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Limited production capacity and delays inherent in vaccine development aremajor hurdles to the widespread use
of vaccines to mitigate the effects of a new influenza pandemic. Antigen-sparing vaccines have themost potential to
increase population coverage but may be less efficacious. The authors explored this trade-off by applying simple
models of influenza transmission and dose response to recent clinical trial data. In this paper, these data are used to
illustrate an approach to comparing vaccines on the basis of antigen supply and inferred efficacy. The effects of
delays in matched vaccine availability and seroconversion on epidemic size during pandemic phase 6 were also
studied. The authors infer from trial data that population benefits stem from the use of low-antigen vaccines. Delayed
availability of a matched vaccine could be partially alleviated by using a 1-dose vaccination program with increased
coverage and reduced time to full protection. Although less immunogenic, an overall attack rate of up to 6% lower
than a 2-dose program could be achieved. However, if prevalence at vaccination is above 1%, effectiveness ismuch
reduced, emphasizing the need for other control measures.
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Severe disease due to influenza is typically prevented by
vaccinating vulnerable populations. A new pandemic of in-
fluenza poses 2 major problems regarding this strategy. The
first is production capacity: the entire population of the world
may be vulnerable to severe disease from a novel strain of
influenza (1). Protecting this vulnerable population would
require a massive increase in vaccine production, which cur-
rently is achievable only by dramatic reductions in antigen
requirements per dose (2).

Secondly, influenza vaccines rely at present on isolation
of the circulating strain prior to production. Doing so will
result in a considerable delay (usually quoted as 3–6
months) from initial isolation to distribution of sizable quan-
tities of vaccine (3). Modeling studies based on patterns of
human air travel suggest that, in many countries, the first
wave of the pandemic would end within this time period
(4–6). Because pandemic plans in countries such as Australia
and the United States still emphasize vaccine use for eventual
control (7, 8), it is important to investigate the feasibility of
these plans.

A potential avenue is the use of candidate (prepandemic)
H5N1 vaccines prior to widespread local transmission (e.g.,
during overseas pandemic stage 5/6—refer to Table 1 for

pandemic stages as defined by the World Health Organiza-
tion). Although early versions of such vaccines were poorly
immunogenic in adults (9, 10), more recent trials using
novel adjuvants (11) or whole virion vaccines (12) have
demonstrated high immunogenicity at low antigen volumes.
Evidence of cross protection against drifted strains (11, 13)
suggests that candidate vaccines will provide at least partial
protection, even if unmatched to the circulating pandemic
strain.

Given that supply is likely to be constrained, what amount
of antigen per dose provides optimal population protection?
The standard answer is the lowest that meets accepted cor-
relates of protection, but this view implicitly assumes un-
restricted supply. When an entire population requires
protection, it may be preferable to use a dose that provides
suboptimal individual protection in return for greater overall
benefits deriving from herd immunity. This question is cur-
rently of great interest and has been examined elsewhere in
the context of a stockpiled prepandemic vaccine (14). We
approached this question in the context of a matched vac-
cine and analyzed the effects of delays and different dose
schedules on the optimal vaccine dose. The methods devel-
oped here are simple to apply and could be used during

Correspondence to Dr. James Wood, School of Public Health and Community Medicine, University of New South Wales, NSW 2052, Australia

(e-mail: james.wood@unsw.edu.au).

1517 Am J Epidemiol 2009;169:1517–1524



pandemic stage 4/5 to inform planning, when evidence of
human-to-human transmission is well established but prior
to a pandemic being declared.

Our study had 2 aims. The first was to assess the optimal
dose for a pandemic vaccine that protects against infection
and reduces infectivity and to apply this finding to data from
published trials; the second was to compare 1- and 2-dose
strategies with a matched vaccine.

