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Microbial succession in response 
to pollutants in batch-enrichment 
culture
Shuo Jiao1, Weimin Chen1, Entao Wang2, Junman Wang1, Zhenshan Liu1, Yining Li1 & 
Gehong Wei1

As a global problem, environmental pollution is an important factor to shape the microbial 
communities. The elucidation of the succession of microbial communities in response to pollutants 
is essential for developing bioremediation procedures. In the present study, ten batches of 
soil-enrichment subcultures were subjected to four treatments: phenanthrene, n-octadecane, 
phenanthrene + n-octadecane, or phenanthrene + n-octadecane + CdCl2. Forty pollutant-degrading 
consortia, corresponding to each batch of the four treatments were obtained. High-throughput 
sequencing of the 16S rRNA gene revealed that the diversity, richness and evenness of the consortia 
decreased throughout the subculturing procedure. The well-known hydrocarbon degraders 
Acinetobacter, Gordonia, Sphingobium, Sphingopyxis, and Castellaniella and several other genera, 
including Niabella and Naxibacter, were detected in the enriched consortia. The predominant microbes 
varied and the microbial community in the consortia gradually changed during the successive 
subculturing depending on the treatment, indicating that the pollutants influenced the microbial 
successions. Comparison of the networks in the treatments indicated that organic pollutants and CdCl2 
affected the co-occurrence patterns in enriched consortia. In conclusion, single environmental factors, 
such as the addition of nutrients or selection pressure, can shape microbial communities and partially 
explain the extensive differences in microbial community structures among diverse environments.

Community succession is defined as the change in the species composition and abundance of an ecological com-
munity over time1, and understanding the regular patterns of changes in community structure with time is a 
basic objective of ecological research2. In nature, the community in an ecosystem is shaped by the environmental 
factors, and ecological succession occurs when these environment factors are modified. Studies of succession have 
primarily focused on animal and plant communities, and few have focused on microbial communities3. Microbes 
are the main decomposers of organic materials, and changes in microbial community are often associated with 
functional capabilities4. Furthermore, the diversity of microorganisms, particularly prokaryotes, offers the poten-
tial for adaptation to various habitats, including environments severely contaminated with hydrocarbons and 
heavy metals. This broad adaptability has great value for the bioremediation of damaged ecosystems, and the 
characterization of microbial community succession in response to pollutions could provide important insight 
into ecosystem processes.

Environmental contamination is a global problem, and most of the contaminated sites are characterized by 
the presence of complex pollutants, including inorganic and organic compounds5. Common organic pollutants 
include hydrocarbons released from oil spills, and common inorganic pollutants include heavy metals generated 
by mining activities and metallurgical industries. Aliphatic alkanes and aromatic compounds (organic pollut-
ants), the most important groups of petroleum hydrocarbons, often coexist with heavy metals (inorganic pollut-
ants) in the contaminated environments6. Among the pollutants, n-octadecane, phenanthrene, pyrene, Cd and Pb 
are prevalent in the ecosystems and they are toxic to ecosystems and humans. The removal of organic pollutants 
in the presence of heavy metals via microbial remediation is thus a fundamental topic in applied microbiology7.  
While the detection of indigenous bacteria with the capacity of hydrocarbon utilization and metal-tolerant abil-
ity, included species within the genera Alcanivorax, Bacillus, Gordonia, Dietzia, and Pseudomonas etc., in the 
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oil-contaminated soils8 has evidenced the potential of microbial remediation. Moreover, learning the key organ-
isms in the procedures of bioremediation is relevant to the development of optimal in situ bioremediation strat-
egies9. Most relevant studies have focused on the cultured bacteria10–12. However, these isolates might not be the 
dominant degraders for pollutants, and these mono- or multi-functional isolates would typically be unable to 
remediate the complex pollution. Consequently, attention has turned to microbial consortia for the degradation 
of pollutants because the degradation efficiency of these communities of organisms is higher than those of pure 
cultures13. For example, PAH-degrading microbial consortia enriched from tsunami sediments degraded PAH 
mixed with fluorene and phenanthrene nearly completely within ten days14. Several studies of microbial succes-
sions in environments polluted with phenol, toluene, and chlorinated aliphatic hydrocarbons15, heavy metals16 
and petroleum17,18, have demonstrated that microbial communities change depending on the environmental con-
ditions. These studies were conducted in complex environments, the differences in microbial community might 
be attributed to the changes in co-varying environmental factors. However, the interactions between the micro-
bial community and the changes of environmental factors are still far from clear, although these relationships are 
conducive to explore the ecological function of microorganisms.

