 770 genes, only 1413

(13%) are shared by all four sources and 609–1791 genes are unique to each of these sources. (B) Inconsistency of names versus content in meiosis-

related pathways. A Venn diagram created using BioVenn (29), exemplifies two pathways, ‘Meiosis’ from Reactome and ‘Oocyte meiosis’ from KEGG

with very small gene sharing (7 genes out of 172, J¼ 0.04). (C) Redundancy in meiosis-related pathways. This is exemplified by the large number

of genes (88 of 119, J¼ 0.74) shared by ‘Meiosis’ and ‘Meiotic recombination’ pathways both from Reactome, and by the large number of genes

(52 of 146, J¼0.36) shared by ‘Oocyte meiosis’ and ‘Progesterone-mediated oocyte maturation’ both from KEGG. (D) Pathway size distribution across

sources. The pathway size in gene count, is distributed differently across the different sources.
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SuperPaths, so as to maintain a high measure of annotation

specificity and minimize redundancy.

The following two steps were used in the clustering pro-

cedure, in which pathways were connected to each other to

form SuperPaths. i) Preprocessing of very small pathways:

pathways smaller than 20 genes were connected to larger

pathways (<200 genes) with a content similarity metric of

�0.9 relative to the smaller partner. ii) The main pathway

clustering algorithm: this was performed using the Jaccard

similarity coefficient (J) metric (31) (see Materials and

Methods). We used a combination (cf. 26) of modified

nearest neighbor graph generation with a threshold T1 and

hierarchical clustering with a threshold T2 (Figure 4A and

Materials and Methods).

To determine the optimal values of the thresholds T1

and T2, we defined two quantitative attributes of the clus-

tering process. The first is US, the overall uniqueness of the

set of SuperPaths. US elevation is the result of increasing

pathway clustering, and reflects the gradual disappearance

Figure 3. Network representations of the 3215 analyzed pathways. Nodes represent pathways and edges represent Jaccard similarity coefficients (J)

using different methods. Network visualizations were performed using Gephi (30). Colors correspond to pathway sources. (A) No clustering.

All edges with J� 0.05 are shown. All but 20 pathways form one large connected component with an average degree of 134. (B) SuperPaths. Each is

a connected component obtain by the main clustering algorithm, with thresholds T1 (best edges) of J�0.3 and T2 of J� 0.7. There are 544 singletons

and 529 multi-pathway clusters; the size of the largest cluster is 70. (C) Pure hierarchical clustering, with thresholds T2 of J� 0.3. There are 544 single-

tons and 288 multimembered clusters; the size of the largest cluster is 1046 pathways.

Table 2. Gene content versus name similarity of pathways

and SuperPaths

Non-similar genes Similar genes

A Pathways

Similar name 3991 414

Non-similar name 5.15�106 3782

B SuperPaths

Similar name 668 0

Non-similar name 5.74�105 3
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of redundancy, i.e. of cases in which certain gene sets

are portrayed in multiple SuperPaths. The second param-

eter is IS, the overall informativeness of the set of

SuperPaths. IS is a measure of how revealing a collection of

SuperPaths is for annotating individual genes. It decreases

with the extent of pathway clustering, reaching an undesir-

able minimum of one exceedingly large cluster, whereby

identical SuperPath annotation is obtained for all genes.

We thus sought an optimal degree of clustering whereby

USþ IS is maximized (Figure 4B and Materials and

Methods).

Our procedure pointed to an optimum at T1¼ 0.3 and

T2� 0.5. Further fine tuning by data resampling suggested

an optimal value of T2¼ 0.7 (Figure 4C and Materials

and Methods). This procedure resulted in the definition of

1073 SuperPaths, including 529 SuperPaths ranging in size

from 2 to 70 pathways, and 544 singletons (one pathway

per SuperPath) (Figures 3B and 5A). Each SuperPath

had 3 6 4.3 pathways (Figure 5A) and 82.7 6 140.6 genes

(Supplementary Figure S3A). The resultant set of

SuperPaths indeed enhances the uniqueness US as depicted

in Figure 5B.

The unification process resulted in relatively small

changes in gene count distribution between the original

pathways and the resultant SuperPaths (Supplementary

Figure S3), suggesting a substantial preservation of gene

groupings. Notably, applying pure hierarchical clustering

(T1¼T2¼0.3) resulted in a single very large cluster with

1046 pathways (Figure 3C) and with the same amount of

singletons, strongly deviating from the goal of specific

pathway annotation for genes (Supplementary Figure S3B).