MATERIALS AND METHODS

Model of vaccine response

Rates of influenza infection by prechallenge hemaggluti-
nation inhibition titers were used to calculate relative
susceptibility of vaccinees. The data were drawn from a
late-1960s trial by Hobson et al. (15) that was influential
in establishing the 1/40 titer as a correlate for protection. In
this paper, these rates are used to weight the density of
hemagglutination inhibition titers (refer to the online sup-
plementary material, which is posted on the Journal’s web-
site (http://aje.oupjournals.org/)) from recent vaccine trials
(9–12) to estimate a mean relative susceptibility (es) of
vaccinees against antigenically similar viruses. A linear
model of dose response provides a good fit to the data and
a simple characterization of the optimal dose, provided that
interpretation is limited to the tested range of doses.

We also allowed for vaccinees who acquire a breakthrough
infection to be less infectious than infected nonvaccinees
(relative infectivity ei), assuming less severe infection in
vaccinees. Since data to estimate ei were not available, we
explored 2 scenarios: 1) relative infectivity was equal to rel-
ative susceptibility (ei ¼ es), and 2) therewas no reduction in
infectivity for vaccinees (ei ¼ 1). Refer to the supplementary
material for a formal definition of ei and es.

Impact of vaccination

The impact of a limited vaccine stockpile was assessed by
using a deterministic susceptible-infected-recovered–type
model of influenza transmission in a hypothetical large pop-
ulation center. The vaccine stockpile was assumed to con-
tain a fixed amount of antigen, which could be subdivided

into different amounts of antigen per vaccine. The level of
antigen per vaccine determined overall population coverage
(maximum of 100%).

The optimal dose was defined as that which provided the
greatest overall reduction in the eventual attack rate. To
determine the theoretical maximum benefit of vaccination,
we assumed that the vaccinated population had serocon-
verted prior to significant case numbers occurring. In this
situation, attack rates among vaccinated and unvaccinated
individuals can be obtained by numerically solving a 2-type
attack rate formula (refer to the supplementary material).

In this model, the final attack rate is closely related to (but
not completely determined by) the reproduction number, R.
In particular, if R is brought below 1 by vaccination, the
attack rate in both vaccinated and unvaccinated groups will
be negligible. In our model,

R ¼ R0ð1� vþ veiesÞ; ð1Þ

where v is the dose-dependent vaccine coverage and R0 is
the basic reproduction number.

Delays to seroconversion

We also examined the situation in which vaccine distri-
bution and seroconversion occur after local transmission has
begun. The potential for rapid international spread of a new
pandemic (4–6) makes this situation almost inevitable given
the delays to creation of a matched vaccine. In this context,
it is of interest to compare not only different doses but also
1- and 2-dose schedules, given the reduced time to serocon-
version in a 1-dose schedule.

We used a deterministic susceptible-exposed-infectious-
removed model of influenza transmission to determine the
effect of delay to vaccination and seroconversion on the
attack rate. The changing impact of vaccination on the at-
tack rate was explored in scenarios in which the cumulative
attack rate at the time of vaccination was 0.01% and 1%.

Comparison of 1- and 2-dose schedules

We based the comparison of 1- and 2-dose schedules on
cross-protective immunogenicity data for the GlaxoSmithKline
Biologicals (Rixensart, Belgium) adjuvanted 3.75-lg vac-
cine (13). Values for R0 were in the range of 1.5–2.5, and
latent and infectious periods were fixed at 1 and 2 days,
respectively (sensitivity is explored in supplementary mate-
rial Web Figures 1 and 2).

We focused on comparing 1- and 2-dose strategies with
coverage of 100% and 50%, respectively. A range of 60–180
days was assumed for the delay from the first local case until
vaccination with the first (or only) dose, with seroconversion
occurring 21 days after the first and second doses were given
(note that in the 2-dose program, vaccinees achieve 1- and
2-dose protection in sequence). This assumption may under-
estimate protection since it increases continuously between
vaccination and these time points. We also assumed that
control measures (e.g., antivirals and social distancing) for
reducing transmission were ongoing and reduced the effec-
tive R0 by 30%. These measures were assumed to cease after

Table 1. Pandemic Stages Defined by the World Health

Organization

Stage Definition Description

1 Interpandemic stage Low risk of human cases

2 New virus in animals,
no human cases

Higher risk of human cases

3 Pandemic alert No or very limited
human-to-human
transmission

4

New virus causes
human cases

Increased human-to-human
transmission

5 Significant human-to-human
transmission

6 Pandemic Sustained human-to-human
transmission
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seroconversion from the final dose of vaccine. Table 2 lists
the parameter values used in the model.