Recently, network analysis of taxon co-occurrence patterns has been proofed as an ideal method to get 
insight view into the structure of complex microbial communities and the interactions among microorganisms, 
such as commensalism, competition and predation19. This analysis has been successfully applied to explore the 
co-occurrence patterns between microbial communities in diverse environments including marine water20, soil19 
and activated sludge21. However, the techniques employed in most studies of microbial community structures, 
such as clone library analysis, terminal restriction fragment length polymorphism (T-RFLP) and denaturing 
gradient gel electrophoresis (DGGE) targeting 16S ribosomal RNA (rRNA) genes, provide limited information 
due to the small number of sequences analyzed22. The recent combination of network analysis approaches with 
microbial datasets generated by high-throughput sequencing23 has been employed extensively to analyze micro-
bial communities in the plant rhizosphere and surrounding soil24, deep sea sediment25, wastewater treatment 
system26, and human intestinal tract27. This method can detect rare species in samples and describe the overall 
microbial community diversity28, providing opportunities to investigate the microbial community succession 
during pollutant degradation.

In the present study, we conducted a metagenomic to estimate the changes of microbial community in the 
process of hydrocarbon degradation. We selected n-octadecane and phenanthrene as typical aliphatic alkanes 
and aromatic compounds that are prevalent in oil-contaminated soil, and cadmium (Cd), a potentially hazardous 
trace metal that is highly toxic to humans, animals, plants, and microorganisms. Mixtures of these compounds are 
becoming increasingly prevalent in ecosystems. To ensure that the succession was due to the pollutions, micro-
cosms were used to provide a simple model for understanding the interactions among the environmental factors 
and the microbial community29. The response of the microbial community composition to various pollutants was 
examined via high-throughput sequencing of the 16S rRNA gene. The aim of the present study was to investigate 
the succession patterns of the microbial community in response to a distinct combination of pollutants. The 
results will be valuable for estimating the effects of relevant pollutants on microbial communities in nature and 
guiding bioremediation practices.

Results
Degradation of pollutants by various consortia.  In this study, forty enriched pollutant-degrad-
ing consortia were obtained, corresponding to the ten stages of subculture with the following four treat-
ments: phenanthrene (PHE), n-octadecane (C18), phenanthrene +  n-octadecane (PC), and phenanthrene +   
n-octadecane +  CdCl2 (PCC). These consortia exhibited a high efficiency of pollutant degradation (details avail-
able as Supplementary Fig. S1 and Table S1): 87.5%–100% with an average of 96.6–99.7% for n-octadecane in the 
C18, PC and PCC treatments; and 29.5–95.8% with an average of 74.5–81.4% for phenanthrene in the PHE, PC 
and PCC treatments. In PC, the efficiency with which n-octadecane was degraded was unchanged, but the phe-
nanthrene degradation was decreased compared with in PHE. In PCC (containing CdCl2), the biodegradation of 
both n-octadecane and phenanthrene was significantly decreased compared with in the other treatments.

Bacterial composition of the consortia.  After the quality filtering and the removal of chimeric 
sequences, the entire sequencing data set containing 1,249,221 sequences was obtained from the forty consortia 
and the original soil samples. The average number of sequences per sample (n =  41) was 30,469 (max =  63,878, 
min =  15,006, SD =  11,429). The total OTU number was 29,014, defined at 97% sequence similarity (Table 1). 
Among these OTUs, 90.53% (26,267 OTUs) were assigned to 38 phyla, 92 classes, 155 orders, 236 families and 
694 genera (Supplementary Table S2). The original soil contained the highest number of OTUs and microbial 
taxa compared with the treatment consortia. At the phylum level, Proteobacteria and Bacteroidetes were the 
predominant groups in each treatment and the original soil, with relative average abundances of 56.28% and 
34.66%, respectively. The abundance of Proteobacteria was greater than that of Bacteroidetes in the original soil 
(ratio of these two phyla, 55.30/23.10), PHE (63.33/29.51), PC (51.82/40.43) and PCC (72.86/24.02), whereas 
the opposite relationship was observed in C18 (37.19/45.86). Greater differences were observed at the class level 
among the distinct consortia (Supplementary Fig. S2). Betaproteobacteria was the dominant group in original soil 
and PC, with relative average abundances of 21.70% and 29.03%, respectively; Gammaproteobacteria was most 
abundant in PCC, at 47.38%; Alphaproteobacteria and Betaproteobacteria were dominant in PHE consortia; and 
Sphingobacteriia was prominent in C18.

Pollutant effects on microbial patterns.  Principal coordinate analysis (PCoA) (Fig. 1a) revealed that 
the bacterial community structure varied across treatments, with significant differences in bacterial diversity at 
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the species (Bray-Curtis RANOSIM =  0.3305, P <  0.001; R2
ADONIS =  0.2265, P <  0.001) and genetic levels (Weighted 

UniFrac RANOSIM =  0.3048, P <  0.001; R2
ADONIS =  0.2828, P <  0.001).

