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Humans have a remarkable ability to predict the actions
of others. To address what information enables this
prediction and how the information is modulated by
social context, we used videos collected during an
interactive reaching game. Two participants (an
‘‘initiator’’ and a ‘‘responder’’) sat on either side of a
plexiglass screen on which two targets were affixed. The
initiator was directed to tap one of the two targets, and
the responder had to either beat the initiator to the
target (competition) or arrive at the same time
(cooperation). In a psychophysics experiment, new
observers predicted the direction of the initiators’ reach
from brief clips, which were clipped relative to when the
initiator began reaching. A machine learning classifier
performed the same task. Both humans and the
classifier were able to determine the direction of
movement before the finger lift-off in both social
conditions. Further, using an information mapping
technique, the relevant information was found to be
distributed throughout the body of the initiator in both
social conditions. Our results indicate that we reveal our
intentions during cooperation, in which communicating
the future course of actions is beneficial, and also during

competition despite the social motivation to reveal less
information.

Introduction

Walking down a busy street, remarkably, does not
result in many people bumping into one another. When
someone is walking directly toward you, you seamlessly
predict the result of their action—a collision—and
almost effortlessly adjust your path to pass by them.
Similar predictions of actions are made when the
barista hands you a coffee, or you shake a colleague’s
hand in greeting. Our ability to predict actions is
essential in many social interactions (Frith & Frith,
2006), and may arise from the knowledge of biome-
chanical constraints of human movements (Johansson,
1973). In this paper, we would like to answer the
following questions: What parts of the body reveal our
actions to others? Do the informative regions of the
body change through time? Does our ability to predict
the actions of others vary depending on social context?
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Finally, do our social motivations change the avail-
ability of informative cues to others?

Previous studies have demonstrated humans’
predictive ability when viewing the actions of others.
For simple reaching actions, typical viewers have
been shown to be able to predict the location of a
movement’s target before the movement was com-
pleted (Louis-Dam, Orliaguet, & Coello, 1999;
Martel, Bidet-Ildei, & Coello, 2010; Pesquita,
Chapman, & Enns, 2016; Vaziri-Pashkam, Cormiea,
& Nakayama, 2017), and eye movements have been
shown to follow the predicted direction of move-
ment (Ambrosini, Pezzulo, & Costantini, 2015;
Elsner, Falck-Ytter, & Gredebäck, 2012; Flanagan
& Johansson, 2003; Flanagan, Rotman, Reichelt, &
Johansson, 2013; Rotman, Troje, Johansson, &
Flanagan, 2006). In more complex interactions such
as competitive sports, it has been shown that
humans and especially expert athletes can predict
the consequence of actions in the physical world
(Abernethy, Gill, Parks, & Packer, 2001; Abernethy
& Zawi, 2007; Aglioti, Cesari, Romani, & Urgesi,
2008; Diaz, Fajen, & Phillips, 2012; Knoblich &
Flach, 2001; Muller, Abernathy, & Farrow, 2006;
Ranganathan & Carlton, 2007); for example, they
can predict the direction of a soccer ball after
viewing a videoclip (Diaz et al., 2012). Further, it
has been suggested that the information enabling
action prediction arises from kinematic features of
the movement (Cavallo, Koul, Ansuini, Capozzi, &
Becchio, 2016).

In a recent study (Vaziri-Pashkam et al., 2017), we
investigated how humans predict the actions of others
in a competitive reaching game. Participants re-
sponded remarkably fast relative to when their
partner began reaching, suggesting that visual infor-
mation was available prior to the explicit beginning of
the movement (the lift-off of the finger from the
starting point). Indeed, reaction times increased
markedly (by around 100 ms) when predictive
information prior to the start of movement was
removed. Further, the information was not isolated to
a single body part, as occluding large nonoverlapping
sections of the body did not reduce reaction times.
These results indicate the use of distributed predictive
cues to actions, but they do not reveal the full
spatiotemporal profile of the predictive cues, as the
occlusion of information in space and time was done
crudely. Here, using a novel machine learning analysis
on videos of reaching actions combined with a
psychophysics experiment, we aimed to more precisely
determine the spatiotemporal profile of predictive
kinematic cues to actions.

