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Abstract

Background: Joint modeling and analysis of phenotypic, genotypic and transcriptomic data have the potential to
uncover the genetic control of gene activity and phenotypic variation, as well as shed light on the manner and extent of
connectedness among these variables. Current studies mainly report associations, i.e. undirected connections among
variables without causal interpretation. Knowledge regarding causal relationships among genes and phenotypes can be
used to predict the behavior of complex systems, as well as to optimize management practices and selection strategies.
Here, we performed a multistep procedure for inferring causal networks underlying carcass fat deposition and muscularity
in pigs using multi-omics data obtained from an F2 Duroc x Pietrain resource pig population.

Results: We initially explored marginal associations between genotypes and phenotypic and expression traits through
whole-genome scans, and then, in genomic regions with multiple significant hits, we assessed gene-phenotype network
reconstruction using causal structural learning algorithms. One genomic region on SSC6 showed significant associations
with three relevant phenotypes, off-midline10th-rib backfat thickness, loin muscle weight, and average intramuscular fat
percentage, and also with the expression of seven genes, including ZNF24, SSX2IP, and AKR7A2. The inferred network
indicated that the genotype affects the three phenotypes mainly through the expression of several genes. Among the
phenotypes, fat deposition traits negatively affected loin muscle weight.

Conclusions: Our findings shed light on the antagonist relationship between carcass fat deposition and lean meat
content in pigs. In addition, the procedure described in this study has the potential to unravel gene-phenotype networks
underlying complex phenotypes.
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Background
Genetic linkage and association studies have been success-
ful in identifying genomic regions associated with pheno-
typic traits in livestock species. Indeed, many quantitative
trait loci (QTL) influencing different phenotypes have
been reported in the last two decades [1]. However, the
identification of the individual genes responsible for the
phenotypic variation remains challenging. In addition,

classical QTL mapping and association analysis do not
provide in general any information about the molecular
pathways involving the phenotype under study.
One way to unravel the molecular mechanisms under-

lying a phenotype of interest is to expand the type of traits
under genetic analysis. One of such traits may be the abun-
dance of messenger RNA transcripts, i.e., gene expression
measurements. The combination of transcriptional profil-
ing with genotypic information allows the mapping of gen-
etic loci that control gene expression, commonly termed as
expression quantitative trait loci [2, 3]. The co-localization
of expression QTL (eQTL) with phenotypic QTL (pQTL)
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is commonly used to nominate candidate genes and iden-
tify causative variants. Indeed, the integration of phenotypic
data with genotypic information and transcriptional
profiling has the potential to uncover gene networks
and the genetic control of gene activity, as well as shed
light on the genetic architecture underlying phenotypic
variation [4, 5].
Although genetical genomic studies can be used to

provide evidence on the manner and extent of con-
nectedness among phenotypic and expression traits,
most often these connections have been explored only
in terms of associations, i.e., connecting variables
without causal direction. Indeed, a major goal in the
study of complex traits is to uncover the causal
relationships among the variables under study. In this
context, the notion of d-separation and different causal
inference methods [6] can be used to explore the
universe of causal hypotheses in order to find a causal
structure that is able to generate the observed pattern
of conditional independencies between variables.
Different approaches have been proposed for inferring
causal relations in genetical genomics studies, including
likelihood-based model selection [7], directed versions of
the PC algorithm [8], structural equation models [9, 10],
homogeneous conditional Gaussian regression models
[11], and mixed graphical Markov models [12]. Causal
claims about the relationship between QTL and pheno-
typic and expression traits are justified by the Mendelian
randomization of alleles that occurs during meiosis and
the unidirectional effect of genotype on both gene
expression and phenotype [13, 14].
Pig breeding programs have been mainly focused on the

improvement of growth rate and production efficiency,
such as average daily gain, food conversion ratio, dressing
percentage, and lean meat content. This strategy has

favorably improved carcass fat content, including backfat
thickness but adversely affected intramuscular fat content,
as well as some meat quality traits [15]. In this context,
information regarding molecular networks underlying fat
deposition and muscularity can be used to optimize
management practices and selection strategies in pig
breeding. As such, the main objective of this study was to
assess gene-phenotype network reconstruction integrat-
ing phenotypic, genotypic, and transcriptomic data ob-
tained from an F2 Duroc x Pietrain resource population.
Causal networks were inferred using a multistep proced-
ure (Fig. 1). Briefly, we firstly explored marginal associa-
tions between genotypes and phenotypic and expression
traits through the use of whole-genome scans, and then,
in those regions where several eQTL and pQTL co-
localize, we attempted network reconstruction using
causal structural learning algorithms (Fig. 1). As a proof of
principle of the practical significance of this integrative
approach, we show here the construction of causal
molecular networks underlying carcass fat deposition and
loin muscle weight.