Significant taxonomic differences between treatments were examined using LDA (least discriminant anal-
ysis) effect size (Lefse) based on the 108 main taxa (relative abundance > 1%). The resulting significant taxa 
were used to generate taxonomic cladogram illustrating the differences among treatments (Fig. 1b). The classes 
Actinobacteria, Sphingobacteria and Cytophagia and the genera Acinetobacter, Gordonia, Devosia, Bdellovibrio, 
Microbacterium, Aeromicrobium, Aquamicrobium, Nitrobacter and Nakamurella were abundant in C18. In 
PHE treatment, the significantly abundant taxa were Alphaproteobacteria and Spartobacteria at the class level; 
Bradyrhizobiaceae and Oxalobacteraceae at the family level; and Sphingobium, Sphingomonas, Novosphingobium, 
Naxibacter and Nitrosomonas at the genus level. The phyla Betaproteobacteria, orders Rhodospirillales and 
Burkholderiales, families Comamonadaceae and Acetobacteraceae and genera Hydrogenophaga were significantly 
abundant in the consortia of PC. In PCC, the phyla Gammaproteobacteria, the orders Pseudomonadales, and the 
genera Delftia, Dokdonella, Pigmentiphaga, and Aquabacterium were abundant.

The selection of main taxa explaining the strongest variation between the treatments by the random forest 
(RF) supervised-learning classification model presented low OOB error rate 0.20 ±  0.12, indicating the model 
was adequate. The first 50 important taxonomic features for treatment prediction in these models were visualized 
using a heatmap (See detail in Supplementary Fig. S3), and they were mainly consistent with the significant taxa 
identified by Lefse (listed in the Supplementary Table S3), confirming the stability of the observations.

Soil and 
treatments

No. of high quality reads Observe OTU97

Diversity Index

Chao1 Shannon Simpson Pielou’s evenness

Average SD* Average SD Average SD Average SD Average SD Average SD

Soil 19 399 – 3240 – 5900.94 – 9.77 – 0.99 – 0.83 –

C18 36 253 16211 1655 395 4413.13 996.93 6.46 1.21 0.92 0.09 0.57 0.09

PHE 24 763 7160 1672 485 4841.88 1317.36 5.94 1.42 0.86 0.14 0.54 0.12

PC 29 635 9345 1651 280 4704.92 572.90 6.19 0.76 0.91 0.05 0.55 0.06

PCC 32 331 9360 1272 355 3987.50 778.89 4.57 1.33 0.74 0.16 0.42 0.11

Table 1.   Microbial alpha-diversity characteristics for enriched consortia and original soil. *standard 
deviation.

Figure 1.  Distinct microbial patterns of the different treatments. (a) Weighted UniFrac distance principal 
coordinate analysis (PCoA) of microbial communities among the forty consortia in the four treatments. 80% 
confidence ellipses are shown around each treatment group. (b) LDA effect size taxonomic cladogram comparing 
all consortia categorized according to treatments. Significantly discriminant taxon nodes are colored, and branch 
areas are shaded according to the highest-ranked variety for that taxon. The yellow nodes correspond to taxa that 
were not significantly differentially represented between treatment groups. Highly abundant and selected taxa are 
indicated: a, Microbarterium; b, Nakamurella; c, Nakamurellaceae; d, Gordonia; e, Nodcardiaceae; f, Nitrobacter; g, 
Aeromicrobium; h, Nocardiodidaceae; i, Phyllobacteriaceae; j, Novosphingobium; k, Sphingobium; l, Pigmentiphaga; 
m, Aquabacterium; n, Nitrosomonadaceae; o, Delftia; p, Hydrogenophaga; q, Comamonadaceae; r, Naxibacter; 
s, Oxalobaceraceae; t, Nitrosomonas. For the complete list of discriminate taxa and ranks used to generate this 
cladogram, see Dataset S1.
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Microbial community succession.  In the OTU-based analyses, the alpha diversity, including OTU 
richness, Chao1 richness, Shannon’s index and Pielou’s evenness, significantly decreased from the beginning 
to the later stages, as determined by linear regressions (Supplementary Fig. S4). PCoA based on distances of 
beta diversity distance revealed that the community structures were similar at the initial stage in the consortia 
of the different treatments and became increasingly dissimilar during the process of enrichment, and the final 
treatment-specific consortia were differentiated (Fig. 2). Plotting the dissimilarity in community composition 
between the first subculture and other subculture stages for each of the treatments (Supplementary Fig. S5a and b)  
revealed that the dissimilarities rapidly increased to a plateau of 80% from the third subculture (30 d) for all treat-
ments. The dissimilarities between two adjacent subcultures within each treatment were decreased throughout 
the subculture procedure (Supplementary Fig. S5c and d), indicating that the consortium community became 
stable with the process of enrichment culture.