Using this combined approach, we also addressed
whether the profile differs according to the social
context. There is good reason to believe that social

context might affect the availability of informative
cues to actions. For instance, a forward in soccer
does not want the goalie to know where she is
directing the soccer ball. On the other hand, when
passing the ball to her teammates, there is incentive
to communicate the goal of her action. Here, the task
demands—passing versus scoring—make it such that
the actor clearly has different motivations in each
context. Is the amount of information enabling
action prediction modulated by the social motives of
the actor? Perhaps this is the case given that a few
studies have shown that, when looking at videos of
actions, observers can determine if the action is
intended to be cooperative or competitive (Manera,
Becchio, Cavallo, Sartori, & Castiello, 2011; Sartori,
Becchio, & Castiello, 2011). These studies and others
indicate differences in movement kinematics between
cooperation and competition (Becchio, Sartori, Bul-
gheroni, & Castiello, 2008; Georgious, Becchio,
Glover, & Castiello, 2007), but, to the best of our
knowledge, no one has directly investigated whether
the availability of information is influenced by the
social context.

To address this open question, we filmed partici-
pants in two reaching games that differed only in
their social context, while all other task parameters
were kept the same. In the game, two partners sat
across from each other separated by a plexiglass
screen with two targets on the screen. In the
competitive game (analogous to the forward kicking
the ball to score a goal), an actor (who we have
termed the ‘‘initiator’’) was signaled through head-
phones to touch one of two targets (Figure 1). The
partner (called the ‘‘responder’’) was asked to beat
the initiator to the target. In the cooperative game
(analogous to passing the ball to a teammate), the
initiator also was signaled to touch one of two
targets, but the two partners were told that the goal
was to reach the target at the same time. From videos
of initiators in this task, we first investigated when
predictive information about actions became avail-
able to human observers. We then aimed to investi-
gate where in the body these information cues
originated and how this distribution changes over
time. Because these are questions that would be
difficult to answer precisely with human observers,
we used information mapping by linearly decoding
the direction of movement for each pixel in the videos
(Kriegeskorte, Goebel, & Bandettini, 2006). These
maps reveal what motion information is potentially
available to human observers as they perform the
same judgements. Finally, combining our analysis on
human behavior and our classification results, we
investigated how social context affected the distri-
bution of the available information.
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Method

Participants

Video collection

Forty-six adults (25 females, 21 males; M ¼ 23.85
years, SD ¼ 3.98 years) participated in the video
recording phase of the experiment in which they were
filmed playing a reaching game. The study was
approved by the Harvard University Department of
Psychology Institutional Review Board (IRB). All
participants were right-handed and had normal or
corrected-to-normal vision. All participants gave
informed consent prior to study participation. Twelve
pairs participated in the cooperative condition, and
eleven participated in the competitive condition. One
pair of participants in both conditions was excluded
due to atypical movements by the initiator in one case,
or experimental error in the other, and a random pair
was removed from the cooperative condition to
balance the number of participants in the two
conditions.

Main experiment

Twenty participants (14 females, six males; M ¼
23.05 years, SD ¼ 2.06 years) participated in the
psychophysics experiment. The study was approved by
the National Institute of Mental Health (NIMH) IRB.
All participants included were in good health and free
of psychiatric or neurological disease. Participants
had normal or corrected-to-normal vision. All par-
ticipants gave informed consent prior to study
participation. Two participants were excluded after
participation due to incidental findings in another

study suggesting that they did not meet the healthy
inclusion criteria specified in the IRB protocol, and
one participant was removed due to poor performance
(did not reach 75% accuracy even at the easiest time
point). Thirteen of the participants took part in both
the competitive and cooperative conditions, two only
participated in the cooperative condition, and two
only in the competitive condition. All participants
watching videos of the initiators were unaware of the
social context in which the videos were filmed. The
final number of participants for each condition was
fifteen (10 and 11 females in competitive and
cooperative conditions, respectively).