This sub-optimal performance of pure hierarchical cluster-

ing is general; any of the examined cases of T1¼T2

(Figure 4B diagonal), shows an Usþ Is value lower than

that for T1¼ 0.3 T2¼0.7.

Figure 4. Selection of the T1 and T2 thresholds. (A) Distribution of

Jaccard coefficients across all pathway pairs. T1 and T2 respectively

represent the lower and upper cutoffs used in the algorithm employed.

(B) Usþ Is scores across combinations of T1 and T2. The diagonal

(T1¼T2) represents pure hierarchical clustering with different thresh-

olds. The best scores are attained when T1¼ 0.3 and T2�0.5.

(C) Determination of T2. T2 (upper cutoff) was determined by resam-

pling of the pathway data at two dilution levels (27), 0.75 and 0.9.

In both cases J¼ 0.7 was found to be the optimum in which a higher

fraction of the original clustering is recovered.

Figure 5. SuperPaths increase uniqueness while keeping high inform-

ativeness. (A) Number of pathways in hierarchical clustering versus

SuperPath algorithm. The largest cluster with hierarchical clustering

includes 1046 pathways, about 33% of the entire input, causing a great

reduction of informativeness. In the SuperPath clustering the maximum

cluster size is 70, about 2% of all pathways. (B) Increase in uniqueness

(Us) following unification of pathways into SuperPaths.
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Each SuperPath is identified by a textual name derived

from one of its constituent pathways selected as the most

connected pathway (hub) in the SuperPath cluster. For sim-

plicity, the option of de novo naming was not exercised.

Selecting the hub’s name, as opposed to that of the largest

pathway, was chosen since this tends to enhance the

descriptive value for the entire SuperPath. When more

than one pathway has the same maximal number of con-

nections, the larger one is chosen.

SuperPaths make important gene connections

One of the major implications of the process of SuperPath

generation is elucidating new connections among genes.

This happens because genes that were not connected via

any pre-unification pathway become connected through

belonging to the same SuperPath. The unification into

SuperPaths is important in two ways: first, it brings, under

one roof, pathway information from 12 sources, each

individually contributing �9000 to �5 million instances

of gene pairing, for a total of 7.3 million pairs

(Supplementary Figure S4). Second, by unifying into

SuperPaths, the number of gene pairs is further enhanced,

reaching 8.3 million (Supplementary Figure S4).

To test the significance of the million new gene–gene

connections resulting from SuperPath generation, we

checked their correlation with two independent measures

of gene pairing. First, a comparison was made to publica-

tions shared among gene pairs (Figure 6A). We found that

for gene pairs appearing in a SuperPath but not in any of

its constituent pathways, there is a 4- to 75-fold increase

in instances of >20 shared publications when compared

with random pairs of genes with pathway annotation.

Added gene pairs have significantly more shared publica-

tions than those randomly paired. Second, we performed a

similar analysis based on protein–protein interaction infor-

mation. We found that for the SuperPath-implicated

gene pairs there was a 4- to 25-fold increase of PPIs with

score >0.2 (Figure 6B) when compared with controls.

SuperPaths thus provide significant gene partnering infor-

mation not conveyed by any of their 3215 constituent indi-

vidual pathways. This may be seen when performing gene

set enrichment analysis on 830 differential expression sets

and comparing the scores of SuperPaths to that of their

constituent pathways, demonstrating that SuperPaths

tend to receive more significant scores compared with their

constituent pathways average score (Figure 7A).

SuperPaths in databases

SuperPath information is available both in the GeneCards

pathway section (Supplementary Figure S5A) and in

Figure 6. SuperPath-specific gene pairs are informative. (A) Shared

publications. SuperPath-specific gene pairs are genes connected only

by SuperPaths and not by any of the contained pathways. Enrichment

of 10–100 is seen in the high abscissa values. The two distributions are

significantly different (Kolmogorov–Smirnof P< 10�100). No random

gene pairs with 80–90 publications—this point was treated as having

one such publication for computing the ratio. (B) Protein–protein inter-

actions. Experimental interaction score from STRING (32) as depicted in

GeneCards (12), for SuperPath versus random gene pairs as in panel A.