To investigate the change patterns in microbial succession, we divided the ten stages into three phases: phase 
I (the initial 1st–3rd subcultures), phase II (the intermediate 4th–7th subcultures) and phase III (the final 8th–10th 
subcultures). The differences in microbial composition among the different treatments in each phase tested with 
ANOSIM and ADONIS are presented in Table 2. In phase I, the microbial community compositions did not 
differ significantly among the treatments (P >  0.1). By contrast, in phase II and III, significant differences were 
observed; the differences among the treatments were larger in phase III than in phase II. PCoA analysis revealed 
that the confidence ellipses of four treatments consortia enlarged gradually from phase I to phase III, suggesting 
that the differences in community structure increased as enrichment progressed (Supplementary Fig. S6). These 
differences were also confirmed by the microbial compositions estimated from the top 500 most abundant OTUs 
(Fig. 3). Initially, the relative abundances of these OTUs were primarily homogeneous (Pielou’s evenness =  0.827). 
The addition of pollutants remarkably changed the relative abundances of these OTUs, even in the first phase. 
After ten stages, pollutant-specific degraders were enriched from low abundance, and the microbial communities 
were stabilized. For example, when C18 was added, the relative abundance of Pseudomonadaceae increased from 
less than 1% in phase I to 20.54% in phase III. By contrary, Planctomycetaceae and Chitinophagaceae decreased. 
In addition, OTUs belonging to Sphingobium, Flavobacteriaceae and Pseudomonadaceae were predominant, 
accounting for nearly 60% in PHE, 30.41% in PC, and 66.41% in PCC in the final phases.

The Venn diagram of the relative abundances of the first 20 OTUs within the initial soil and the phases III con-
sortia (Supplementary Fig. S7) revealed that no OTUs in the initial soil were detected in the enriched consortia, 

Figure 2.  Microbial community succession. Weighted UniFrac (a) and Bray-Curtis (b) distance principal 
coordinate analysis (PCoA) of microbial communities among the forty consortia in the four treatments. The 
numbers accompanying the symbols represent the stages of enrichment culture. The directional development of 
the communities is indicated with arrows.

Phases

Bray–Curtis weighted UniFrac

ANOSIM ADONIS ANOSIM ADONIS

R P R2 P R P R2 P

I 0.068 0.297 0.278 0.412 − 0.028 0.576 0.287 0.341

II 0.722 0.001 0.490 0.001 0.677 0.001 0.578 0.001

III 0.951 0.001 0.760 0.001 0.889 0.001 0.819 0.002

Table 2.   ANOSIM and permutational MANOVA of microbial diversity among different treatments in 
three phases.
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except a single overlapping OTU in PCC. Among the 20 most abundant OTUs, 7 to 9 were treatment specific, 
and 5 OTUs belonging to Pseudomonadaceae, Comamonadaceae, Flavobacteriaceae, Xanthomonadaceae and 
Sphingomonadaceae were shared by all the enriched consortia. The remaining OTUs were shared by some of the 
different treatments, in which PHE-PC and C18-PC had the largest overlaps with 10 OTUs.

Comparison of co-occurrence networks among treatments.  The co-occurrence networks and the 
related topological properties for each treatment were presented in Fig. 4 and Table 3. The edge number in the 
obtained networks that present the correlations among the members in the communities varied between 513 for 
PHE and 95 for PC. The microbial community of PHE exhibited the highest node connectivity, with an average 
degree of 13.865, whereas that of C18 was lowest, with an average degree of 2.833. The average path length ranged 
from 2.695 to 5.620 edges, indicating that the average network distance was variable among all pairs of nodes. 
Furthermore, the highest (0.190) and the lowest (0.034) densities of the networks were also found in PHE consor-
tia and C18 consortia, respectively, consisting with the clustering coefficient or the degree to which nodes tend to 
cluster together. In general, the PHE consortia hold more complex and compact correlation than PCC, followed 
by PC and C18.

Discussion
Aiming at revealing the ecological effects of different contaminants and combinations of contaminants, we con-
ducted a meta-analysis of the microbial community structure during an enrichment procedure.