Procedure

The study consisted of two phases. In the first phase,
videos and kinematic data were collected from partic-
ipants in a cooperative or competitive reaching game.
In the second phase, the videos were shown to separate
human participants and used in machine learning
analyses to determine the availability and spatiotem-
poral profile of predictive information across social
contexts.

Phase 1: Collection of the videos and kinematic data

Videos: The initiators in the videos were recorded
planning a reaching game with a partner. The initiators
wore headphones and were signaled at the beginning of
each trial to touch a left or right target with their right
hand. The square targets (5 cm35 cm) were secured on
a plexiglass screen (1.2 m 3 1.5 m) separating the
partners (;1.2 m apart). Based on reaction times, a

Figure 1. A schematic of the set-up of the game. The initiator (in headphones nearest viewer) was directed to touch either the left or

the right target (circles in the center). The responder (opposite the initiator) was instructed to touch the same target at the same time

as the initiator in the cooperative condition or beat the initiator to the target in the competitive condition.

Journal of Vision (2019) 19(7):16, 1–16 McMahon et al. 3



time window was set to be equal to the median hit time
difference between the initiator and responder in the
prior trials (except for the first five trials). In the
competitive condition, the goal of the responders was
to beat the initiator to the target. If the time difference
between initiator and responder contact was smaller
than the time window, the responder won; if it was
larger, the initiator won. In the cooperative condition,
the pair were told to hit the target at the same time.
Both partners won if the time difference was less than
the set time window, and both lost if it was greater.

Other than the terms to win, the only instructions
given to the participants was to go directly to the target
and not to trick their partner. At the end of each block,
the total score for each participant was announced. The
session occurred over five blocks of 30 trials. If there
was an error during a given block, an additional block
was added at the end. The game was recorded
throughout using a Go-Pro camera positioned near the
head of the responders to approximate their perspec-
tive. At the beginning of each trial, there was a green
flash within view of the camera that allowed the videos
of the blocks to be separated into individual trials
(Vaziri-Pashkam et al., 2017).

The initiators in both conditions wore a Polhemus
Liberty motion tracking sensor on the index finger of
their right hand to identify the start of each trial and
determine the velocity of movement. The position of
the targets and the starting point of the initiator’s finger
was calibrated before the beginning of each session.
After cutting the videos to individual trials, the spatial
resolution of the videos was reduced to 675 3 380
pixels. The starting point was identified for each trial
individually. Any trial in which the initiator made
erroneous movements, began the movement by going
to the incorrect target, or any other unusual occurrence
(such as an experimenter walking into the frame) was
not used in the psychophysics or machine learning
phases of the experiment.

Kinematics: To determine the movement kinematics of
the initiators in the videos, motion tracking sensors
were attached to their index finger, which recorded the
finger position at a rate of 120 Hz. The sensors were
used to identify the beginning of the movement, the
velocity of the reach, and how long the initiator took to
reach the target from lift-off. The start point was
defined as the moment in time when the velocity
exceeded 20 cm/s. This velocity threshold was low
enough that identification of the start point would not
be biased by differences in velocity between the two
conditions. All trials in which the initiator touched the
incorrect target were considered inaccurate and were
excluded from further analysis (,1% of trials). Further,
because the initiators occasionally made small, erro-
neous movements, if the identified lift-off point was less
than 50 ms from the beginning of the trial, the trial was

excluded (,1% of trials). The average velocity in each
trial was found by averaging the velocity from the start
point to the touch point. The movement time was
calculated as the difference in time between the lift-off
and contact. The reaction time was calculated as the
time from the instructions to the finger’s lift-off. All
trials were visually inspected to ensure that the lift-off
and contact times were determined correctly. The
average velocity, error rate, and reaction times were
compared between cooperation and competition using
an independent-samples, two-tailed t test.