The two distributions are significantly different (Kolmogorov–Smirnof

P< 2.8� 10�61).

Figure 7. SuperPath integration attributes. (A) SuperPaths outperform

their constituent pathways in significance scores across 830 differen-

tially expressed genes sets. (B) Number of included sources in

non-singleton SuperPaths.
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PathCards (Supplementary Figure S5B) http://pathcards.

genecards.org/, a GeneCards companion database present-

ing a web card for each SuperPath. PathCards allows the

user a view of the pathway network connectivity within a

SuparPath, as well as the gene lists of the SuperPath and of

each of its constituent pathways. Links to the original

pathways are available from the pathway database sym-

bols, placed to the left of pathway names. PathCards has

extensive search capacity including finding any SuperPath

that contains a search term within its included pathway

names, gene symbols and gene descriptions. Multiple

search terms are afforded, allowing fine-tuned results.

The search results can be expanded to show exactly where

in the SuperPath-related text the terms were found. The list

of genes in a PathCard utilizes graded coloring to designate

the fraction of included pathways containing this gene,

providing an assessment of the importance of a gene in a

SuperPath. Other features, including gene list sorting

and a search tutorial, are under construction. PathCards

is updated regularly, together with GeneCards updates.

A new version is released 2–3 times a year.

Discussion

Pathway source heterogeneity

This study highlights substantial mutual discrepancies

among different pathway sources, e.g. with regard to path-

way sizes, names and gene contents. The world of human

biological pathways consists of many idiosyncratic defin-

itions provided by mostly independent sources that curate

publication data and interpret it into sets of genes and their

connections. The idiosyncratic view of the different path-

way sources is exemplified by the variation in pathway size

distribution among sources (Table 1, Figure 2D), where

some sources have overrepresentation of large pathways

(QIAGEN), while others have mainly small pathways

(HumanCyc). In some cases, the large standard deviation

in pathway size (Table 1) is easily explained, as exempli-

fied in the case of Reactome, which provides hierarchies of

pathways and therefore contains a spectrum of pathway

sizes. However, large standard deviations of pathway size

are also observed in KEGG and QIAGEN—sources that

are not hierarchical by definition. On the other hand, some

sources (e.g. HumanCyc, PID and PharmGKB) have very

little variation in their pathway sizes, revealing their focus

on pathways of particular size. The idiosyncratic view pro-

vided by different sources is also evident when examining

the genes covered by each source (Figure 2A), where some

genes in the gene space are covered by only one source.

This causes the unfavorable outcome that when unifying

pathways, irrespective of the algorithm chosen, there is a

relatively high proportion of single source pathway clus-

ters. In order to account for the drawback of the Jaccard

index to cope with large size differences between path-

ways, we added a preprocessing step to unify pathways

that are almost completely included within other pathways

(�0.9 gene content similarity of the smaller pathway),

thereby diminishing the barrier of variable pathway size

between sources. Previously published isolated instances of

intersource discrepancies include the lack of pathway

source consensus for the TCA cycle (3) and fatty acid me-

tabolism (2). The authors of both papers stress that each of

their pathway sources has only a partial view of the path-

way. For the TCA cycle example (3) there is an attempt to

provide an optimal TCA cycle pathway by identifying

genes that appear in multiple sources, but such manual cur-

ation is not feasible for a collection of >3000 biological

pathways. In our procedure, 11 relevant pathways

from four sources are unified into a SuperPath entitled

‘Citric acid cycle (TCA cycle)’ (Supplementary Figure S5).

PathCards enables one to then view which genes are more

highly represented within the constituent pathways. Our

algorithm thus mimics human intervention, and greatly

simplifies the task of finding concurrence within and

among pathway sources.

Pathway unification

Combining several pathway resources has been attempted

before, using different approaches. The first method is to

simply aggregate all of the pathways in several knowledge

bases into one database, without further processing. This

approach is taken, for example, by NCBI’s Biosystems

with 2496 human pathways from five sources (5) and by

PathwayCommons with 1668 pathways from four sources

(6). This was also the approach taken by GeneCards prior

to the SuperPaths effort described here, where pathways

from six sources were shown separately in every

GeneCard. While this approach provides centralized

portals with easy access to several pathway sets, it does not

reveal interpathway relationships and may result in consid-

erable redundancy. The second unification approach,

taken by PathJam (7), and HPD (8) provide proteins versus

pathways tables as search output. This scheme allows use-

ful comparisons as related to specific search terms, but

is not leveraged into global analyses of interpathway

relations. A third line of action is exemplified by

ConsensusPathDB (9), which integrates information from

38 sources, including 26 protein–protein interaction com-

pendia as well as 12 knowledge bases with 4873 pathways.