Firstly, we observed that the organic pollutants played a role in selection of microbial degraders as sub-
strates and as environmental factors. Among the pollutants used in the present study, only the organic pollutants 
n-octadecane and phenanthrene can be used as energy and carbon sources by chemoheterotrophs in the micro-
cosms; therefore, all the bacteria in the consortia should be related to the degradation of these two compounds, as 
evidenced by the rates of removal of n-octadecane and phenanthrene in the microcosms (Supplementary Fig. S1).  
The higher removal rates of n-octadecane are reasonable because this straight-chain alkane is easier to utilize 
than phenanthrene (a polycyclic aromatic hydrocarbon) by the microorganisms. The community structure 

Figure 3.  Pie charts of microbial composition at the OTU level for the 500 most abundant OTUs in the 
initial soil and the enriched consortia of the three phases of different treatments. 
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analyses of the consortia clearly revealed variations of the composition and relative abundance of the phylogenetic 
groups among the four treatments (Fig. 1b). For example, the primary degraders were Acinetobacter, Gordonia, 
Devosia and Bdellovibrio for n-octadecane in the C18 treatment; Sphingobium, Sphingomonas, Novosphingobium 
and Naxibacter for phenanthrene in the PHE treatment; Hydrogenophaga for the mixture of phenanthrene and 
n-octadecane in the PC treatment; and Delftia, Dokdonella, Pigmentiphaga, and Aquabacterium for the mixture 
of phenanthrene and n-octadecane in the presence of CdCl2 (PCC treatment).

The variation described above indicates that the differences in the microcosms (pollutants and the combina-
tion of pollutants) resulted in strong selection for the microbes in the consortia, consistent with the results of a 
previous study30. Significant effects of the different pollutants on microbial taxonomic dissimilarity (Bray–Curtis) 
and genetic diversity (Weighted UniFrac) were also revealed by the statistical analysis. These results likely suggest 
that organic pollutants, such as nutrient and heavy metal (CdCl2), function as environmental stresses for the 
selection of microorganisms30,31. However, the different compositions of decomposing bacteria between the PC 
treatment and the single-contaminant (C18 or PHE) treatments merit further study. In the final consortium of 

Figure 4.  Network of co-occurring bacterial genera based on correlation analysis. A connection indicates 
a strong (Spearman’s ρ  >  0.6) and significant (P <  0.01) correlation. The size of each node is proportional to 
the relative abundance; the color shade from dark-blue to yellow of each node is proportional to the number 
of connections (degree) from large to small, and the thickness of each connection between two nodes (edge) is 
proportional to the value of Spearman’s correlation coefficients.

Treatment Node Edge Modularity
Clustering 
coefficient

Average 
path length

Network 
diameter

Graph 
density

Average 
degree

C18 84 119 0.776 0.400 5.620 10 0.034 2.833

PHE 74 513 0.335 0.582 2.695 6 0.190 13.865

PC 56 95 0.753 0.469 4.119 9 0.062 3.393

PCC 55 203 0.429 0.540 2.762 6 0.137 7.382

Table 3.   Topological properties of co-occurring networks among different treatments.
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PC, the main decomposers were not a combination of those in C18 and PHE, demonstrating that the pollutants 
n-octadecane and phenanthrene not only functioned as substrates for degraders, but also as environmental fac-
tors for the selection of soil bacteria. That is, the presence of both n-octadecane and phenanthrene resulted in the 
simultaneous selection of degrader bacteria and toxic effects on the bacteria that are unable to degrade the com-
pound. Thus, the microbial community for degradation the mixed pollutants is not simple as the combination of 
single compound degraders. A related study reported that the types of petroleum mixture can select the microbial 
population in soil environments32. Moreover, mixed contamination with heavy metals and PAHs can influence 
the microbial structure and function in soil30.

Secondly, the results clearly demonstrated that different pollutants and their combinations influenced the 
succession of bacterial community in distinct directions. To understand the direction and rate of the processes 
catalyzed by environmental microbial communities, we monitored the microbial diversity in the present study33. 
The decrease in richness, diversity and evenness of the microbial community during enrichment subcultures 
indicated that the consortia gradually matured. The gradual increase in the dissimilarities of the consortia com-
position among the different microcosms also confirmed this conclusion (Fig. 3, also Supplementary Fig. S6). 
The high complexity of the microbial communities presented in the initial stages of subcultures might reflect the 
intrinsically high and stochastic microbial influx from the initial soil34. These results are consistent with those of 
a previous study demonstrating that microorganisms with a potentially high growth rate are selected and become 
dominant with a consequent reduction in the evenness of the species distribution during batch-enrichment 
culture35.

