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Abstract: Esophageal stent insertion has been used as a well-accepted and effective alternative to
manage and improve the quality of life for patients diagnosed with esophageal diseases and disorders.
Current stents are either permanent or temporary and are fabricated from either metal or plastic.
The partially covered self-expanding metal stent (SEMS) has a firm anchoring effect and prevent stent
migration, however, the hyperplastic tissue reaction cause stent restenosis and make it difficult to
remove. A fully covered SEMS and self-expanding plastic stent (SEPS) reduced reactive hyperplasia
but has a high migration rate. The main advantage that polymeric biodegradable stents (BDSs) have
over metal or plastic stents is that removal is not require and reduce the need for repeated stent
insertion. But the slightly lower radial force of BDS may be its main shortcoming and a post-implant
problem. Thus, strengthening support of BDS is a content of the research in the future. BDSs are
often temporarily effective in esophageal stricture to relieve dysphagia. In the future, it can be expect
that biodegradable drug-eluting stents (DES) will be available to treat benign esophageal stricture,
perforations or leaks with additional use as palliative modalities for treating malignant esophageal
stricture, as the bridge to surgery or to maintain luminal patency during neoadjuvant chemoradiation.

Keywords: biodegradable stents; polymer; dysphagia; esophageal perforation/leak; malignant
esophageal stricture; (refractory) benign esophageal stricture

1. Introduction

Esophageal strictures (ES) are commonly caused by benign and malignant diseases, and according
to the method can be divided into operative and non-operative treatment. Nonoperative causes include
esophageal reflux, external beam radiation, esophageal sclerotherapy, caustic ingestions, and advanced
cancer. Operative causes include surgical anastomosis, after endoscopic submucosal dissection (ESD),
or endoscopic mucosal resection (EMR) for early esophageal neoplasms. Dysphagia, malnutrition,
weight loss, aspiration and respiratory failure caused by benign or malignant esophageal strictures
are frequently encountered problems with ES [1]. Esophageal strictures are difficult to manage
conservatively and they usually require balloon dilation and/or stent insertion, which play a vital role
in alleviating obstructive symptoms (dysphagia) or treating the stricture-related complications and
improving the quality of life for the patient.
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The use of stents for esophageal strictures have evolved rapidly over the past 30 years from rigid
plastic tubes to flexible self-expanding metal stents (SEMS) and self-expanding plastic stents (SEPS).
According to the implantation time, SEMS can be divided into two categories: permanent stents and
retrievable temporary stents. The design of SEMS can be divided into two classes: partially covered
metal stents and fully covered metal stents. Current SEMS and SEPS insertion have become an optimal
and effective alternative to the treatment of malignant and benign esophageal diseases. However,
the use of stents is associated with several common problems including migration, tissue ingrowth,
restenosis and repetitive procedures.

The past two decades, the development of medical application of polymeric biocompatible and
biodegradable materials have made significant progress. The polymeric biodegradable stents (BDSs)
fabricated from these biocompatible and biodegradable materials have been developed to overcome
some shortcomings encountered with SEMS or SEPS [1]. The cardiovascular stent market is currently
the dominant driving force for the research and development of BDSs [2]. Limited symptomatic
relief and a high rate of adverse incidents encountered with SEMS or SEPS has led to the use of BDSs
since 1997 [3]. Since BDSs do not require endoscopic removal and alleviate dysphagia similarly to
SEMS or SEPS, they are beginning to be used in the treatment of benign or malignant esophageal
strictures. BDSs or biodegradable drug-eluting stents (DES) insertion as a “bridge to surgery” or
palliative treatment can improve symptoms and allow enteral nutrition until staging or neo-adjuvant
treatment is completed (Figure 1).
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SEMS and SEPS stent placement is a commonly used, minimally invasive method to treat
benign or malignant esophageal strictures. Due to the limited success of SEMS and SEPS for treating
esophageal strictures, such as bleeding, esophageal fistula, migration, retrosternal pain, tissue ingrowth,
restenosis and repetitive procedures. Therefore, considerable effort should be research to avoiding
those complications in patients. The characteristic features of BDSs, such as solubility and natural
absorption over a period time, be able to prevent those complications reported for the use of SEMS,
the BDSs have provided an additional therapeutic option. However, BDSs are much less known in
clinical utility and experience. This review focuses on the current experience with polymeric BDSs for
benign and malignant esophageal diseases.

2. Polymeric Biomaterials

A polymeric biomaterial is a non-biological material used in a medical device and application
and designed to interact with biological systems. A polymeric biomaterial [5–15] can be: (1) inert, does
not trigger any reaction in the host; (2) bioactive, ensures a stable performance for long durations or
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the period desired; and (3) biodegradable, it can be resolved through natural chemical degradation or
effectors such as bacteria. The main characteristic of these materials for medical application are the
absence of carcinogenicity, immunogenicity, teratogenicity and toxicity.

Commonly used biomaterials include magnesium based alloys and synthetic polymers, which
are mainly α-hydroxy acids [5–15] such as: polylactic acid (PLA), poly-L/D-lactic acid (PLLA/PDLA),
polyglycolic acid (PGA), polycaprolactone (PCL), polydioxanone (PDX), polyhydroxylbutyratevalerate
(PHBV), polyglycolic acid/polylactic acid (PGLA), polyacetyglutamic acid (PAGA), polyorthoesters
(POE), polyethylene oxide/polybutylene terephthalate (PEO/PBTP), hyperbranched polyphosphates
(HBPPs) [7], styrene-b-isobutylene-b-styrene (SIBS) [8], poly(acrylic acid)–poly(ethylene glycol)
(PAA-PEG) [9], and poly(lactide-ε-caprolactone) (PLCLs) [10]. PGA and PDX are relatively
fast-bioabsorbing materials (weeks to months), on the contrary PLA and PCL are relatively
slow-bioabsorbing materials (months to years). In general, polymers will degrade at a slower rate than
magnesium alloys.