Methods
Ethics statement
Experimental procedures were approved by the All
University Committee on Animal Use and Care at
Michigan State University (AUF# 09/03-114-00).

Animals
Animals from a three-generation resource pig popula-
tion developed at Michigan State University were used
for this study. This population is an F2 cross originated
from 4 F0 Duroc sires and 15 F0 Pietrain dams. The full
pedigree consists in a single large family of 19 F0, 56 F1
(including 50 females and 6 males), and 954 F2 animals.

Fig. 1 Multistep procedure for inferring causal gene-phenotype networks integrating phenotypic, genotypic, and transcriptomic data
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Further details of population development and animal
management are found in Edwards et al. [16, 17].

Phenotypic data
Over 60 different phenotypes related to growth, body com-
position, carcass merit and meat quality were collected on
the Michigan State University F2 Duroc x Pietrain resource
population. In this study, we focused on carcass and meat
quality phenotypes that were measured on or were directly
related to longissimus dorsi (loin) muscle. Details of
carcass and meat quality phenotype collection were pub-
lished in Edwards et al. [17]. Briefly, carcass traits collected
included loin muscle weight, and loin muscle pH and
temperature at 45 min and 24 h postmortem. During
carcass fabrication, measurements of loin muscle area and
off-midline 10th-rib backfat thickness were also recorded.
In addition, a section of the loin was further evaluated for
meat quality traits. Traits included subjective and objective
color, marbling and firmness. Samples were also evaluated
for proximate composition, including moisture, intramus-
cular fat and protein. A trained sensory panel evaluated
samples for juiciness, tenderness, connective tissue and
off-flavor.

Genotypic data
Animals from the Duroc x Pietrain resource population,
including F0, F1, and F2 individuals, were genotyped for
124 dinucleotide microsatellites genetic markers (3-9
markers per chromosome) at a commercial laboratory
(GeneSeek Inc., Lincoln, NE). This genotype information
was used to derive breed of origin probabilities across
the genome of F2 animals. In particular, probabilities of
each F2 individual being homozygous for Duroc alleles
(P11), homozygous for Pietrain alleles (P22), or heterozy-
gous (P12 or P21) were estimated at each microsatellite
marker and at 11 equidistant inter-marker positions,
yielding in total 1,279 putative QTL positions spanning
the whole pig genome. Breed of origin probabilities were
derived assuming that the parental breeds (i.e., Duroc
and Pietrain) were fixed for alternative QTL alleles [18].

Transcriptomic data
Longissimus dorsi (loin) muscle tissue was sampled from
a total of 176 F2 individuals during slaughter. The tran-
scriptome of this tissue was measured for each of the
176 F2 animals using a pig whole-genome 70-mer oligo-
nucleotide microarray. This microarray includes 20,400
annotated oligonucleotides spanning the whole swine
genome. Details regarding tissue sample collection, sample
preparation, microarray hybridization and pre-processing
data were reported in Steibel et al. [19]. The resulting
normalized gene expression data (intensity values) were
expressed in the log2 scale.

Genome-wide linkage analysis
The dataset for analysis included several phenotypes,
genotype information, and gene expression data for a
total of 171 F2 individuals. Two complementary whole-
genome scans were performed: first, we carried out a
classical phenotypic QTL mapping (pQTL) integrating
phenotypic and genotypic data, and second we per-
formed an expression QTL mapping (eQTL) integrating
transcriptional profiling with genotypic data.
For the pQTL mapping, the following linear model

was fitted separately to each phenotype directly re-
lated to loin muscle (e.g., loin muscle weight, loin
muscle area):