Temporal variations based on taxonomic and phylogenetic beta-diversity, an often overlooked crucial aspect 
of microbial communities, can be elucidated based on a succession framework34. As succession proceeds, some 
microorganisms with low abundance in the initial phases gradually become dominant, whereas microbes 
that were initially predominant become depleted (Fig. 3). These changes might reflect the selection of pollut-
ants as carbon/energy source and environmental stresses, similar to the progressive increase observe during 
composting; this selection is likely associated with the biochemical evolution of the microcosms in terms of 
growth-supporting substrates and niches36. In oil-polluted soil, fertilizer induces clear changes in the bacterial 
communities37. Pollutants trigger the directional succession of bacterial communities during the early stages of oil 
pollution, including in planted soils38. In addition, some studies have demonstrated that multiple biostimulation 
can remarkably alter the bacterial community18. The results of the present study suggest that a single environ-
mental factor such as added nutrients or selection pressures, can significantly alter the microbial community 
structure and succession, potentially explaining the large differences in microbial community structures observed 
in diverse environments.

Thirdly, the microbial community structure and its succession were the result not only of interactions between 
microorganisms and environmental factors (pollutant compounds and presence of CdCl2), but also interactions 
among the microorganisms in the community. The more complex and compact network in the PHE consortia 
compared with the C18 consortia indicates that the members responding to phenanthrene degradation were 
more strongly correlated with each other and that the microbial community was more stable. Because phenan-
threne is more difficult to utilize than n-octadecane, the cooperations among the microbes in the consortia might 
be more important for phenanthrene degradation. Accordingly, the PCC network was more complex and com-
pact than the PC network. In addition, less cooperation among the microbes was observed in the PC and PCC 
consortia than in the PHE consortia. It could be explained that in the PC and PCC treatments, more types of 
microorganisms were enriched in the presence of the easily utilized n-octadecane compared with phenanthrene 
alone. Therefore, the strength of the co-operation in the microbial community increases with the increasing stress 
applied. Network topology not only provides an overview of the patterns of co-occurrence of microbial taxa 
within a given ecosystem, but also reveals the effect of these patterns on ecosystem properties39. For microorgan-
isms, environmental filtering predicts the specific habitat limits and is affected by abiotic factors that can support 
the coexistence of species within the communities40. The comparison of network topology properties between 
different environments or ecosystems can reveal effect of environment on the microbial community assembly.

Fourthly, some genera were recorded for the first time as bacteria associated with the degradation of petroleum 
hydrocarbon in the present study. Numerous studies of the isolation and identification of pollutant-degraders have 
been conducted. Many of the bacteria playing key roles in n-octadecane degradation belong to Exiguobacterium, 
Burkholderia, Bacillus, and Pseudomonas, and phenanthrene-degraders within the genera Pseudomonas,  
Burkholderia, Rhodococcus, and Acinetobacter have also been reported41. Except the observation of above men-
tioned degraders, many other bacteria such as Bosea, Simplicispira, Pigmentiphaga, Algoriphagus etc. may also 
participated the degradation of employed pollutants, as degraders or by co-metabolism.

At the genus level, Acinetobacter, Gordonia, Castellaniella and Sphingobium might be n-octadecane degrad-
ers and were present in >5% of relative abundance at the final phase in the C18 consortia (Supplementary 
Table S4). These microbes have also been reported as alkane degraders in previous studies11,42,43. However, the 
detection of Niabella with a relative abundance of 6.84% in our C18 consortia, as well as in other three treat-
ments, indicated it a novel member associated with the phenanthrene degradation. The genera Sphingobium, 
Sphingopyxis, Castellaniella, Terrimonas, and Hydrogenophaga might be the main phenanthrene-degraders, 
accounting for 90.27% of the total reads in the PHE enriched consortia (Supplementary Table S4). Sphingobium 
has been reported as common degraders of PAHs44 with the ability to degrade crude oil, diesel, and kerosene in 
crude oil-contaminated seashore45. Terrimonas and Hydrogenophaga were previously reported in PAH-degrading 
microbial communities46. Castellaniella degrades alkanes43 but has not been implicated in the degradation of 
PAHs.

When the CdCl2 was present, the genera Delftia, Sphingobium, Dokdonella, Hydrogenophaga, Stenotrophomonas,  
Pseudoxanthomonas, Acinetobacter, Naxibacter, Chryseobacterium, and Nocardia were predominant. These 
microorganisms might exhibit both hydrocarbon-degradation and metal-tolerant, but many of these microbes 
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have been reported as bacteria associated with hydrocarbon degradation, and not metal tolerance. Delftia, 
Stenotrophomonas and Pseudoxanthomonas have been identified as PAH degraders12,47. Dokdonella was detected 
previously in the PAH-degrading consortia enriched from tsunami sediments14. Naxibacter exhibits high arsenic 
resistance48, and was initially identified in a hydrocarbon-degrading consortium.