The ideal polymer should: (1) be sufficiently structurally stable and posses high mechanical
properties until the completion of the therapeutic purposes; (2) not invoke inflammatory or toxic
responses; (3) be able to be completely metabolized in the body after achieving its purpose; (4) be easily
processable into the desired form; (5) demonstrate acceptable shelf life; and (6) be easily sterilized.

The major advantages of synthetic polymers are: (1) good biocompatibility; (2) adjustable
composition and physical-mechanical properties; (3) low coefficients of friction; (4) easy processing
and workability; (5) ability to change surface chemically and physically; and (6) ability to immobilize
cells or biomolecules inside or on the surface.

According to these features, BDSs can be made from different synthetic polymers (PLA and PGA)
or their copolymers (PDX). Degradation of the BDSs are hydrolytic, the speed of biodegradation is
dependent not only on size and structure of polymer, but also influenced by surrounding environment,
such as temperature, pH and type of body tissue/fluid [5–15].

3. Prerequisites for Polymeric Biodegradable Stents

Stent is a cylindrical medical equipment to expand a stricture lumen in order to maintain the
patency of the lumen. When selecting a polymer for the BDS, there are several conditions need to
consider, such as the strength to avoid potential immediate recoil, the rate of degradation, lack of
toxicity, and biocompatibility of the polymer and the degraded products with the target organ pipe
wall, vessel or digestive tract. The change of mechanical properties and drugs release of BDSs would
directly depend on the rate of stent degradation, which can be controlled through the choice of polymer,
passivation agents and stent manufacturing process. Studies presented by Freudenberg et al. [5] and
Gunatillake et al. [6] researched the technical feasibility of BDSs including factors such as exterior
design, stent forming, coating modification and drug loading technology.

The present invention of BDSs [5–15] include a method of designing and manufacturing an
improved braided BDS which is different from conventional practices used to make a braided metal
wire stent. The method involves selecting a specific biodegradable polymer based on a desired stent
functional degradable time and stent radial force. Then, according to the different requirements of the
organs, the degradable polymer materials are select to meet the requirements (degradable time and
stent radial force).

An ideal BDS should have the following advantages: (1) a mechanical performance comparable
to metal stents; (2) complete biodegradability after a certain period of mechanical support with target
organ pipe wall and non-toxic side effects of degradation products; (3) good compliance to make it
easier to arrive at the lesion and penetrate the lesion lumen; (4) good histocompatibility; (5) a drug
loading capacity better than metal stents and a slow local delivery; and (6) the ability to be tracked.
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4. Advantages of Polymeric Biodegradable Stents

There are several advantages of using polymeric BDSs over metallic stents [16]. One of the largest
advantages is the BDS can naturally decompose into non-toxic chemical species over time. In addition,
BDSs may be manufactured at a relatively low cost, because the vacuum heat treatment and chemical
cleaning is not required. BDSs have the ability to carry and release drugs, whereas metal stents are not
able to do [16]. The BDSs can release the drugs during the scaffold degradation process resulting in
tunable release profiles by changing the degradation rate of the stent via adjusting the composition
of the BDS. In addition, varying the polymer composition on the abluminal and luminal sides may
yield many more benefits that metal stents offer. These benefits include facilitating a more targeted
drug delivery and inducing different cell growths on different sides, encouraging endothelialization
on the luminal side at the same time as limiting smooth muscle cell proliferation on the abluminal
side [17]. Avoid repeat percutaneous revascularization or surgical intervention, which would be
used in metallic stents if required subsequently [18]. Avoiding metallic stents may also prevent the
jailing of side branches and difficulties with overhang at ostial lesions. SEMS would fully expand
within 24 h of implantation which can potentially limit the late favorable positive remodeling and
occur the development of new lesions, whereas BDSs do not have this shortcoming [4,19] (Figure 2).
The magnetic resonance imaging (MRI) or computer tomography (CT) compatibility of BDSs may lead
to a better diagnostic because there is no blooming from metallic artifact [20]. In addition, BDSs may
allay patient concerns over permanent implant; BDSs can disappear over a period of time meaning
that they may reduce the long-term risks of stent thrombosis and need long-term dual antiplatelet
therapy [21]. The ideal esophageal stents would be easily local, resistant to migration, resulting
minimal tissue response, prevent tissue ingrowth, easy retrieval, and patients with good tolerability
without discomfort or nausea.
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5. History of Polymeric Biodegradable Stent Development