Our analysis showed that prevalence of infection at the
time of vaccination, given by a linearized model in which
depletion of susceptibles is ignored, is useful as a single
predictor of the impact of vaccination. We denote this vari-
able by Il (t0) ~ exp(r t0), where r is the epidemic growth rate
and t0 is the delay until vaccination (refer to the supplemen-
tary material for a definition of r in terms of R0 and infec-
tious and latent periods).

RESULTS

Generic properties of optimal doses

Figure 1 summarizes assumptions, inputs, and outputs
from the model of vaccination prior to significant case
numbers occurring. In panel A, we sketch the linear
model of dose response, whereas panel B shows that this
model fits well to the trial data. The fitted data come from
Sanofi Pasteur (Lyon, France) (9) and Sinovac Biotech
Co., Ltd. (Bejing, China) (12) adjuvanted trials, with
estimated efficacy es plotted against antigen for 2 doses
of vaccine.

Panels C–F show how 2 key parameters, the effective R
(panels C and D) and the attack rate (panels E and F), de-
pend on vaccine dose and efficacy (R0 ¼ 2 in each graph)
when the stockpile is fixed at 20% coverage with the max-
imum dose. Contour lines display constant values of the
effective R (panels C and D) and the attack rate (panels E
and F). As the dose is reduced, coverage increases, and vice
versa, up to a maximum of 100% coverage. Overlayed on
the graphs are the estimates of 2-dose efficacy for the
Sanofi (9) (triangles) and Sinovac (12) (þ) vaccines.

The shape of the contour lines differs between the graphs,
implying that the optimal dose for reducing the attack rate

may not be optimal for reducing the effective R and that the
optimal dose can be strongly influenced by assumptions
about the infectivity of breakthrough cases. Higher efficacy/
lower coverage vaccine programs are more effective at re-
ducing the attack rate than at reducing the effective R. Con-
versely, if the infectivity of breakthrough cases is reduced by
as much as their susceptibility, low-dose vaccines become
much more effective at reducing both R and the attack rate.

However, based on the estimates of efficacy from
the Sanofi (9) and Sinovac (12) trials, the optimal dose
was consistently the lowest (or the lowest at which 100%
coverage could be achieved if the stockpile was suffi-
ciently large) regardless of whether the outcome variable
was attack rates or the effective R or whether the infec-
tivity of breakthrough cases was reduced (results not
shown).

Effect of delayed vaccination

These results are useful for a prepandemic vaccine that
could be administered prior to a local epidemic. A matched
vaccine, however, will be delayed by at least 3 months from
isolation of the circulating virus. Models of worldwide
spread indicate that many countries will experience their
first pandemic case within a month of the first identified
cluster in the source country. In the next section of this
paper, we focus on use of a matched vaccine and the effect
of delays to vaccination and seroconversion.

Figure 2 shows attack rates for dose-response pairs with
the same assumptions as in Figure 1 (R0 ¼ 2, 20% coverage
at the maximum tested dose) but with vaccination occurring
when the cumulative attack rate has reached 0.01% (panels
A and B) and 1% (panels C and D) of the population. In-
fectivity of breakthrough cases is reduced (ei ¼ es) in panels
B and D, which show that even if the attack rate is small
when the vaccine is delivered, the effectiveness of the vac-
cination campaign is substantially decreased.