To our knowledge, this study is the first to systematically depict the community structure of enriched 
microbial consortia degrading different pollutants, even in the presence of heavy metals, via high-throughput 
sequencing of the 16S rRNA gene. In the present study, four treatments finally induced four pollutants-degrading 
consortia through enrichment, and their richness, diversity and evenness of these populations decreased in suc-
cessive subcultures. These consortia predominantly comprised known petroleum hydrocarbon degraders, such 
as Acinetobacter, Gordonia, Sphingobium, Sphingopyxis and Castellaniella. Several genera were novel record as 
bacteria associated with the degradation of petroleum hydrocarbon, such as Niabella and Naxibacter. In addition, 
the primary degrading groups differed among consortia responding to different pollutants. A few predominant 
microbial members were shared among the different treatments, even when the same carbon source was supplied 
in some cases. The results of the present study also indicate that different pollutants influence the direction of 
microbial succession, resulting in distinct consortia from identical initial microbial community. Moreover, com-
paring the properties of networks between treatments revealed that pollutants affect the microbial co-occurrence 
patterns. Overall, these results suggest that single environmental factors such as added nutrients or selection 
pressures, can significantly alter the microbial community structure. Thus, multiple factors should be considered 
in bioremediation practices.

Methods
Sampling sites.  The contaminated surface soil sample (0–30 cm depth) used in the present study was col-
lected around an oil refinery (E 108°46′ 09″ and N 34°21′ 35″) in Xianyang City, Northwest of China. This site has 
been continuously polluted with the discharged wastewater for more than 25 years and the concentration of total 
petroleum hydrocarbons (TPH) was 2.64 ±  0.01 g kg−1 of dry soil. The soil sample was stored at 4 °C in a sealed 
plastic bag until further use. To prepare the inoculum, 20 g of fresh soil was suspended in 180 ml of 0.85% NaCl 
solution. After agitation for 10 min at 240 rpm, an aliquot of 20 ml of supernatant was subsequently transferred to 
a 500-ml flask containing 180 ml of basal salt medium (BSM) and pollutants.

Enrichment Cultures.  The BSM used in the present study contained 4 g of K2HPO4, 4 g of Na2HPO4, 
2 g of (NH4)2SO4, 0.2 g of MgSO4·7H2O, 0.001 g of CaCl2·2H2O, and 0.001 g of FeSO4·7H2O in 1 l of distilled 
water, pH 7, adjusted with 1 N H2SO4. After autoclaving at 121 °C for 15 min, the BSM was supplemented with 
one of the following: (1) 500 mg l−1 of phenanthrene (PHE), (2) 500 mg l−1 of n-octadecane (C18), (3) 250 mg 
l−1 of phenanthrene +  250 mg l−1 of n-octadecane (PC), and (4) 250 mg l−1 of phenanthrene +  250 mg l−1 of 
n-octadecane +  50 mg l−1 of CdCl2 (PCC). Briefly, the organic materials dissolved in dichloromethane were added 
to empty flasks and the solvent was evaporated; BSM was then added and the mixture was inoculated with a soil 
suspension (inoculum). Flasks were prepared incubated in triplicate for each treatment and incubated with shak-
ing at 150 rpm in the dark at 28 ±  2 °C; flasks without inoculum were prepared as blank controls. Ten successive 
subcultures were prepared by transferring 10% (v/v) of the culture to a subsequent subculture in 10-day intervals 
for a total treatment period of 100 days. Cells from the consortium of each subculture were collected after cen-
trifuging at 10,000 × g for 15 min at room temperature for DNA extraction. The residual organic materials were 
extracted from the supernatant in an equal-volume of dichloromethane, and the concentration was determined 
by gas chromatography with flame ionization detection (GC-FID) (method in Supplementary Information). The 
biodegradation percentage was calculated as the difference in the concentrations of the pollutants between the 
blank control and the treatments.