In 1988, Stack et al. [22] fabricated the first fully BDS, which was fabricated from knitted PLLA
at the Duke medical center in USA. The stent could withstand up to 1000 mmHg in the extrusion,
making its radial strength within one month and be completely degraded in nine months. Polymers
have been widely used in DESs, primarily as delivery vehicles for drug coatings in 1991 [23,24].
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The polymers suggested for BDSs are PLLA, PDLA, PGA and PCL. Those polymers were designed as
not only a self-expanding but also balloon expandable stent. Another proposed design is a combines
polymeric with a metallic backbone to increase strength and prevent recoil. In 1996, Ye et al. [25] used
a PLLA/PCL blend stent impregnated with a recombinant adenovirus carrying the β-Gal reporter
gene and demonstrated a successful transfer and expression of this gene in cells of the arterial wall
in rabbits. In 1997, PLLA was associated with an intense inflammatory reaction, whereas a minimal
inflammatory reaction was observed with molecular mass >300 kDa [26]. In 1998, Igaki and Tamai [27]
further refined the design to PLLA monofilaments in a zigzag helical coil configuration with 0.17mm
thick struts. This arrangement resulted in a reduced vascular injury at the implantation site, reduced
initial thrombus deposition and cut down neointimal proliferation. Another interesting concept is
the design of multi-layered biodegradable stent by Eury et al. [28], which is made from variety of
polymers such as PLLA, PGA, PCL, poly-orthoesters or poly-anhydrides. The unique function of this
stent is one layer to solve the structural requirements of the stent and other layer control the drug
release. The stacked structure allows multiple loading of different materials with different drugs all
within a single stent.Through an appropriate configuration of the layers drug release characteristics
can be adjusted. Yamawaki et al. [29] used a high-molecular-weight PLLA Igaki-Tamai stent loaded
with ST638 (Tranilast, a specific tyrosine kinase inhibitor) or ST494 (an inactive metabolite of ST638).
It showed that the extent of neointimal formation and geometric remodeling were significantly less at
the ST638 loaded stent site then at the ST494. In 1999, Igaki and Tamai [30] compared the improved
Igaki-Tamai stent to Palmaz-Schatz stent, it shown that there no stent thrombosis and no significant
differences in minimal lumen diameter (MLD) at six months. Histological examination revealed no
inflammation and minimal neointimal hyperplasia on PLLA stent struts. Hietala et al. [31] conducted a
34-month study in rabbit model using a stent made of copolymer L- and D-lactide (L/D ratio 96%/4%)
in 2001. This is the longest known research study using polymer stent and first reported complete
endothelialization at 3 months with no inflammatory response after 6 months.Stent hydrolysis was
evident at 12 months and completely disintegrated in 24 months. Stent was gradually has being
replaced by fibrosis while maintaining patency of the lumen at all time.

In 2004, Vogt et al. [32] used a PLA eluting poly(D,L)-lactic acid (PDLLA) and reported a slow
release profile of PLA with an exponential function. Starting with a daily release from 5 to 8 µg,
decrease to 1 µg at 4 weeks and stopping completely at 3 months. Overall, the stent demonstrated
mechanical stability during the entire duration. The histomorphometric analysis at three weeks
demonstrated inhibition of neointima formation by 53% and 44% with the PLA-loaded PDLLA when
compared to the normal PDLLA stent and metal stent. This mean the PLA-load increase the durability
of the stent over 3 months.

6. Preclinical Studies with Polymeric Biodegradable Stents

The first PLLA-BDS [22] shown minimal thrombosis, moderate neointimal growth, and a
limited inflammatory response in porcine coronaries. Initial experimental studies with
biodegradable polymers, which included PLLA, PDLA, PCL, poly-hydroxybutyrate-hydroxyvalerate,
and poly-orthoester coatings as films on the circumferential surface of coil wire stents in the porcine
coronary arteries, were disappointing. After 30 days, the histopathology revealed that a significant
inflammatory reaction and endometrlosis with extensive cell infiltration of these coatings. There was
also evidence of medial necrosis and pseudoaneurysm formation. Due to difficultly in manufacturing
compatible biodegradable materials with the capability of limiting inflammation and restenosis, BDSs
were not developed on the same scale as bare metal stents [33] (Figure 3). The loss of radial strength over
time is another problem that increase the risk of fracture and migration of stent [34–36]. Furthermore,
the biological compatibility of the long-term biological degradation products was relatively unknown
and focused on absorbent of biodegradable polymers in coronary arteries [32]. The BDSs absorbing
water led to chronic swelling, which has been shown to influence the degree of hyperplasia of the
endometrium [37].
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7. Preclinical Studies with Polymeric Biodegradable Esophageal Stents

The first report was published in 1993 [38] in a rabbit experimental model of urethral stenosis
treated with a biodegradable self-reinforced stent made of PLLA. The polymeric BDSs in the esophagus
under study are made from PDX, a monocrystalline polymer, with a 55% crystalline structure [39].
In living tissue, hydrolytic breakdown the crystalline structure into smaller fragments of low molecular
weight products and then PDX being degraded. PDX has a stronger resistance to hydrolytic compared
to PGA or PLC, which with faster degradation times of the stents. It is the longer persistence of the PDX
that allow adequate time for esophageal reconstruction. The integrity and radial expansion force of
stent can be maintained at 6–8 weeks and disintegrates in 11–12 weeks following the implantation [39].
The initial value of radial force being maintain in the first five weeks in physiological saline solution
(pH 7, 37 ˝C). After seven weeks, the radial force was about two-thirds of the initial force and after
9 weeks about half of the initial force. After 2–4 months, the stent was completely degraded. The stent
degraded faster with a lower pH, so it is advised to prescribe proton-pump inhibitors to prolong stent
integrity. These new stents achieve constant radial force that similar to metallic stent, because of the
advantage the stent do not need be removed. Until now, PDX-BDSs could be an option for benign
refractory strictures in the gastrointestinal tract.