This allows users to observe which interactions are sup-

ported by each of the information sources. In turn,

hiPathDB (10) integrates protein interactions from four
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pathway sources (1661 pathways) and creates ad hoc uni-

fied superpathways for a query gene, without globally

generating consolidated pathway sets. Finally, a fourth

methodology is employed by Pathway Distiller (11), which

mines 2462 pathways from six pathway databases, and

subsequently unifies them into clusters of several

predecided sizes between 5 and 500, using hierarchical

clustering. The third method of interaction mapping taken

by ConsensusPathDB and HiPathDB differs conceptually

from the fourth method of clustering, where the interaction

mapping method provides information on the specific com-

monalities and discrepancies in protein interactions among

sources with regard to specific keywords or genes, while

the clustering method suggests which of the pathways are

similar enough to be considered for the same cluster.

Therefore, the third and fourth methods are complemen-

tary approaches aimed at utilization of pathway informa-

tion in different observation levels, where the fourth

(clustering) method is independent of user input or search

in resultant consolidation. In the study described herein,

we pursued a clustering method similar to the fourth meth-

odology taken by Pathway Distiller, namely consolidation

of pathways into clusters. However, in contrast to

Pathway Distiller, our aim was to create a single coherent

unification of biological pathways, which is essential for

having a universal set of descriptors when looking at

gene–gene relations. The resulting SuperPaths simplify the

pathway-related descriptive space of a gene and reduce it

3-fold. Furthermore, the cutoffs in our algorithm are

chosen to optimally adjust the criteria of uniqueness and

informativeness, thereby reducing the subjective effect

of choosing cutoffs arbitrarily or by predetermining the

number of clusters.

SuperPath generation

A crucial element in our SuperPaths generation method is

the definition of interpathway relationships. We have

opted for the use of gene content, as described by others

(11, 33). One could also consider the use of pathway name

similarity (11). However, among the 3215 pathways

analysed here, only 79 names were shared by more than

one pathway, implying that the efficacy of such an ap-

proach would have been rather limited. Further, Table 2

and Supplementary Figure S2 indicate a relatively weak

concordance between pathway names and their gene con-

tent. Specifically among 79 name-identical pathway groups

52 remained incompletely unified, again suggesting a lim-

ited usefulness for unifying based on pathway names.

Many resources, including ConsensusPathDB (9) facilitate

the option of finding pathways based on keywords in

the name. Name sharing is thus a relatively trivial task to

overcome when trying to find similar pathways. The more

challenging goal is finding pathways that are similar in the

biological process that they convey.

In this article we treated pathways as sets of genes,

using gene content as a comparative measure and omitting

topology and small molecule information. This approach

was previously advocated as a means of reducing the com-

plexity of pathway comparisons greatly (34). Further, most

sources used in this study provide only the gene set infor-

mation, hence topology information was unavailable.

Finally, the high concordance between significance of path-

way alignment and Jaccard coefficients �0.3 (P< 10�52)

indicates that the Jaccard coefficient is a good approxi-

mation of the more elaborate pathway alignment proced-

ure (25).

SuperPath utility

A central aim of pathway source unification is enhancing

the inference of gene-to-gene relations needed for pathway

enrichment scrutiny (32, 35–40). To this end, we de-

veloped an algorithm for pathway clustering so as to

optimize this inference and at the same time minimize

redundancy.

Extending pathways into SuperPaths affords two major

advantages. The first is augmenting the gene grouping

used for such inference. Indeed, SuperPaths have slightly

larger sizes than the original pathways, as evident by

the SuperPath size distribution (Figure 2D). Nevertheless,

comparing SuperPaths to pseudo-SuperPaths of the same

size and quantity clearly show that the increase in size does

not account for the addition of true positive gene connec-

tions, as evident by the higher PPIs and larger counts of

shared publications for SuperPath gene pairs (Figure 6).