DNA preparation and MiSeq sequencing.  Metagenomic DNA was extracted from the initial soil sample 
and each of the enriched microbial consortia using the MP FastDNA® SPIN Kit for soil (MP Biochemicals, Solon, 
OH, USA) and the SDS-CTAB method, respectively. The V4–V5 hypervariable region of the 16S rRNA gene was 
amplified using the primers 515F (5′-GTG CCA GCM GCC GCG GTA A-3′) and 926R (5′-CCG YCA ATT YMT 
TTR AGT TT-3′) with a sample tagging approach. These primers are complementary to the Illumina forward, 
reverse, and multiplex sequencing primers (with the reverse primer also contains a 12-bp index to permit multi-
plexing). Amplification was conducted using a PCR thermal cycler Model C1000 (Bio-Rad, Richmond, CA). The 
total volume of the reaction mixture was 50 μ l and included 0.5 μ l of each primer (50 pmol each), 5 μ l of 2.5 mmol l−1  
dNTP mixture, 5 μ l of 10 ×  ExTaq buffer (20 mmol l−1 Mg2+; TaKaRa Inc., Dalian, China), 0.25 μ l of ExTaq 
DNA polymerase (TaKaRa), 1 μ l of the sample DNA template and 37.75 μ l of Milli-Q water. The cycle conditions 
included initial denaturation at 94 °C for 3 min, followed by 30 cycles of denaturation at 94 °C for 30 s, annealing 
at 50 °C for 30 s and extension at 72 °C for 30 s, and an extension step at 72 °C for 5 min after cycling was complete. 
All samples were amplified in triplicate, and no-template controls were included in all steps of the process. Next, 
5 μ l of each reaction mixture was analyzed by electrophoresis on a 2% (w/v) agarose gel, and the PCR products 
were gel-purified using a QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany). The concentrations of the 
amplicons were determined using the Quant-iT PicoGreen dsDNA reagent kit (Life Technologies, Merelbeke, 
Belgium), and the purified amplicons from each consortium were combined in equimolar ratios. The amplicons 
were subsequently vacuum dried and sequenced using an Illumina MiSeq (250-bp paired-end reads) platform at 
Macrogen Inc. (http://www.macrogen.com, Seoul, South Korea).

Sequence analysis of the 16S rRNA amplicons.  The reads from each of the DNA samples were merged 
using FLASH (V1.2.7, http://ccb.jhu.edu/software/FLASH/), and quality filtering of reads was performed as pre-
viously described49. The acquired sequences were denoised (homopolymer error-correction) using Denoiser 
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V0.91 software according to the manual. Chimeric sequences were removed using the USEARCH software based 
on the UCHIME algorithm50. The sequences were subsequently assigned to each sample with a 12-bp barcode 
using a script derived from the QIIME pipeline. The remaining sequences from all samples were clustered into 
Operational Taxonomic Units (OTUs) at 97% sequence similarity using an “uclust” model (search and clustering 
orders of magnitude faster than BLAST). The representative sequences for each OTU were assigned to taxonomic 
groups using the RDP classifier at an 80% confidence threshold.

Data analyses.  Prior to data analysis, a subsample of a minimum number of sequences (15,000) from each 
sample was used to remove all potential side effects of the sample size. For alpha diversity analysis, Chao1 rich-
ness, OTU richness, Pielou’s evenness and Shannon index were calculated with 3 iterations using a step size of 
100 sequences per sample. To identify connections between the treatments and the microbial patterns, the beta 
diversity between the enriched consortia was estimated based on the pairwise Weighted UniFrac and Bray-Curtis 
dissimilarity distances with QIIME (http://qiime.org/index.html). PCoA was performed on the distance matrices 
to visualize the sample relationships.

ANOSIM51 and permutational multivariate analysis of variance (ADONIS)52 were performed to deter-
mine whether sample classifications (different treatments) contained significant differences in phylogenetic or 
species diversity based on Weighted UniFrac and Bray-Curtis distance matrices. Significant taxonomic differ-
ences between treatments were tested using LDA effect size (Lefse)53. We employed the factorial Kruskal-Wallis 
sum-rank test (α  =  0.05) to identify taxa with significant differential abundances between treatments (using 
one-against-all comparisons), followed by LDA (LDA > 2) to estimate the effect size of each differentially abun-
dant feature. The resulting significant taxa were used to generate a taxonomic cladogram illustrating differences 
between treatments.

Together, Random forest (RF) supervised-classification models54 were used to identify taxonomic features 
explaining the strongest variation between treatments and evaluate the diagnostic strength of these features 
to discriminate against classifications. Using taxonomic assignments of OTUs as predictors and treatments as 
class labels, models were constructed with an optimal number 2000 trees; the OOB errors did not decrease with 
increasing tree number, that evidence the appropriateness of the RF supervised-classification models in this study. 
RF provides a measure to estimate the importance of features (taxa) based on the mean decrease in classification 
accuracy with permutation.

The network was used to explore co-occurrence patterns of microbial taxa. The consortia from ten stages of 
each treatment were grouped to generate a network. The genera with relative abundances greater than 0.05% were 
selected. A Spearman’s correlation between two genera was considered statistically robust when the Spearman’s 
correlation coefficient (ρ ) was >0.6 and the P-value was <0.0119. All robust correlations identified from pairwise 
comparison of the genera abundance formed a correlation network in which each node represented one genus, 
and each edge represented a strong and significant correlation between the nodes. To describe the topology of the 
resulting networks, a set of measures (number of nodes and edges, average path length, network diameter, average 
degree, graph density, clustering coefficient and modularity) was calculated and networks were visualized using 
the interactive platform Gephi55.

All statistical analyses were performed in the R environment (http://www.r-project.org) using vegan56, 
igraph57 and Hmisc58 packages.
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