In 2010, Battersby et al. [40] used a biodegradable PDX self-expanding stent for treatment of benign
esophageal stricture in a cat. Four months later, an examination indicated the BDS was no longer
present and the esophagus showed no signs of obstruction. Yu et al. [4] designed a series of tests with
new BDSs for the treatment of esophageal stenosis in dog models to investigate its properties. Some of
which include shape memory effects, compression properties and the influence of in vitro degradation
of the polymer matrix on its shape recovery and dilation force. The stent manufactured from poly
(ε-caprolactone-co-DL-lactide, weight ratio of 1/9) (PCLA) copolymer. The deformed stent needed
approximately 36 s to recover its initial shape in vitro in 37 ˝C warm water. The primary in vivo animal
experiment revealed that the stent deform could be triggered by body temperature and expected to
become a nearly-cylinder to support esophageal wall. Hence, the biodegradable polymer stent has
giant potential to replace conventional metallic stents for treatment esophageal stenosis. Pauli et al. [41]
evaluated the ability of ELLA-BDS (ELLA-CS, Hradec Kralove, Czech Republic) to reduce the
aggressive stricture formation that occurs in a porcine model of circumferential endoscopic esophageal
mucosal-resection (EEM) (Figure 4). The BDS showed little reduction in diameter or proximal dilation
for the first six weeks. The survival time of the BDS was significantly longer than in the control group
(9.2 weeks vs. 2.4 weeks).The timing of stricture formation correlated with the loss radial force and stent
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disintegration. A retrospective review of the records for dogs (n = 6) with RBES [42] found that all dogs
had short-term improved dysphagia after BDS implantation. Complications included regurgitation
(4/6), recurrence stricture (3/6), and stent migration (3/6). Three dogs required intervention due to
these complications. The stent is radiotransparent, has radiopaque markers on both ends and in the
center [43] (Figure 4).
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8. Clinical Studies with Biodegradable Esophageal Stents

8.1. Benign Stricture

PLC-BDSs have been developed for treating patients with benign stenosis [44–46]. BDSs are a
promising therapeutic option and were originally developed to manage esophageal strictures because
it does not require removal and overcome some of the drawbacks of SEMS or SEPS. When migrated,
gastric acid can dissolve and accelerate hydrolysis of stent, which avoid further injure and potential
morbidity [44].

The first experience with a PLLA-BDS (InStent, Eden, MN, USA) for the treatment of benign
esophageal strictures was reported by Goldin et al. [47] in 1996. The characteristics of PLLA are
expansion, providing radial force and biodegradable in 3–6 months. This coil stent is wrapped tightly
onto a catheter, with a thin wire holding its proximal and distal ends to a diameter of 10 mm. After
endoscopic placement, the stent was released and expanded spontaneously to its design diameter of
14 or 16 mm (length of 6–10 mm) in a few minutes. In three patients, the BDSs collapsed within 3 weeks
and caused recurrent dysphagia. In two patients, with an improved stent design and patency of
stent was improved. PLLA-BDS (EsophaCoil; InStent, Eden Prairie, MN, USA) was first used in USA,
for benign esophageal stricture due to radiation injury, by Fry and Fleischer [3] in 1997. The radial
force of BDSs is weaker than that of conventional metal stents, so additional expansion using balloon
dilatation is require after stent insertion.

At the time, biodegradable stents were still in the investigative stage until ten years later, BDSs
have been developed. In 2006, Tanaka et al. [48] reported modified stents were made of PLLA, which
have sufficient radial force similar to those clinically applied esophageal stents and the PLLA-BDS
was named Tanaka-Marui stent. Saito et al. [49,50] reported results from two series of patients who
received the Tanaka-Marui stents (Marui Textile Machinery, Osaka, Japan) (Figure 5). The largest
cohort consisted of 13 patients (six BES, two caustic and four anastomotic, and seven RBES, seven
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esophageal cancers following endoscopic mucosal dissection), which shown that the Tanaka-Marui
stent underwent spontaneous migration in 10/13 patients (77%) within 10–21 days after insertion.
Clinical success (complete relief of dysphagia) was observed in all cases within the follow-up period of
7–24 months. Follow-up studies have shown the PLLA-BD stent had a low stent-related complication
rate. The history of stent degradation within the esophagus and the tolerability of the degradation
process over a period of time were not sufficiency assessed since a high early stent migration rate was
observed in the three studies.
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Japan) (a); the mucosal defect after ESD (b); the released PLLA stent (c); fixation of the rostral side
by endoscopic clips (d); and the view at six-month follow-up (e) [49]. Copyright permission from
Baishideng Publishing Group Inc.

In 2009, another novel stent (EllA esophageal stent, EllA-SX, s.r.o., Hradec Kralove,
Czech Republic) [38] composed of the biodegradable polymer PDX was used (and currently the
only one used clinically). The stent is currently available in four diameters (stent body of 18, 20, 23
and 25 mm) with lengths ranging from 60 to 135 mm and assembled onto a 9.4mm (28 F) delivery
system. After release, the stent gradually expands, achieving its preformed diameter after 24–48 h.
The stent gradually degrades by random hydrolysis of its molecular ester bonds. Integrity and radial
force are maintained completely for approximately six weeks following implantation. From seven to
nine weeks, it had two-thirds of the initial integrity and radial, after the nine weeks it had one-third of
the initial integrity and radial, and the average time for complete degradation of the stent is reported
to be 11–12 weeks. The degradation process is accelerated by a low pH and acid-suppressing therapy
(proton-pump inhibitors) is recommended to prolong stent integrity. A limited number of cohort
studies have been reported with the ELLA-BDS for management of benign esophageal diseases such as
benign esophageal strictures (BES), refractory benign esophageal stricture (RBES) [3,47–75] (Figure 6)
and achalasia [61] (Table 1). Technical success, clinical responses and outcomes were different. Stent
insertion was not a problem, however clinical success ranged from 0 to 100%, with a mean of 74.68%.
Only a few studies contained ten or more patients. Repici et al. [57] reported dysphagia be completely
alleviated in 43% of patients with RBES after EllA-BDS placement after a median follow-up of 53 weeks
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(range: 25–88 weeks); eight (26%) patients had recurrent dysphagia. Van Boeckel et al. [62] reported
dysphagia be completely relieved in 33% of patients after a median of 166 days (range: 21–559 days);
main complications take place in 22% of patients. Ibrahim et al. [58] included 20 patients management
with an ELLA-BDS found that half patients required one or more additional stent insertion after
a follow-up of six months. Moreover, Van Hooft et al. [63] concluded that an EllA-BDS insertion
was an effective one-step management in 60% patients for an esophago gastric anastomotic stricture,
obstruction recurred in 40% of patients and 30% of patients required endoscopic dilation after six
months follow-up. Hair et al. [61] evaluated the efficacy and safety of sequential ELLA-BDS insertion
in RBES patients. In sum, 59 stents were inserted in 28 patients. The mean dysphagia-free period
was 90 days (range: 14–618 days) after initial stent placement. Clinical success (without dysphagia
of ě6 months) was acquired in 25% patients. The mean dysphagia-free period was 55 days (range:
25–700 days) with clinical success acquired in 15% of patients after a second BD stent insertion.
The median dysphagia-free period was 106 days (range: 90–150 days) after the third BD stent insertion,
but none of the patients were clinically dysphagia free. These studies concluded that a single ELLA-BDS
placement is only temporarily effective in most patients. The major complications were vomiting and
retrosternal pain. After one, two and three ELLA-BDSs insertion, the main complications take place
in 29%, 8% and 28% of patients, respectively [66]. Sequential ELLA-BDS insertion can be an effective
alternative for a severe RBES to avoid frequent serial dilations.
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Figure 6. (A) Stent; obstructing adenocarcinoma in the distal esophagus (B); fluoroscopic control of
stent deployment with radiopaque contrast agent (C); and endoscopic control of Ella-SX BD stent
position (D) [75]. Preliminary clinical application show that the stent relieve obstruction treatment
effect is obvious. Copyright permission from Elsevier.