Phase 2: Psychophysics and machine learning

Psychophysics: We ran a psychophysics experiment to
determine when enough information is available in the
early movements of the initiators to predict the
direction of movement. Participants watched brief clips
(example schematic of a video frame is depicted in
Figure 2) presented on a black background and were
asked to respond whether the initiator in the video was
pointing towards the left or the right target (relative to
their perspective) by responding on a keyboard with the
index or middle finger of their right hand, respectively.
The videos were displayed on a desktop monitor
(BENQ XL) with a refresh rate of 60 Hz and spatial
resolution of 1920 3 1080 from a MacBook Air using
MATLAB (MathWorks, Natick, MA) and Psychtool-
box (Brainard, 1997). The stimuli were presented at a
size of 10.48 3 5.98 of visual angle.

Cooperative and competitive conditions always
occurred in separate experimental sessions because the

Figure 2. A schematic of a video frame presented to the

participants in the psychophysics experiment. The video frames

were presented in the center of the screen. The participants

were asked to determine whether the person in the video was

going to touch the left or the right target (relative to the

viewer’s perspective) with restricted information.
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experiment was long, and we wanted to ensure a
complete set of data for at least one condition from
each participant. Each session included 10 blocks. In
each block only one initiator was shown. Because of the
differencs in the body size of the initiators, randomizing
initiators within block would have been distracting.
Thus, the order of the blocks was randomized across
participants. In each trial, a video clip was presented
from ;500 ms (;30 frames) prior to the initiator start
point (defined as the moment in time when the velocity
exceeded 20 cm/s) to a cut frame that varied between
133 ms (eight frames) before the initiator’s finger lifted
off the table and 33 ms (two frames) after the finger lift-
off. The final displayed frame remained on the screen
for an additional 100 ms. This was to reduce possible
masking of the final frame and allow for equally clear
perception of all frames. Thus, the total presentation
time ranged between 467 ms and 633 ms. Each of the
possible cut frames (six cut frames) for the left and right
direction (two directions) was repeated 10 times so that
each block had a total of 120 trials. Between trials, a
black screen was presented for at least 1.5 s or until a
response occurred. Each trial presented was randomly
selected from ;70 possible video clips for a given
initiator and direction.

This method yielded an average performance for
each of the participants, initiators, and cut frames in
both the cooperative and competitive social contexts.
Performance was tested against chance at each of the
six cut frames to determine when participants were able
to predict the target of the initiator’s reach. Because
there were two sources of variance (the initiator and the
participant), performance was tested against chance
accuracy (50%) using a linear mixed model with both
initiator and participant modeled as random factors
(Kuznetsova, Brockhoff, & Christensen, 2017). Signif-
icance values were corrected for multiple comparisons
using the Benjamini-Hochberg procedure for false
discovery rate (FDR, Benjamini & Hochberg, 1995)
implemented in MATLAB (Groppe, Urbach, & Kutas,
2011).

For each participant, the average accuracy at each
cut frame for each initiator was determined. The
accuracy by cut frame approximated a sigmoid and was
fit with a logistic function using nonlinear least squares.
Next, for each participant and each initiator, the time
at which 75% accuracy was achieved (T75) was
determined from the fitted function. Due to variations
in performance, not all of the fits were ideal. Therefore,
the T75 values that were found to be more than four
median absolute deviations away from the median of
the data (2% for cooperation and 2% for competition
from the behavioral fits) were excluded from further
analysis.

First, in a control analysis, to ascertain that the
order of presentation of the participants in the block

did not affect the results, the effect of order on
performance (T75) was tested using a linear mixed
model in which the order of initiator presentations (the
blocks) was modeled as a fixed factor and participant
was modeled as a random factor. Next, using a linear
mixed model with participant and initiators as random
factors, the main effect of condition was determined.