yijk ¼ μþ sexi þ groupj þ carcwtk⋅βþ ck⋅αþ eijk

where yijk is the phenotypic trait under study of the kth

F2 animal within the combination of sexi and⋅ groupj, ⋅ μ
is the general mean, sexi represents the fixed effect of
the sex of the kth animal, groupj represents the fixed ef-
fect of the slaughter group of the kth animal, and carcwtk
is the carcass weight of the kth animal as a linear covari-
ate. As mentioned before, the additive QTL coefficient c
was derived assuming that the parental breeds were
fixed for alternative alleles. In particular, ck = P11 − P22 is
the conditional expectation of the number of Duroc al-
leles carried by the kth animal. The significance of the
additive pQTL effect α at each of the 1,279 putative
pQTL positions for each phenotypic trait was tested
using an F-test by comparing the full model to the re-
duced model without the QTL effect. Significance
thresholds of 5 % at genome-wise level were determined
through the use of permutation tests [20].
For the eQTL mapping, the following linear mixed

model was fit to normalized log-intensity data:

wijkl ¼ μþ dyei þ arrayj þ sexk þ cl⋅αþ eijkl

where wijkl is the normalized log-intensity for each oligo-
nucleotide measured in the loin muscle of the lth animal,
μ is the general mean, dyei, arrayj, and sexk are effects
accounting for systematic variation in the microarray ex-
periment of the lthanimal; dye and sex were fitted as
fixed effects, while array was fitted as a random effect.
As described above, cl is the additive QTL coefficient of
the lth animal calculated as P11 − P22. The significance of
the additive eQTL effect α at each of the 1,279 putative
eQTL positions and for each expression trait was tested
using a likelihood ratio test by comparing the aforemen-
tioned model to a reduced model without QTL effect.
The p-values were corrected for multiple testing across
all expression traits and positions using Benjamini and
Hochberg procedure [21].
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Causal structural learning
Causal structures are represented here using graphical
models; these models combine the rigor of a probabilistic
approach with the intuitive representation of relationships
given by graphs. Graphical models are composed of two
parts: a set V of random variables describing the quantities
of interest, and a graph G = (V, E) in which each vertex
ν ∈V is called node, and each edge e ∈ E, also called arc or
link, is used to express the dependence structure of the
data, i.e., the set of dependence relationships among the
variables in V [22].
There are several structure learning algorithms that

can be used to infer the network structure underlying a
given set of correlated variables, assuming that condi-
tional independencies in the joint probability distribu-
tion of these variables mirror d-separations in the causal
structure (for more details, see [6, 23]). One of such al-
gorithms is the Inductive Causation (IC) algorithm,
which is able to search for a class of minimal causal
structures that are compatible with the conditional inde-
pendencies implied by the joint distribution of the data
[24]. The IC algorithm, when applied to a set V of vari-
ables, can be described as follows:
Step 1. For each pair of variables A and B in V, search

for set of variables SAB ⊂V such that A and B are inde-
pendent given SAB. If there is no such set, i.e., if A and B
are dependent for every possible SAB, then place an un-
directed edge between A and B.
Step 2. For each pair of non-adjacent variables A and

B with a common adjacent variable C, search for a pos-
sible set SAB containing C such that A and B are inde-
pendent given SAB. If there is no such set, then assign
the direction of the edges A ‐ C and C ‐ B as A→ C and
C← B.
Step 3. In the partially directed graph returned by the

previous two steps, orient as many of the undirected
edges as possible in such a way that it does not result in
(i) new v-structures (i.e. new unshielded colliders) or (ii)
directed cycles.
Even though the IC algorithm provides the theoretical

framework for causal structural learning using condi-
tional independent tests, its application to practical
problems with several variables is hampered due to the
exponential number of possible conditional independ-
ence relationships to be tested. This has led to the devel-
opment of more efficient algorithms. Here, we have used
one of such algorithms, the Incremental Association
Markov Blanket (IAMB) algorithm [25]. The IAMB al-
gorithm first learns the Markov Blanket of each variable
in the dataset; the Markov Blanket of a given variable Y
is defined as the minimal set of variables conditioned on
which all other variables are probabilistically independ-
ent of the target Y. This preliminary step reduces the
number and the size of the subsets considered in the

conditional tests, and hence results in a lower computa-
tional complexity without compromising the accuracy of
the resulting causal network [25].
Practical application of the IAMB algorithm involves

performing a set of statistical decisions using conditional
independence tests. In the context of normally distributed
variables, these tests are functions of the partial correl-
ation coefficients ρXY|W between X and Y given W. Here,
we used the Fisher’s Z test, which involves a transform-
ation of the linear correlation coefficient and is defined as:

Z X;Y jWð Þ ¼ 1
2
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n− Wj j−3⋅

p
log

1þ ρ̂XY Wj
1−ρ̂XY Wj

which has an approximate normal distribution with
mean zero and variance 1, i.e., Z(X,Y|W) ∼N(0, 1). After
the structure of the network was learned, the estimation of
the parameters of the local distributions was performed
using maximum likelihood. Since the variables under study
are continuous, the causal parameters take the form of re-
gression coefficients. Furthermore, the stability of the struc-
ture of the causal networks was evaluated using Jackknife
resampling. By leaving out one observation per time from
the dataset, we could evaluate the stability of each edge in
the original network in terms of presence (binary variable;
presence or absence in the resampled network) and direc-
tion (three possible outcomes; same direction as the ori-
ginal arrow, opposite direction, or undirected arc). All these
analyses were performed using the bnlearn package [26]
implemented in the R language/environment [27].

Results
pQTL and eQTL analysis
The first step in this study was to perform a classical
whole-genome scan integrating phenotypes with genotypic
information (pQTL mapping). We focused on carcass and
meat quality traits that were measured on or were directly
related to longissimus dorsi (loin) muscle. Three traits,
namely loin muscle weight, off-midline 10th-rib backfat
thickness (BF10), and average intramuscular fat percentage,
showed significant pQTL at 5 % genome-wise significant
level. Remarkably, these three significant pQTL mapped to
the same genomic region on chromosome 6 (SSC6) of the
pig genome (Fig. 2). It is worth noting that the Duroc allele
was significantly associated with an increase in backfat
thickness and intramuscular fat percentage, reducing at the
same time the weight of the loin muscle. Overall, these
findings provide some evidence of the existence of a gen-
omic region on SCC6 with additive pleiotropic effects af-
fecting both fat deposition and muscularity.
The second step in this study was to perform another

QTL mapping but now integrating transcriptional profiling
with genotypic data (eQTL mapping). Here, we focused on
the genomic region of SCC6 that was significantly
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associated with the three phenotypic traits discussed above.
In this context, seven significant eQTL (FDR ≤ 0.20) were
detected in this region of the pig genome (Fig. 3). These
seven eQTL were associated with the level of expression of
the following seven genes: zinc finger protein 24 (ZNF24),
aldo-keto reductase family 7, member A2 (AKR7A2), syn-
ovial sarcoma, X breakpoint 2 interacting protein (SSX2IP),
ets variant 2 (ETV2), small integral membrane protein 12
(SMIM12), peroxisomal biogenesis factor 14 (PEX14), and
prostate tumor overexpressed 1 (PTOV1). Genes ZNF24,
ETV2, and PEX14 were over-expressed in animals carrying
the Duroc allele, while AKR7A2, SSX2IP, SMIM12, and
PTOV1 showed higher expression in animals with the
Pietrain allele. It is important to note that all these genes
are located on SCC6 and hence these seven significant
eQTL can be considered as local or cis-eQTL.

Causal networks
The pQTL and eQTL analyses showed that there are at
least three phenotypic traits and seven different gene

expression traits significantly associated with the same
genomic region on SCC6 of the pig genome. In order to
decipher potential causal links among these variables,
the IAMB algorithm (efficient constraint-based algo-
rithm based on the inductive causation algorithm) in
conjunction with Fisher’s Z test to assess for conditional
independence (α = 0.05) were used to infer the functional
relationships involving these 10 phenotypic and expres-
sion traits. In particular, the causal structural learning
was performed using adjusted phenotypic and expres-
sion traits (i.e., corrected by systematic effects), and the
most significant genetic marker located in this region.
Interestingly, without using any prior information, the
IAMB algorithm could reconstruct a partially directed
acyclic graph with only three undirected edges (Fig. 4a). In
this sense, the links between the genetic marker (labeled as
@Chr6.139) and AKR7A2, between SMIM12 and AKR7A2,
and between PTOV1 and SMIM12 remained unresolved
(i.e. undirected). Now, using as prior knowledge that the
undirected link between the genotype and AKR7A2 should

Fig. 2 Genome scan results for loin muscle weight (red), off-midline 10th-rib backfat thickness (blue), and average intramuscular fat percentage
(green). The horizontal line indicates the genome-wise significance level of 5 %