Subsequently, it is not surprising that SuperPaths outper-

form their average pathway constituent’s enrichment ana-

lysis scores (Figure 7A). SuperPaths are currently used

in two GeneCards-related novel tools, VarElect http://

varelect.genecards.org/ and GeneAnalytics http://geneana

lytics.genecards.org/. A second advantage of SuperPaths

is in the reduction of redundancy, since they provide a

smaller, unified pathway set, and thus diminish the neces-

sary statistical correction for multiple testing. We note that

ConsensusPathDB (9) also provides intersource integrated

view of interactions. However, gene set analysis in

ConsensusPathDB is only allowed for pathways as defined

by the original sources. Finally, a third advantage of

SuperPaths is their ability to rank genes within a biological

mechanism via the multiplicity of constituent pathways

within which a gene appears. This can be used not only

to gain better functional insight but also to help eliminate

suspected false-positive genes appearing in a minority of
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the pathway versions. A capacity to view such gene rank-

ing is available within the PathCards database.

Limitations of SuperPaths

The SuperPaths generation procedure appears incomplete,

as about a half of all SuperPaths are ‘singleton SuperPath’

(labelled accordingly in PathCards), having only one con-

stituent pathway. This is an outcome of the specific cutoff

parameters used. However, this provides a useful indica-

tion to the user that a singleton pathway is distinct,

differing greatly in its constituent genes from any other

pathway.

This SuperPath generation process is intended to reduce

redundancies and inconsistencies found when analysing

the unified pathways. Although SuperPaths increase

uniqueness as compared with the original pathway set

(Figure 5B), some redundancy and inconsistency still re-

main within SuperPaths. There are cases of pathways with

similar names, which do not get unified into the same

SuperPath. This happens because they have not met the

unification criteria employed. We also note similarity in

name does not always indicate similarity in gene content

(Figure 2B and C, Supplementary Figure S2B), and such

events are faithfully conveyed to the user.

A clarifying example is that of the 40 pathways whose

names include the string ‘apoptosis’. The final post-

unification list has 10 SuperPaths whose name includes

‘apoptosis’. This obviously provides the user with a greatly

simplified view of the apoptosis world. Yet, at the same

time the outcome is replete with instances of two name-

similar pathways being included in different SuperPaths.

Employing a more stringent algorithm would result in

over-clustering, which would in turn reduce informative-

ness (see Figure 3C).

In parallel, there are pathways with overlapping func-

tions that are not consolidated into one SuperPath. For ex-

ample, the pathway ‘integrated breast cancer pathway’

does not unify with the pathways ‘DNA repair’ and ‘DNA

damage response pathway’, despite the strong functional

relation of breast cancer with DNA damage and repair

(41). This is because the relevant gene content similarity in

the original pathway sources is small, respectively, J¼ 0.03

and 0.13. The need to view information on pathways with

low pairwise similarity is addressed in Supplementary

Figure S6, and is available as a text file upon request.

Finally, when looking at the number of contributing

sources per SuperPath (Figure 7B), it is evident that the

majority of SuperPaths are comprised by either one or two

sources, and no SuperPaths includes more than five.

Although this integration limitation is evident, it mainly

arises from the inherent biases in gene coverage for the dif-

ferent information sources (Figure 2A).

PathCards

Biological pathway information has traditionally been a

central facet of GeneCards, the database of human genes

(12, 42, 43). In previous versions, pathways were pre-

sented separately for each of the pathway sources, and it

was difficult for users to relate the separate lists to each

other. As a result of the consolidation into SuperPaths

described herein, this problem has been effectively ad-

dressed. Thus, in every GeneCard, a table portrays all of

a gene’s SuperPaths, each with its constituent pathways,

with links to the original sources (Supplementary Figure

S5A).

GeneCards is gene-centric and inherently does not pre-

sent (Super) pathway-centric annotations. We therefore

developed PathCards http://pathcards.genecards.org/, a

database that encompasses and displays such information

in greater detail. PathCards has a page for every

SuperPath, showing the connectivity of its included path-

ways, as well as gene lists for the SuperPath and its path-

ways. For every SuperPath, we also show a STRING gene

interaction network (32) for the entire gamut of constitu-

ent genes, providing perspective on topological relation-

ships within the SuperPath.

Supplementary Data

Supplementary data are available at Database Online.
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