In contrast to the PLLA-BDS, the ELLA-BDS has shown some promising results. An initial case
series with the ELLA-BDS for esophageal strictures [51,56,58,62,63] showed a low migration rate (0% to
22%) and an acceptable clinical success rate (33% to 60%). Current research has shown the uncovered
ELLA-BDS allows stent embedding to the esophageal wall and significantly reduces the migration
rate but can induce significant hyperplastic tissue reactions [52,53,55,61,63]. Nine studies systematic
review of 157 patients with benign esophageal strictures showed the following results: 96% of technical
success rate, 54.67% of clinical success rate, 13.98% of early stent migration rate, and 14.54% of tissue
hyperplasia rate [48–50,62,64,70,71].
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Table 1. Result of biodegradable stents in esophageal strictures.

Study (Year) Year Stent Type Study
design n Indication Follow-up Relief

dysphagia
Migration

(%)
Hyperplasia

(%) Complication (%) Clinical
success (%)

Goldin et al. [47] 1996
PLLA Instent

Improve Instent
Retrospective 3

BES
2–3 weeks 3(100) 3(100) 0 0

2 2 months 2(100) 0 0 0 2(100)

Fry et al. [3] 1997 PLLA Instent Case report 1 BES 6 weeks 1(100) 0 0 Proximal stent
collapsed, removed 1(100)

Tanaka et al. [48] 2006 Tanaka-Marui
Stent PLLA Retrospective 2 BES 6 months 2(100) 0 0 0 2(100)

Satio et al. [49] 2007 Tanaka-Marui
Stent PLLA Retrospective 13 6 BES

7 RBES 7–24 months 13(100) 10(77) 10–21
days 0 0 13(100)

Satio et al. [50] 2008 Tanaka-Marui
Stent PLLA Retrospective 2 Cancer 7–24 months 2(100) 0 0 0 2(100)

Dhar et al. [51] 2009 ELLA Prospective 4 RBES 4–17 weeks 4(100) 0 0 1(25) 4(100)

Vandenplas et al. [52] 2009 ELLA Caes report 1 BES 10 months 1 0 0 Pain, vomit 1(100)

Orive-Calzada et al. [53] 2009 ELLA Case report 1 BES 2 months 1(100) 0 1(100) 0 0

Bychkova et al. [54] 2009 ELLA Case report 1 BES 6 months 0 0 0 0 1(100)

Stivaros et al. [55] 2010 ELLA Retrospective 2 1RBES 1 RT 3–4 months 2(100) 2(100) 0 1(50) Pain(1) 2(100)

Viedma et al. [56] 2010 ELLA Prospective 4 RBES mean 24 weeks 4(100) 0 3(75) 0 3(75)

Repici et al. [57] 2010 ELLA Prospective 21 RBES 25–88 weeks 9/20(45) 2(9.5) 7weeks 1(4.7) 4(18.7) Pain (3) Bleed (1) 9(43)

Ibrahim et al. [58] 2010 ELLA Retrospective 20 RBES mean 90 days 20(100) 0 12(60) 8(40)

Jung et al. [59] 2010 ELLA Case report 1 RBES 4 months 1(100) 4 weeks 0 0 Tracheoesophageal
fistula 4 weeks later 0

Güitrón-Cantú et al. [60] 2010 ELLA Case report 1 RBES 1(100) 0 1 1(100)

Hair et al. [61] 2010 ELLA Case repot 1 achalasia 8 weeks 1(100) 0 1(100) stent collapse
(Surgical resection) 0

Van Boeckel et al. [62] 2011 ELLA Prospective 18 RBES 21–559 days 6(33) 4(22) 2(11) 4(22) Pain (2)
Hematemesis (2) 6(33)

van Hooft et al. [63] 2011 ELLA Prospective 10 RBES 6 months 6(60) 2(20) 2(20) 0 6(60)

Fischer et al. [64] 2012 ELLA Retrospective 2 BES 12 months 1(50) 0 1(50) 0 1(50)
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Table 1. Result of biodegradable stents in esophageal strictures.