Fig. 3 Genome scan results for seven expression traits that show significant eQTL on chromosome 6 (SSC6). The horizontal line indicates P-value = 1.9
× 10−5 (FDR ≤ 0.20). All these genes are located on SCC6 and hence these seven significant eQTL can be considered as local or cis-eQTL
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be set as @Chr6.139⋅→ ⋅AKR7A2 (i.e., genotype may have
a causal effect on the gene expression but not the oppos-
ite), then the algorithm could reconstruct a fully directed
acyclic graph (Fig. 4b). Remarkably, based on the causal
graphical model, the genetic marker is marginally associ-
ated (through direct and indirect paths) with all the other
variables, i.e., phenotypic and expression traits. These find-
ings completely agree with our previous pQTL and eQTL
results. In addition, even though the genotype is directly
linked to one phenotype (@Chr6.139 ⋅→ ⋅FAT), in general
the graphical causal model indicated that the effects of the

genotype on the phenotypes are mediated by the expres-
sion of several genes.
Conditionally on the structure of the network, point

estimates of the causal parameters were estimated using
maximum likelihood (Fig. 5). The genotype (Duroc al-
lele) had a positive total effect on fat deposition (BF10
and FAT) and a negative total effect on loin muscle
weight. These effects are in general mediated by the
expression of several genes. In fact, there were in total 3
and 4 paths from @Chr6.139 to BF10 and FAT, respect-
ively. All these paths showed a positive effect of the

Fig. 4 Causal networks integrating phenotypic (blue), genotypic (red) and transcriptomic (yellow) data. Left a: causal network inferred without using
any prior information. Right b: causal network inferred after incorporation of @Chr6.139 → AKR7A2 as prior knowledge

Fig. 5 Maximum likelihood estimates for causal effects. Conditional on the inferred structure of the network, point estimates (and standard errors)
of the causal parameter were estimated by Maximum Likelihood. The structure of the network was inferred integrating phenotypic (blue),
genotypic (red) and transcriptomic (yellow) data
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genotype on the phenotypes. In addition, there were in
total 7 different paths from the genetic marker to LOIN;
all these paths showed a negative effect of the genotype
on loin muscle weight.
The stability of the network was evaluated using Jack-

knife resampling. In each iteration, the network was
inferred from a new dataset which was created by re-
moving one animal at a time from the original dataset.
The structure of this new network was then compared
with the original structure. In particular, we evaluated
the stability of each link (presence or absence) and also
the stability of the direction of the link. Figure 6 displays
the results of the Jackknife resampling. There were no
important differences in the stability of the links be-
tween networks constructed with or without prior infor-
mation (setting or not the link @Chr6.139 ⋅→ ⋅AKR7A2
as known). Notably, the majority of the links and directions
showed great stability. In fact, the arrows between pheno-
typic traits, and the links from the genetic marker to the
intermediate variables remained in general unchanged.
There were very few connections that were unstable (e.g.,
between SMIM12 and PTOV1), i.e., the removal of a single
data point caused the absence of connection between the
variables.

Discussion
In this study, we have evaluated gene-phenotype net-
work reconstruction integrating phenotypic, genotypic,
and transcriptomic data obtained from a genetical gen-
omics study performed in pigs. The dataset for analysis
included carcass and meat quality phenotypes, genotypic
information spanning the whole genome, and gene
expression data measured in the longissimus dorsi (loin)
muscle for a total of 171 F2 Duroc x Pietrain pigs. We
focused on carcass and meat quality traits that were
measured on or were directly related to loin muscle. The
multistep procedure used for network reconstruction
can be summarized as follows (see Fig. 1): first, we per-
formed a classical QTL mapping for phenotypic traits
(pQTL); second, we performed a new QTL mapping but
now using the gene expression as a response variable
(eQTL); third, we searched for genomic regions in the
pig genome where significant pQTL co-mapped with sev-
eral significant eQTL; and finally, using the information
provided by these regions, we assessed gene-phenotype
network reconstruction using causal structure learning
techniques.
One genomic region on SSC6 showed remarkable