Table 2. Parameters, Typical Values, and Sources Used in the Dynamic Model

Parameter Value Source (Reference Numbers)/Justification

Reproduction number (R0) 1.5–2.5 used in dynamic
simulations

Estimates based on 1918 and 1957 pandemic
data (22–24)

Mean latent period (L) 1 day Similar to Ferguson et al. (25) and recent
analysis of challenge trials (26); varied in
sensitivity analysis

Mean infectious period (D) 2 days Assumption—lies between (25) and (18); varied in
sensitivity analysis

Initial prevalence of infection 1 per million Assumption

Seroconversion delay (ss) 21 days Based on trial data (11)

Delay to vaccine (s0) 2–6 months Similar to range quoted by Daems et al. (3), taking
into account a delay of about 1 month for the
pandemic to arrive (23)

Mean relative susceptibility
for vaccinees (es)

0.53 (1 dose), 0.13
(2 doses)

Estimates based on 3.75-lg vaccine in Leroux-Roels
et al. (11)

Mean relative infectivity for
vaccinees (ei)

1 or equal to es Assumption (also consider ei ¼ (1 þ es)/2 in
sensitivity analysis)

Mean reduction in R0 due to
other control measures

30% Conservative assumption—other modeling papers
suggest that larger reductions are possible (18, 27)
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This delay, however, has no impact on the choice of op-
timal dose based on the Sanofi (9) and Sinovac (12) data.
The optimal dose remained the lowest dose, or the lowest
dose at which 100% coverage was achieved if the stockpile
were sufficiently large (results not shown).

Up to this point, the comparisons have been between
vaccines delivered in a 2-dose program with delays in sero-
conversion between each dose. However, it is also interest-
ing to compare the effectiveness of 1- and 2-dose programs.
We investigate this issue in terms of achieving twice the
coverage with a less efficacious 1-dose vaccine but with
a shorter delay to full seroconversion.

Comparison of 1- and 2-dose strategies for matched
vaccines

The effect of 1-dose (100% coverage) and 2-dose (50%
coverage) vaccination campaigns with a matched vaccine is
shown in Figure 3. Note that the effective R in this example
is 70% of R0 since it was assumed that other control mea-
sures were in place until vaccinees seroconverted.

The first key feature is that the attack rate for the 1-dose
campaign is lower than for the 2-dose campaign, and the
difference can be as much as 6% of the population (Figure 3,
panel B). This difference occurs despite lower immunoge-
nicity (a reduction in the hazard of infection of 65% for 1
dose and 93% for 2 doses) because twice the coverage is
achieved 21 days earlier. Note that the shaded contours show
differences in attack rates according to the gray-scale bar
(right of panel).

The impact of vaccination is predicted well by the ex-
pected prevalence of infection at the time of vaccination,
calculated by using a linearized model in which depletion of
susceptibles is assumed to be negligible. The relation be-
tween the overall attack rate and this variable is shown in
Figure 3, panel C. This linearized prevalence (Iv) depends on
only the case growth rate and the expected delay to vacci-
nation and therefore has the potential to be estimated early
in a pandemic if case ascertainment is good. The attack rates
from 1- and 2-dose programs (dots and crosses, respec-
tively) using the same ranges in R0 and time to vaccination
as in panel A are viewed as functions of Iv, creating the

Figure 1. A: Schematic of dose response and interpretation of the linear model fits, indicating valid dose—domain for linear models; B: fits to
estimated susceptibilities for Sinovac Biotech Co., Ltd. (Bejing, China) (12) (squares) and Sanofi Pasteur (Lyon, France) (9) (circles) adjuvanted
vaccines, as well as estimated cross-protective (triangles) and matched (asterisks) values for GlaxoSmithKline Biologicals (Rixensart, Belgium)
1- and 2-dose (3.75 lg/dose) adjuvanted vaccines; C, D: effective reproduction number, R, for a given dose-response pair, with a fixed stockpile
giving 20% coverage at the maximum tested dose; E, F: attack rate (AR) for a given dose-response pair, again with 20% coverage at the maximum
tested dose. In panels C and E, ei ¼ 1; in panels D and F, ei ¼ es; R0 ¼ 2 in panels C–F. Squares and circles in panels C–F correspond to
estimated relative susceptibilities for Sanofi and Sinovac vaccines, respectively, and appear at x values given by the tested dose divided by the
maximum tested dose in the trial (30 lg and 10 lg, respectively, for the Sanofi and Sinovac trials). ei, mean relative infectivity; es, mean relative
susceptibility.
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scatter effect. When the prevalence is below 10�4, both 1-
and 2-dose programs would contain the pandemic. The
1-dose program is clearly superior when prevalence is be-

tween 10�4 and 10�2. Beyond this level of prevalence, the
differences are reduced, as is the predictive value of the
linearized model.