Study (Year) Year Stent Type Study
design n Indication Follow-up Relief

dysphagia
Migration

(%)
Hyperplasia

(%) Complication (%) Clinical
success (%)

Canena et al. [65] 2012 ELLA Retrospective 10 BES 11–21 months 10(100) 2(20) 3(30) 2(20) Pain (1)
Hematemesis (1) 3(30)

Griffiths et al. [66] 2012 ELLA Prospective 24 7 RBES + 17
cancer 6–8 months 17/22 (77)

12 weeks 2(8.3) 0
3(12.5) Bleed(1)

vomiting(1)
Hematemesis (1)

18(75)

Hirdes et al. [67] 2012 ELLA Prospective 19 cancer 51–140 days 17(89) 0 2(11) 8(42) Hematemesis (1)
pain (6) 17(89)

Hirdes et al. [68] 2012 ELLA Prospective 28 RBES 14–618 days 15(54) 3(11) 0 11(40) 7(25)

Dumoulin et al. [69] 2012 ELLA Case report 1 RBES 18 months 1(100) 4 month 0 1(100) 1(100) Pain 2 days 1(100)

Karakan et al. [70] 2013 ELLA Retrospective 7 BES 36–102 weeks 7(100) 0 4(57) 0 7(100)

Krokidis et al. [71] 2013 ELLA Retrospective 11 cancer 32–210 days 8(72)
32–201 days

3(27)
42–84 days

3(27)
111–201 days 1(9) aspiration 30 days 11(100)

Sanchez et al. [72] 2013 ELLA Case report 1 RBES 20 months 1(100) 0 0 0 1(100)

Okata et al. [73] 2014 ELLA Case report 1 RBES
Four sessions

4 BDS
the age of
5–8 years

1(100)
4–7 months 0 0 0 1(100)

Martín et al. [74] 2012 PLLA Case report 1 Cancer ESD 7 months 1(100) 1 month 0 0 food stuck in the stents 1(100)

Van den Berg et al. [75] 2014 ELLA Retrospective 10 cancer 93–166 days 8(80) 0 2(20) Pain 6(60) 1–57 days 10(100)
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8.2. Malignant Stricture

Nowadays, neoadjuvant chemoradiotherapy improves long-term survival after esophageal
surgery [76]. An interesting new concept is stent placement before neoadjuvant therapy in treat
for resectable esophageal malignancy. It could be useful as a bridge to surgery during the neoadjuvant
chemotherapy, oral solid intake improving nutritional status, nasoenteral or percutaneous feeding
tubes not required. After termination of neoadjuvant therapy, esophagectomy is scheduled shortly,
and stent-related complications can be averted. In several studies this approach has been evaluated
using different types of stents and variety of neoadjuvant therapy [62,65,66,73,75,77–82]. Systematic
review [66,68,71,75] of 57 patients with a malignant esophageal stricture obtained from four studies
showed the following results: technical success rate of 96%, relief dysphagia rate of 79.5%, clinical
success rate of 91%, early stent migration rate of 8.8%, and tissue hyperplasia rate of 14.5%.
These studies appear effective in improving dysphagia and maintaining nutrition. Complications,
though rare, were still occurring. Esophageal perforations and stent migration required urgent surgery.
Stent migration has been reported to lead to small bowel perforation or obstruction.

8.3. Leaks or Perforations

Recently, modified ELLA-BDSs with a non-BD covering made of polyurethane were used in
postoperative anastomotic leaks (n = 4) and benign esophageal perforations (n = 1) [83]. The initial
technical success rate was 100%, clinical success rate was 80% and the stent migration rate was
60%. They considered that use of biodegradable material for covering the stents for the treatment
of esophageal anastomotic leaks or perforations is technically feasible and safe. Nonaka et al. [84]
designed a new biodegradable covered stent for the repair of emergent esophageal perforation in four
pigs. The stent is composed of a 1:1 copolymer of PLA and PCL reinforced with PGA fibers. The stent
was inserted inside the esophagus endoscopically to cover the perforation. It was observed at one
week after the implantation but was wholly undetectable by two weeks. There was no stenosis or
any kind of infection around the repaired wall. The BDS should be a useful strategy for managing
esophageal wall injury such as esophageal ESD-related perforation.

At present, clinically available BD stent are the ELLA-BD stent (ELLA-CS, Hradec Kralove,
Czech Republic), which is consists of polydioxanone (a surgical suture material) [55] and the PLLA-BD
stent (Marui Textile Machinery, Osaka, Japan), which is composed of knitted PLLA monofilaments [48]
(Table 2).

Table 2. Currently Available Biodegradable Stents for Benign Esophageal Strictures.

PLLA stent (Marui Textile Machinery,
Japan)

ELLA stent (Hradec Kralove,
Czech Republic)

Materials Polyglycoside (knitted poly-L-lactic
acid monofilaments)

Polydioxanone (a semicrystalline,
degradable polymer)

Bioabsorption period 3–6 months 2–3 months

Length and diameter Designed according to esophageal lesion Size: 18, 20, 23, 25 mm
Length: 60, 80, 100, 135 mm

Setting Fitted over an endoscope Delivery system

Other features One end is reduced to a diameter of 5 mm
by tying with silk sutures Manual loading is needed

9. Biodegradable Drug-Eluting Stents (DES)

BDSs are known to be absorbed within 8–10 weeks, thus preventing long-term tissue reaction
and stenosis. However, hyperplastic tissue reactions have emerged as a large issue. The ingrowth
and overgrowth could cause delayed stent occlusion and restricted patency, resulting in a shortened
patient survival. The covered design minimum impact on the hyperplastic tissue reaction is still an
unsolved problem. Recently, drug-eluting stents (DES) have been recommended as a solution to
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the problem of reactive hyperplasia. Drug-eluting stents are expected to prolong stent patency by
adding anti-hyperplasia or anti-tumor functions. Theoretically, a localized delivery of drugs such
as paclitaxel or rapamycin from DES is a promising treatment method for preventing restenosis or
inflammatory cell proliferation. As first-generation material of DES, biodegradable polymers represent
the next technological modification, preliminary results are favorable in vascular system and clinical
efficacy. Many experimental studies have been done in gastrointestinally with DES with animal
models [2,85–89]. More studies on the clinical application of drug-eluting BD stents for human patients
are need in the furture.