Machine learning: To further investigate when predic-
tive information becomes available, a linear SVM was
used to classify the direction of movement from the
local motion information in the videos. Video frames
were analyzed using Python’s OpenCV (Bradski, 2000)
Gunnar-Farnebäck optical-flow algorithm (Farnebäck,
2003) to calculate motion energy in the x and y
directions for individual pixels between two subsequent
video frames. In order to increase computational
efficiency for classification, a movement filter was made
by averaging the movement across x and y directions
for all frames, trials, and participants; a motion energy
threshold was set, and the filter was further manually
cleaned to remove small, scattered clusters of pixels
outside the body of the initiators. Note that the filter
only selected pixels based on the overall amount of
movement and not on the direction of movement.
Therefore, the use of this filter should not have biased
classification results. The resolution of the optical flow
output and the filter were then down-sampled tenfold
to further increase efficiency. The x and y direction
optical-flow data were concatenated for this analysis.
The analysis was done using LibSVM software (Chang
& Lin, 2011) and custom MATLAB codes in a
bootstrapped fashion: The SVM was trained on a
random sub-sample containing 50% of the optical-flow
data of one frame from nine videoed initiators and
tested on the 10th, left-out initiator. This sampling was
performed 100 times, which allowed us to estimate the
confidence interval of the classifier’s accuracy. This
sampling, training, and testing method was repeated for
all frames. The average accuracy for each frame was
calculated across the 100 samples at each frame.

Similar to the behavioral data, the SVM accuracies
were tested against chance at each frame using a linear
mixed model in which the bootstrapping subsamples of
the SVM were treated as different samples and modeled
as a random factor. The initiator was also modeled as a
random factor. Significance values were controlled for
multiple comparisons using FDR correction (Benja-
mini & Hochberg, 1995).

To test how the information from one condition
generalized to the other, a similar procedure was also
used for cross-condition training and testing of the
SVM. The SVM was trained on a random subsample
containing 50% of the optical-flow data from all 10
initiators in one condition and a participant from the
other condition. The random sampling was repeated
100 times, and this was done for each initiator. Similar
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to what had been done for the within-condition SVM,
the classification accuracy of the cross-condition
classifier was tested against chance accuracy using a
linear mixed model with each subsample from the
bootstrapping as a random factor as well as the
initiator.

In the same way that had been done for the
behavioral data, the SVM accuracies were fit with a
logistic function using nonlinear least squares, and the
T75 was determined. T75 outliers were removed if they
were found to be more than four median absolute
deviations away from the median of the data (0.1% for
cooperation). The T75 of the SVM was also compared
between cooperation and competition using a linear
mixed model with the condition as the fixed factor and
the initiator and the SVM bootstrapping subsample
were both modeled as random factors.

Finally, the T75 was compared between humans and
the SVM to determine whether one performed better
than the other using a linear mixed model, with
condition and SVM or human modeled as a fixed factor
and participant and initiator as random factors. The
SVM was averaged across the subsamples from boot-
strapping before comparison.

Further, the T75 of the within- and cross-classifica-
tion were compared using a linear mixed model in
which testing method was modeled as a fixed factor and
SVM bootstrapping sub-sample and initiator were
modeled as random factors after averaging across
cooperation and competition.

Considering the speed of movement: To determine how
much of the difference between the cooperative and
competitive conditions was due to the difference in
velocity between the two conditions, the movement
time of the initiator was considered. Because average
velocity equals the distance traveled by the finger
during the reach divided by the movement time, and
because the distance between the starting location of
the finger and the target was similar in all trials and
between all initiators, in our case, using movement time
is equivalent to using velocity, with shorter movement
times indicating faster speeds. Thus, to take into
account the velocity of the movement, in the linear
mixed model for the human and the SVM performance
in which T75 was compared between cooperation and
competition, the movement time of the initiator
determined from the kinematic data was added to the
model as a fixed factor. This way, the effect of social
condition could be considered in isolation from the
effect of velocity.

Searchlight: The searchlight analysis was based on
common practices in neuroimaging analysis (Krie-
geskorte et al., 2006). Using the Searchmight
Toolbox (Pereira & Botvinick, 2011) and in-house
MATLAB codes, a Gaussian Naı̈ve Bayes (GNB)

classifier was trained to classify the direction of
movement from the x and y optical-flow data within
a neighborhood containing nine pixels around each
pixel. We opted for a GNB classifier instead of an
SVM classifier in this analysis to speed up the
processing time.