Figure 3. Contours representing the overall serologic attack rate (AR) in the 1-dose program (panel A) and the difference in attack rate (DAR) after
an epidemic between the 1- and 2-dose programs (panel B) as a function of delay to vaccination and R0. Antigen supply is constrained, with 1-dose
coverage ¼ 100% and 2-dose coverage ¼ 50%. In each panel, ei ¼ 1. The attack rates vary according to the gray-scale bar (right of panel).
Negative values in panel B are due to a lower attack rate with the 1-dose program. In panel C, the attack rate is graphed in terms of the expected
prevalence of infection when the vaccine is delivered. Attack rates are represented by dots for the 1-dose program and by crosses for the 2-dose
program. ei, mean relative infectivity; R, effective reproduction number.

Figure 2. Attack rate (AR) for a given dose-response pair with 20% coverage at the maximum tested dose, with R0 ¼ 2 and vaccination delayed
until the current attack rate is 0.01% (panels A and B) and 1% (panels C and D). In panels A and C, ei ¼ 1; in panels B and D, ei ¼ es. Squares and
circles correspond to estimated relative susceptibilities for the Sanofi Pasteur (Lyon, France) (9) and Sinovac Biotech Co., Ltd. (Bejing, China) (12)
vaccines, respectively, and appear at x-axis values given by the tested dose divided by the maximum tested dose in the trial (30 lg and 10 lg,
respectively, for the Sanofi and Sinovac trials). ei, mean relative infectivity; es, mean relative susceptibility; R, effective reproduction number.
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DISCUSSION

Models can be used to plan the best use of pandemic
vaccines. This research addresses 2 key aspects of pandemic
vaccines under current scrutiny: 1) the use of antigen-
sparing vaccines and 2) the effect of timing on the use of
matched vaccine. Antigen-sparing vaccines are a means of
increasing population coverage at the price of reduced effi-
cacy. Our approach of estimating efficacy by fitting linear
models to trial data provides a simple means of comparing
vaccines on the basis of their population impact, taking into
account both efficacy and coverage.

This process was illustrated by calculating the effect on
R0 and attack rates, both of which were minimized by the
lowest tested dose when based on existing adjuvanted trial
data (Figures 1 and 2). This result is consistent with that of
Riley et al. (14), who also found that the lowest tested dose
was optimal for reducing attack rates for prepandemic vac-
cination. An exception is when supply is sufficient to pro-
vide 100% coverage at a higher dose. Their analysis focused
on an R value of 1.8 and a small stockpile sufficient to
vaccinate 10% of the population with the maximum tested
dose in a multitype-vaccinated population with uniform
mixing. They also examined semistructured populations in-
cluding the case of a subpopulation with elevated transmis-
sion. Under most circumstances, these results supported
their main conclusion.

Our analysis took a different approach to estimating vac-
cine efficacy, adding the element of delays due to serocon-
version and delivery, enabling comparison of 1- and 2-dose
vaccine programs. We fitted linear models to trial data, en-
abling simple characterization of the optimal dose for reduc-
ing R and the attack rate. Estimates of vaccine efficacy were
applied to infection hazards, which is more appropriate than
a relative risk measure when modeling partially protective
vaccines. We showed how vaccines that also reduce infectiv-
ity of breakthrough vaccinated cases can alter the expression
for the optimal dose and the expected magnitude of the re-
duction inR and the attack rate. This assumption is supported
by evidence of greatly reduced viral loads and symptoms in
challenge trials in the closest animal models (16), although
the size of the reduction is unclear. The effect of a vaccine on
transmission is greater if infectivity of breakthrough cases is
also reduced (Figure 1, panels D and F compared with panels
C and E; and Figure 2, panels B and D compared with panels
A and C). If true, this findingwould further support the use of
low-antigen vaccines.