Biodegradable Eluting Nanofiber-Covered Metal Stent

Rapamycin-eluting: Zhu et al. [85] evaluated a biodegradable rapamycin-eluting nano-fiber
membrane-covered metal stent and to assess whether placement of this stent is followed by fewer
fibroblast proliferation and tissue hyperplasia contrast to bare stents in experimental stricture in a dog
model (Figure 7). They found that rapamycin-eluting stents were more effective than bare stents for
significantly reduced fibroblast proliferation and tissue hyperplasia after stent implantation.
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Figure 7. Diagrammatic and real representation of rapamycin-eluting stents: (a) the lateral view of the
fully expanded bare cardia stent and its design parameters; (b) the antero-apical view of a schematic
diagram of a stent with a trisected offset valve designed to prevent reflux and to allow smooth passage
of food; and (c) overview of the fully expanded rapamycin-eluting stent [85]. Copyright permission
from Thieme.

Paclitaxel-eluting: Zhu et al. [86] evaluated a biodegradable paclitaxel-eluting nanofiber-covered
metal stent for mangement of benign cardia stricture in vitro and in vivo (Figure 8). The DES of BD was
more effective for management of benign cardia stricture than bare stents in a canine model. This study
shown that a DES designed to limit fibrotic scarring is effective in a large animal model. This may
become a safe and effective method for the management of benign cardia strictures in clinical practice.
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Figure 8. Fabrication stent coated with electrospun PCL fibrous membrane containing paclitaxel by
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Biodegradable electrospun drug-fiber-coated stent: Zhu et al. [87] designed and developed a
new biodegradable electrospun drug-fiber-coated stent (DFCS). The electrospun paclitaxel/PCL fibers
integrally covered the bare stent using the rotating collection method. Experimental studies have
shown that this new designed biodegradable paclitaxel/PCL microfibrous membrane-covered stent
was fabricated from blending electrospinning. The DFCS was a safe and effective method for the
treatmentfor benign cardia stricture in dog model, and can avoided inflammation and scar formation.
DFCSs may have great potential to treatment of stent-induced inflammation and scar formation in
esophageal stricture therapy.

10. Complications of Biodegradable Esophageal Stents

Since BDSs caused more retrosternal pain, restenosis relate to hyperplasia and bleedings,
complication rate of BDSs (28.6%) was twice higher than those of SEPS (14.3%) and FCSEMS
(10.6%) [90]. The most frequent reported stent-related complication was thoracic pain. After BD
stent insertion, severe thoracic pain occurred in 13.0% of patients. The retrosternal pain was caused by
the radial force of the stent against the tight stenosis and was mainly reported within the first week
after stent implantation [91–96]. However, through in vitro analysis of the radial and axial forces of
23 esophageal stent models, the BD stent had a relatively low radial force and high axial force [97].
Therefore, it is more likely that the rigid stent design of BDSs caused more spasm and pain due to
peristalsis of the esophagus.

Hyperplasic tissue reactions occur in conjunction with stent degradation and the severity of the
tissue response is another frequent complication. In one analysis, clinically relevant hyperplastic
tissue growth was reported in 7.8% of BD stents [90]. Two case series studies also shown that reactive
tissue formation is common after BD stent insertion [63,71] (Figure 9). Severe tissue hyperplasia
caused recurrent dysphagia have been reported in some cases [51,57,61,64,69]. The reaction to the
chemical processes of degradation resulting in tissue growth, which may also trigger bleedings of
esophageal mucosa.

Other potential rare complications of BDS that have been addressed are biodegradable esophageal
stents eroding into the tracheobronchial tree causing airway compromise [100], collapse of the
biodegradable stent mesh inside the esophageal lumen [57,101], tracheoesophageal fistula [59] and a
feeling of obstruction because food stuck in the BDS one months later [81].
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Figure 9. Patient with a high esophageal stricture due to recurrence of adenocarcinoma (A); contrast
swallow showing the level of the stricture (B); a 14 mm ˆ 60 mm balloon was used for predilation of
the stricture (C); and a 25 mm ˆ 60 mm biodegradable esophageal stent was inserted with the patient
under general anaesthesia(D). Contrast swallow three days later shows stent proximal migration and
the presence of a tracheoesophageal fistula (arrow) [71]. Copyright permission from Springer. Acute
esophageal necrosis, a very rare condition of unknown aetiology, is defined as “a dark, pigmented
state of the oesophagus (“black oesophagus”), with mucosal and submucosal necrosis at histology”.
Tse A et al. [98] reported a case of acute esophageal necrosisafter biodegradable stent treatment for
benign esophageal stenosis. Rejchrt et al. [99] reported three cases of black esophagus found on
endoscopy, two patients died because their underlying disease. Other predisposing factors identified
for this life-threatening condition include anticardiolipin antibody syndrome, herpes esophagitis,
severe diabetic ketoacidosis, gastric volvulus and ruptured thoracic aortic aneurysm.