The Searchmight provided an accuracy and p-value
map for each initiator. The Searchmight Toolbox
determines the p values against chance classification
accuracy using a binomial test. These were corrected
for multiple comparisons using FDR correction (Ben-
jamini & Hochberg, 1995) and thresholded at FDR
level q , 0.05. These first-level maps were then
combined on the second level across initiators using a
binomial test (see below for details). The final
searchlight analyses were thresholded based on the
second-level maps at FDR level q , 0.05.

In order to quantify differences in the distribution of
information across the two conditions, the differences
in the average maps for the two conditions were
calculated, and this difference was tested against the
null hypothesis of no difference using two-tailed
bootstrapping t test over 105 permutations for ;5.9 3

104 pixels. The resulting p values were corrected for
multiple comparisons using FDR (Benjamini & Hoch-
berg, 1995) correction.

To further determine whether the pattern of
information in the body differed between the two
conditions, we used a similar generalization method as
used for the whole-frame classification analysis. The
cross-condition searchlight was done by training on the
data from one condition and testing on the data from
one initiator for the other condition. This was done for
every initiator, and the results averaged across them.
The average classification accuracies were thresholded
using the same first- and second-level procedure
described previously.

To calculate the second level p-value maps in the
searchlight analysis, we used a binomial test. For this,
we individually thresholded the accuracy maps of each
participant at an arbitrary false-discovery rate thresh-
old, q1. We then computed the second-level p value for
pixel v as

Pr Binomial n;Rq1= nVð Þð Þ � cv½ �
where cv denotes the number of participants for which
that pixel was significant, R denotes the sum of the
counts cv across all pixels. Under the null hypothesis for
pixel v, the count cv has a binomial distribution with
size n (the number of participants) and a probability
that is approximately bounded by Rq1/(nV), where V is
the number of pixels. After obtaining the second level
p-value maps, all searchlight results were thresholded at
false-discovery rate level q , 0.05.
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Results

Availability of information predictive of the
actions

We aimed to determine whether both humans and a
linear classifier could use early movement information
to predict the action of an actor from videos. We
showed video clips to participants not in the videos and
asked them to determine which target the initiator in
the video was reaching towards (Figure 2). The
performance of the humans was then compared to
chance using a linear mixed model. In the cooperative
condition (Figure 3A), participants’ performance was
significantly above chance at all time points (all t . 3.0,
all p , 0.007, corrected for multiple comparisons using
false discovery rate for this analysis and all other tests
reported in this section). In the competitive condition,
performance was not above chance at the earliest frame
(133 ms, t ¼ 0.82, p ¼ 0.42), but was significant at all
subsequent time points (all t . 2.34, all p , 0.03).
These results indicated that humans are able to
determine the direction of a reaching movement prior
to the explicit execution of the action, i.e., the finger
lifting off from the table.

Next, for the same videos as those shown to
participants, the motion energy between sequential
pairs of frames was determined using a sparse optical-
flow algorithm. An SVM was used to classify the
direction of movement from the motion energy, and
then the performance of the classifier was compared to
chance using a linear mixed model at each frame of the
video. The classifier (Figure 3B) reached above-chance
classification accuracy at around 150 ms before the
start of the movement in the cooperative condition (all
t . 2.71 , all p , 0.02), whereas the accuracy before 150
ms was not above chance (all t , 1.81, all p . 0.09). In
the competitive condition, the classification accuracy
was significantly above chance beginning only 83 ms
before the finger’s lift-off (all t . 2.31, all p , 0.04).
For all time points before 83 ms, performance was not
significantly above chance (all t , 1.26, all p . 0.28).
Together, the behavioral and SVM results indicate that
there is considerable information available before the
beginning of the finger movement in both cooperation
and competition in accordance with previous work
(Pesquita et al., 2016; Vaziri-Pashkam et al., 2017).

Comparing human and the within-condition
classification accuracies

The psychometric curve in the cooperative condition
appears shifted to the left of the competitive curve
(Figure 3A), suggesting that the actions may be

revealed earlier in cooperation than competition. We fit
the accuracy curves with a logistic function (see
Method) and determined the time at which 75%
accuracy (T75) was reached from the fitted curves. The
T75 allowed us to summarize the curves with a single

Figure 3. (A) Human participants and (B) within-condition and

(C) between-condition SVM classifier accuracies for predicting

the direction of the movement of the initiators in the videos.