The time delay to vaccination has a critical effect on the
impact of a vaccine matched to the pandemic strain. Cam-
paigns based on matched vaccines are expected to occur
during pandemic phase 6, when local transmission is well
established. Our results showed that, even under the optimis-
tic assumption of matched vaccination occurring at cumula-
tive attack rates of 0.01% or 1% of the population, the effect
of vaccination was substantially reduced (Figure 2).

When we varied R0 and the delay to vaccination in the
ranges of 1.5–2.5 months and 2–6months, respectively, most
simulations showed a modest reduction in attack rates,
even with high vaccine effectiveness and coverage (Figure 3,
panels A and C).We compared 1- and 2-dose programs based

on immunogenicity data from the GlaxoSmithKline Biolog-
icals 3.8-lg adjuvanted vaccine. Our assumption of being
able to obtain twice the coverage with the 1-dose vaccine,
combined with a relatively high estimate for vaccine efficacy
and seroconversion occurring just once, meant that a 1-dose
program was favored in our analysis. This preference could
change if the 1-dose program had a substantially lower vac-
cine efficacy. We also found that the benefit of a 1-dose pro-
gram over a 2-dose program was greatest when the vaccine
was delivered while prevalence was above 0.1% but prior to
its peak.

If the delay to vaccinationwere known in advance, then one
could inprinciple assesswhether a 1- or 2-doseprogramwould
be better while case numbers were small, since prevalence at
this time point can be estimated on the basis of the epidemic
growth rate. Currently, 2 doses of vaccine are required for high
immunogenicity, even when the vaccine involves a novel ad-
juvant. However, our results show that a 1-dose program can
lead to a lower attack rate by trading off lower immunogenicity
against higher coverage.

Further benefits can be derived by increasing vaccine
coverage through reducing the antigen required per dose.
Efficacy of a single dose of vaccine could be aided either
by priming individuals with a stockpiled H5N1 vaccine dur-
ing pandemic phase 5/6 or by incorporating a H5N1 com-
ponent in seasonal vaccines.

Our analysis focused on strategies designed to protect an
entire population, and calculations of the optimal dose apply
only when supply is constrained. The analysis does not ap-
ply to vaccination strategies aimed at protecting subsets of
the population, where individual protection is the paramount
concern and vaccine supply is adequate.

Limitations to our model include uniform seroconversion
21 days after each vaccination and the assumption of uni-
form mixing in a homogenous population. Titers rise con-
tinuously after vaccination, potentially more rapidly after
the second dose, implying that our model may be biased
slightly in favor of 1-dose programs. Subgroups, such as
children, have been identified that display increased influ-
enza transmission, and targeting transmitters has been
shown to be an efficient use of influenza vaccine (17–19).
In these circumstances, the optimal strategy may differ from
that indicated by a homogenous mixing model, with higher
dose, low-coverage strategies becoming more favorable. We
did not account for stochastic behavior or importations of
cases, both of which are influential during the early stages of
an outbreak. Our estimates of optimal doses were based on
a small number of data points for antigen volume and an
assumed perfect correlation between infection rates in his-
toric challenge trials and in a new pandemic as a function of
titers of hemagglutination inhibition. This correlation is un-
likely to be the case but reflects the unavoidable difficulty of
estimating efficacy for H5N1 vaccines. Vaccination could
also assume a staged form based on perceived disease or
transmission risks (8, 20), and correlations between this
order and transmission between different subgroups of the
population cannot be assessed in a homogeneously mixed
model. Also note that a focus on attack rates can sometimes
be misleading in terms of prevention of severe disease and
death (20).
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The many limitations do suggest a role for carefully de-
signed studies to improve estimates of model parameters.
The infectivity of breakthrough-vaccinated cases seems par-
ticularly amenable, given that similar estimation studies
have been performed with antiviral prophylaxis to prevent
influenza (21). A household-based design in a moderately to
highly vaccinated population, with recruitment based on
a positive rapid test during the influenza season, might be
a good start to addressing this question.