11. Limitations of the Biodegradable Stents

There are several limitations of polymeric biodegradable stents [102]. BD stents are not as strong
as metallic stents, which can cause early recoil after stent placement. Slightly lower radial force of
BDS may impair their effect in dilation of tight stricture, water tight closure of leaks, and prevention
of migration. After stent implantation, stent migration is a problem for BDSs. A major reason for
this is located in the fact that the mechanical strength of the BD stent gradually suffered reduction
of support force from polymer biodegradation, which potentially led to an invalid support against
the stricture for a passage way. Therefore, further research the effect of in vitro polymer degradation
on compressive strength of BD stent is need in the future. They are associated with a significant
degree of local inflammation and the rate of bioabsorption is relatively slow, which may still result
in restenosis. Furthermore, stents are radiolucent, which may influence accurate positioning. It is
difficult to insert the stent smoothly and precisely without fluoroscopic guidance. A single polymer
has a limited mechanical properties and a recoil rate of approximately 20%. BD stent require thick
framework, but it influence on their profile and delivery capabilities, especially in small vessels [102].
The polymer stents require special storage conditions and have a shorter shelf life. Additionally, some
polymer stents may also require a special delivery system.

12. Conclusions

BDSs have shown reduced migration rates owing to its uncovered design and early studies
have reported excellent results compared to SEMS and SEPS. SEPSs and BDSs have their own special
merits such as decreasing tissue hyperplasia and eliminating the need for stent removal. However,
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hyperplastic tissue reactions, thoracic pain and migration are the most frequent complication reported
in the literature and have emerged as a main problem. When considering patients for insertion of a
BDS, the severity of tissue response and the time to complete degradation of BDSs are important factors
and are still not well acquaintance. The question of which type of BD stent should be recommend for
the effective treatment of esophageal diseases has no clear answer. Therefore, the selection of type
of BDSs for endoscopic management should be individualized. The experience of the endoscopist,
patient and stricture characteristics, especially the location and cause of the stricture, should all be
considered. To minimize tissue hyperplasia after BDSs placement, steroid injection or a drug-eluting
BD stent may be an effective option. Currently, many experimental studies in DES have been done in
the gastrointestinal region with animal models. In the future, more studies on the clinical application
of drug-eluting BD stents for human patients are needed.

Recent advances in technology have improved patency and radial force of BD stent, reduced
complications related to BD stent and resulting in an improved quality of life. However, the BDSs
of esophagus continue to undergo design to overcome their limitations. The esophagus is an acidic
environment that make the design and application of esophageal BD stent different from vascular and
colorectal stents.Further technical refinements and studies to improve and demonstrate their efficacy
are needed.
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necrosis (black oesophagus)—Report of three cases. Folia Gastroenterol. Hepatol. 2004, 2, 87–91.

100. Katsanos, K.; Sabharwal, T.; Koletsis, E.; Fotiadis, N.; Roy-Choudhury, S.; Dougenis, D.; Adam, A. Direct
erosion and prolapsed of oesophageal stents into the tracheobronchial tree leading to life-threatening airway
compromise. J. Vasc. Interv. Radiol. 2009, 20, 1491–1495. [CrossRef] [PubMed]

101. Nogales Rincon, O.; Huerta Madrigal, A.; Merino Rodriguez, B.; Gonzalez Asanza, C.; Cos Arregui, E.;
Menchen Fernandez-Pacheco, P. Esophageal obstruction due to a collapsed biodegradable esophageal stent.
Endoscopy 2011, 43, 189–190. [CrossRef] [PubMed]

102. Ron, W.; Rajbabu, P. Biodegradable and bioabsorbable Stents. Curr. Pharm. Des. 2010, 16, 4041–4051.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1443-1661.2011.01204.x
http://www.ncbi.nlm.nih.gov/pubmed/22725122
http://dx.doi.org/10.1055/s-0032-1326399
http://www.ncbi.nlm.nih.gov/pubmed/23580413
http://dx.doi.org/10.1016/j.actbio.2013.06.004
http://www.ncbi.nlm.nih.gov/pubmed/23770223
http://dx.doi.org/10.1002/bjs.9106
http://www.ncbi.nlm.nih.gov/pubmed/23553755
http://dx.doi.org/10.1021/mp500851u
http://www.ncbi.nlm.nih.gov/pubmed/25936529
http://dx.doi.org/10.1016/j.jconrel.2014.02.006
http://www.ncbi.nlm.nih.gov/pubmed/24548479
http://dx.doi.org/10.1177/2050640613476501
http://www.ncbi.nlm.nih.gov/pubmed/24917946
http://dx.doi.org/10.1016/j.gie.2007.04.031
http://www.ncbi.nlm.nih.gov/pubmed/17945227
http://dx.doi.org/10.1007/s00330-008-1151-2
http://www.ncbi.nlm.nih.gov/pubmed/18726598
http://dx.doi.org/10.1016/j.gie.2010.06.028
http://www.ncbi.nlm.nih.gov/pubmed/20883848
http://dx.doi.org/10.1007/s10620-010-1415-y
http://www.ncbi.nlm.nih.gov/pubmed/20859687
http://dx.doi.org/10.1055/s-0033-1344985
http://www.ncbi.nlm.nih.gov/pubmed/24288220
http://dx.doi.org/10.1111/j.1442-2050.2012.01432.x
http://www.ncbi.nlm.nih.gov/pubmed/23121426
http://dx.doi.org/10.1093/jscr/rjv072
http://www.ncbi.nlm.nih.gov/pubmed/26142458
http://dx.doi.org/10.1016/j.jvir.2009.07.039
http://www.ncbi.nlm.nih.gov/pubmed/19875068
http://dx.doi.org/10.1055/s-0030-1256324
http://www.ncbi.nlm.nih.gov/pubmed/21590596
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	