The accuracy for competition (red) and cooperation (blue) are

compared to chance using a linear mixed-model regression at

each time point. Time points in which the performance was

significantly above chance are indicated near the x axis using a

horizontal bar. The shaded areas on the curves depict the

standard error of the mean obtained from the linear mixed

models.
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point and to quantify the differences between the two
curves (the use of another time point, such as the time
of 86% accuracy, did not significantly change the
results). The T75 was compared between human and
classifier and across social conditions using a linear
mixed model (Figure 4).

The training and testing of the SVM was not
perfectly analogous to human psychophysics. Humans
saw videos of different initiators in different blocks
with the two conditions presented in two separate
sessions, while the SVM was trained on all data from
nine initiators in each condition and tested on a left-out
initiator. To ensure that the order of presentation did
not have an effect on the human T75, using a linear
mixed model with order of the presentation as a fixed
factor and participant as a random factor, we found
that there was no effect of order on human perfor-

mance (t¼ 0.02, p¼ 0.99). In other words, no fatigue or
training effect was observed.

No significant difference was found between the
SVM and human T75 (t¼ 0.17, p¼ 0.87, Figure 4C),
nor was there an interaction between the effect of SVM
versus human and the social condition (t¼�0.60, p ¼
0.55). Thus, there is no evidence that the SVM reached
75% accuracy at a different time than human viewers.
In addition, the T75 of the SVM strongly correlated
with the behavioral performance in both the compet-
itive (r(8)¼ 0.69, p¼ 0.03) and cooperative (r(8)¼ 0.72,
p¼ 0.02) conditions as well as overall (r(18)¼ 0.74, p ,

0.001); see Figure 4B.
Combined across human and SVM, there was no

significant effect of social condition (t¼�1.84, p¼
0.08). Looking at SVM and human performance
independently, the T75 was found to be earlier in the
cooperative condition than in the competitive condition

Figure 4. (A) Bars depict the mean time of 75% accuracy for humans and the within-condition SVM (n.s., p . 0.05, **p , 0.01). (B)

The time of 75% accuracy for human performance correlated with the SVM time of 75% accuracy for competition and cooperation

(C). There was no difference in the time of 75% accuracy for humans and the SVM.

Journal of Vision (2019) 19(7):16, 1–16 McMahon et al. 8



for the SVM (t¼�2.95, p ¼ 0.009), whereas for
humans, there was no main effect of condition (t ¼
�1.79, p¼ 0.09), illustrating that the overall lack of an
effect was strongly influenced by the behavioral results
(Figure 4A).

These findings indicate that the SVM is able to pick
up on predictive information earlier in the cooperative
condition than the competitive condition, but we did
not observe a similar effect in humans, likely due to
greater variance in human performance. Further, the
SVM performance was comparable to the performance
of humans.

Classification generalization analysis

Although there was no difference in human perfor-
mance across social conditions, the classification results
suggest that the target of the reach may become
apparent earlier in cooperation than in competition.
But, how similar is the available information in the two
conditions? To further understand the differences and
similarities between the cooperative and competitive
conditions, we used a generalization analysis. In this
analysis, we trained a classifier to discriminate the two
movement directions in one social condition and tested
it in the other social condition and vice-versa (cross-
condition classification; see Method) and compared it
to the results from the last section where the training
and testing of the classifier was performed within the
same condition (within-condition classification). The
results should fall somewhere between two extremes.
One possibility is that there are no shared informative
features between the two conditions. If this were the
case, the cross-condition classification accuracy at all
time points should be at chance. The other possibility is
that the informative features between the two condi-
tions are exactly the same. In this case, we would expect
the cross-condition classification accuracy to be iden-
tical to the within-condition classification accuracy.