In conclusion, our results suggest that population benefits
can accrue from low-antigen vaccination strategies that pro-
vide greater herd immunity but reduced individual protec-
tion. These benefits increase if the vaccine reduces both
infectivity and susceptibility, as supported by studies per-
formed on animal models of influenza. However, the effec-
tiveness of a matched vaccine during pandemic phase 6 falls
with both increasing R0 and the delay to vaccine distribu-
tion. Once prevalence is greater than about 1%, the benefit
of a matched vaccine falls away. If other control measures
can slow the increase in prevalence, antigen-sparing vacci-
nation strategies including a 1-dose vaccination campaign
can reduce the overall attack rate.

ACKNOWLEDGMENTS

Author affiliations: School of Public Health and Commu-
nity Medicine, University of New South Wales, New South
Wales, Australia (James Wood, C. Raina MacIntyre); Vac-
cine and Immunisation Research Group, Melbourne School
of PopulationHealth, TheUniversity ofMelbourne, Victoria,
Australia (James McCaw); Melbourne School of Population
Health, The University of Melbourne, Victoria, Australia
(Terry Nolan); and National Centre for Epidemiology
and Population Health, The Australian National University,
Canberra, Australian Capital Territory, Australia (Niels
Becker).

This work was partially supported by National Health and
Medical Research Council (Australia) grants 410224 and
358425.

The authors thank P. McIntyre, R. Booy, M. Burgess, and
N. Oudin for useful discussions

J. W. and C. R. M. have received funding from Glaxo-
SmithKline Biologicals for modeling research on pre-
pandemic vaccines.

REFERENCES

1. Fedson DS. Pandemic influenza and the global vaccine supply.
Clin Infect Dis. 2003;36(12):1552–1561.

2. Fedson D. Preparing for pandemic vaccination: an interna-
tional policy agenda for vaccine development. J Public Health
Policy. 2005;26(1):4–29.

3. Daems R, Del Giudice G, Rappuoli R. Anticipating crisis:
towards a pandemic flu vaccination strategy through alignment
of public health and industrial policy. Vaccine. 2005;23(50):
5732–5742.

4. Caley P, Becker NG, Philp DJ. The waiting time for inter-
country spread of pandemic influenza [electronic article].
PLoS ONE. 2007;2(1):e143.

5. Colizza V, Barrat A, Barthelemy M, et al. Modeling the
worldwide spread of pandemic influenza: baseline case and
containment interventions [electronic article]. PLoS Med.
2007;4(1):e13.

6. Cooper BS, Pitman RJ, Edmunds WJ, et al. Delaying the in-
ternational spread of pandemic influenza [electronic article].
PLoS Med. 2006;3(6):e212.

7. Commonwealth of Australia. The Australian Health Man-
agement Plan for Pandemic Influenza. 2008. (http://www.
flupandemic.gov.au/internet/panflu/publishing.nsf/Content/
ahmppi). (Accessed February 27, 2009).

8. US Department of Health and Human Services. HHS
Pandemic Influenza Plan. 2005. (http://www.hhs.gov/
pandemicflu/plan/pdf/HHSPandemicInfluenzaPlan.pdf).
(Accessed February 27, 2009).

9. Bresson JL, Perronne C, Launay O, et al. Safety and immu-
nogenicity of an inactivated split-virion influenza A/Vietnam/
1194/2004 (H5N1) vaccine: phase I randomised trial. Lancet.
2006;367(9523):1657–1664.

10. Treanor JJ, Campbell JD, Zangwill KM, et al. Safety and
immunogenicity of an inactivated subvirion influenza A
(H5N1) vaccine. N Engl J Med. 2006;354(13):1343–1351.

11. Leroux-Roels I, Borkowski A, Vanwolleghem T, et al.
Antigen sparing and cross-reactive immunity with an
adjuvanted rH5N1 prototype pandemic influenza vaccine:
a randomised controlled trial. Lancet. 2007;370(9587):
580–589.