results of particular interest for this study. In fact,

Fig. 6 Evaluation of the stability of the network using Jackknife resampling. Results are expressed as frequency (percentage) that a given arc was
presented (with the same direction) in the resampled networks. The structure of the networks was inferred integrating phenotypic (blue),
genotypic (red) and transcriptomic (yellow) data
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controlling genome-wise significant level at 5 %, three
relevant phenotypes, namely loin weight, off-midline
10th-rib backfat thickness, and average intramuscular fat
percentage, showed significant QTL in this genomic re-
gion. In addition, seven significant eQTL (FDR⋅ ≤ ⋅0.20)
were also detected in this particular region of the pig gen-
ome. Many of these genes have important roles in cell
proliferation and differentiation. It is worth noting that
previous studies in pigs, including previous analyses of this
same Michigan State University F2 Duroc x Pietrain re-
source population, have already reported significant QTL
for fat deposition (e.g., 10th-rib backfat thickness, last
lumbar vertebra backfat thickness, intramuscular fat, and
marbling) and muscularity (e.g., ham weight, loin weight,
and loin muscle area) in this region of SCC6 [17, 28–30].
Our findings showed that the Pietrain allele is negatively
associated with fat deposition and positively associated
with loin weight. These results support previous studies
that found that Pietrain pigs have less backfat and larger
longissimus dorsi muscle area compared to Duroc pigs
[31, 32]. Overall, these two complementary whole-genome
scans revealed an interesting genomic region on SCC6
with pleiotropic additive effects on fat deposition and
muscularity, which is also significantly associated with the
expression of several genes.
We further explored this genomic region using struc-

tural learning techniques in order to decipher potential
causal relationships between phenotypic and expression
traits. Remarkably, the output of the structural learning
algorithm reflected all those marginal associations de-
tected in the whole-genome scans. More importantly, the
causal network showed that the effect of the genotype on
the phenotypic traits is mainly mediated by the expression
of several genes. In addition, our findings revealed that
both fat deposition traits, off-midline 10th-rib backfat
thickness and average intramuscular fat percentage, had a
negative effect on loin muscle weight. Previous studies
have reported that selection of pigs for less backfat thick-
ness resulted in improved carcass lean meat content and
loin muscle size, and also less intramuscular fat [15, 33].
Hence, our findings provide a causal explanation for this
phenomenon.
Arguably one of the most relevant genes in the network

is ZNF24, whose expression mediates the effects of the
genotype on the phenotypes. ZNF24 encodes a member of
the family of Krüppel-like zinc finger transcription factors
and has critical roles in cell proliferation and differenti-
ation [34]. In our study, ZNF24 showed higher expression
in animals carrying the Duroc allele. Of particular interest,
a recent study reported higher expression of ZNF24 in
loin muscle of Basque compared with Large White pigs
[35]. Similarly to Duroc, the Basque breed shows high fat
contents and high meat quality characteristics, and there-
fore, our findings provide further evidence of the potential

association between ZNF24 and fat deposition and meat
quality merit in pigs. Another relevant gene is SSX2IP,
which is located in the network just upstream of the
phenotypic traits. SSX2IP showed a negative causal effect
on backfat thickness, and was unsurprisingly overex-
pressed in animals carrying the Pietrain allele. SSX2IP has
been shown to play a role in cell adhesion, actin cytoskel-
eton organization, and regulation of cell motility [36]. Our
findings support this gene as a promising candidate for
carcass lean meat content.
Knowledge about gene-phenotype networks can be

used to predict the behavior of complex systems. For
instance, in our study, the network model predicts that
modulation of ZNF24 expression level should lead to
changes in the expression of SSX2IP. Recently, Li et al.
[34] evaluated potential ZNF24 target genes. For this
purpose, the authors transiently overexpressed and si-
lenced ZNF24 and then applied microarray assay in
order to identify target genes. Notably, the overexpres-
sion of ZNF24 significantly decreased the expression of
SSX2IP, as predicted by our network. In addition, the si-
lencing of ZNF24 resulted in a significant overexpres-
sion of SSX2IP [34]. Therefore, these results support
the causal relations inferred in our study.
Overall, we have detailed a multistep procedure for in-

ferring causal networks integrating phenotypic, geno-
typic, and transcriptomic data. We have applied this
procedure for deciphering gene-phenotype networks
underlying fat deposition and muscularity in pigs. Our
findings shed light on the antagonist relationship that
exists between carcass fat deposition and lean meat con-
tent. More generally, the procedure described here can
be easily applied to unravel causal molecular networks
underlying complex phenotypes in livestock species.
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