12. Lin J, Zhang J, Dong X, et al. Safety and immunogenicity of an
inactivated adjuvanted whole-virion influenza A (H5N1) vac-
cine: a phase I randomised controlled trial. Lancet. 2006;368
(9540):991–997.

13. Leroux-Roels I, Bernhard R, Gérard P, et al. Broad Clade 2
cross-reactive immunity induced by an adjuvanted clade 1
rH5N1 pandemic influenza vaccine [electronic article]. PLoS
ONE. 2008;3(2):e1665.

14. Riley S, Wu J, Leung GM. Optimizing the dose of pre-
pandemic influenza vaccines to reduce the infection attack rate
[electronic article]. PLoS Med. 2007;4(6):e218.

15. Hobson D, Curry R, Beare AS, et al. The role of serum
haemagglutination-inhibiting antibody in protection against
challenge infection with influenza A2 and B viruses. J Hyg
(Lond). 1972;70(4):767–777.

16. Govorkova EA, Webby RJ, Humberd J, et al. Immunization
with reverse-genetics–produced H5N1 influenza vaccine pro-
tects ferrets against homologous and heterologous challenge.
J Infect Dis. 2006;194(2):159–167.

17. Longini IM Jr, Halloran ME. Strategy for distribution of in-
fluenza vaccine to high-risk groups and children. Am J
Epidemiol. 2005;161(4):303–306.

18. Germann TC, Kadau K, Longini IM Jr, et al. Mitigation
strategies for pandemic influenza in the United States. Proc
Natl Acad Sci U S A. 2006;103(15):5935–5940.

19. Mylius SD, Hagenaars TJ, Lugnér AK, et al. Optimal alloca-
tion of pandemic influenza vaccine depends on age, risk and
timing. Vaccine. 2008;26(29–30):3742–3749.

20. Dushoff J, Plotkin J, Viboud C, et al. Vaccinating to protect
a vulnerable subpopulation [electronic article]. PLoS Med.
2007;4(5):e174.

21. Halloran ME, Hayden FG, Yang Y, et al. Antiviral effects on
influenza viral transmission and pathogenicity: observations
from household-based trials. Am J Epidemiol. 2007;165(2):
212–221.

Optimal Dosing and Distribution of Pandemic Vaccines 1523

Am J Epidemiol 2009;169:1517–1524

http://www.flupandemic.gov.au/internet/panflu/publishing.nsf/Content/ahmppi
http://www.flupandemic.gov.au/internet/panflu/publishing.nsf/Content/ahmppi
http://www.flupandemic.gov.au/internet/panflu/publishing.nsf/Content/ahmppi
http://www.hhs.gov/pandemicflu/plan/pdf/HHSPandemicInfluenzaPlan.pdf
http://www.hhs.gov/pandemicflu/plan/pdf/HHSPandemicInfluenzaPlan.pdf


22. Bootsma MC, Ferguson NM. The effect of public health
measures on the 1918 influenza pandemic in U.S. cities. Proc
Natl Acad Sci U S A. 2007;104(18):7588–7593.

23. Caley P, Philp DJ, McCracken K. Quantifying social distanc-
ing arising from pandemic influenza. J R Soc Interface. 2008;
5(23):631–639.

24. Vynnycky E, Edmunds WJ. Analyses of the 1957 (Asian)
influenza pandemic in the United Kingdom and the impact
of school closures. Epidemiol Infect. 2008;136(2):166–
179.

25. Ferguson NM, Cummings DA, Cauchemez S, et al. Strategies
for containing an emerging influenza pandemic in Southeast
Asia. Nature. 2005;437(7056):209–214.

26. Carrat F, Vergu E, Ferguson NM, et al. Time lines of infection
and disease in human influenza: a review of volunteer chal-
lenge studies. Am J Epidemiol. 2008;167(7):775–785.

27. Halloran ME, Ferguson NM, Eubank S, et al. Modeling tar-
geted layered containment of an influenza pandemic in the
United States. Proc Natl Acad Sci U S A. 2008;105(12):
4639–4644.

1524 Wood et al.

Am J Epidemiol 2009;169:1517–1524