What we found is that when we trained on the
competitive data and tested on the cooperative (Figure
3C), the cross-condition classification reached above-
chance accuracy 133 ms before the start of the
movement (all t . 2.34, all p . 0.04). All points before
133 ms were not significantly above chance (all t ,
1.17, all p . 0.28). The classifier reached above chance
classification accuracy at 100 ms before the start when
trained on the cooperative data and tested on
competitive data (all t . 2.32, all p , 0.04), but not
before 100 ms prior to the start (all t , 1.87, all p .
0.09). Averaging across social conditions, the cross-
condition classifier reached 75% accuracy later than the
within-condition classifier (t¼ 14.70, p , 0.001). Thus,
the lower accuracy in the cross-condition classification
compared to within-condition classification does hint at

differences between the two conditions, but the early
above-chance classification accuracy of the cross-
condition classifier illustrates that there is considerable
shared information between the two conditions.

Considering the speed of movement

In the previous sections, we found that the SVM
classifier can determine the direction of movement
earlier in the cooperative than the competitive condi-
tion. How much of this difference between the T75 in
the two conditions from the SVM analysis could be
accounted for by the difference in the speed of
movement between the two conditions? During the
video collection phase of the experiment we also
collected kinematic data from the finger of the initiators
(see Method). Not surprisingly, we found that initiators
moved more quickly in competition (M ¼ 221.3 cm/s;
SD¼ 42.9 cm/s) than cooperation (M¼ 114.0 cm/s; SD
¼ 10.6 cm/s; t(18)¼ 7.68, p , 0.001) while their reaction
times (t(18) ¼ 0.27, p¼ 0.79) and accuracies (t(18)¼
�1.63, p¼ 0.12) were not significantly different between
the two conditions. There was a significant positive
relationship between the T75 and movement time, as
determined by a linear mixed model for both the SVM
(t¼�3.11, p¼ 0.006) and humans (t¼�2.59, p¼ 0.02),
suggesting that the direction of movement of slower
initiators can be determined earlier than faster initia-
tors. To take speed into account in our analyses, the
average finger traveling time (from the start of the
finger lift-off to the time of the target hit) for each
initiator was taken as a measure of movement speed
and added to the linear models as a separate factor. The
main effect of condition for the SVM was no longer
significant (t ¼�0.39, p¼ 0.70). There was previously
no difference in the behavioral data, but when factoring
movement time into account, the distributions of the
two conditions became more overlapping (t¼ 1.07, p¼
0.30). These results, thus, suggest that cooperative
initiators may move more slowly to allow their partners
to process the information as it becomes available.

Searchlight analysis

Previous analyses indicate the existence of predictive
cues to actions before finger liftoff and suggest that the
information is, to some extent, similar regardless of the
social motivations. To investigate more precisely the
spatiotemporal profile of the informative cues, we
borrowed a technique from neuroimaging (Kriege-
skorte et al., 2006), namely, searchlight information
mapping. By training and testing a GNB classifier
within small regions of the video frame, we were able to
determine whether each location in one frame of the
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optical-flow data of the initiators’ body contains

predictive information about their actions. The classi-

fication accuracies across time (averaged across the

initiators and thresholded at q , 0.05) are shown in

Figure 5B for competition and Figure 5C for cooper-

ation. These results show that, for both social

conditions, the information is widely distributed

throughout the body of the initiator.

We also compared the cooperative and competitive

conditions (see Method). The average difference is

shown in Figure 6, both thresholded at p , 0.05,

uncorrected (Figure 6A) and corrected for multiple
comparisons using FDR and thresholded at FDR level

q , 0.05 (Figure 6B). Interpreting Figure 6B, which

shows the results after correction for multiple com-

parisons, this analysis shows that there was little

difference between the distribution of information in
the bodies of the cooperative and competitive initiators.

The searchlight analysis was also performed by
training the classifier on the data from one condition
and testing it on the other condition, similar to what
was done for the whole frame cross-condition classifi-
cation analysis. The results of this analysis (corrected
for multiple comparisons at FDR level q , 0.05) are
shown in Figure 7A for training on cooperation and
testing on competition and vice-versa in Figure 7B.
These results further confirm the conclusion that local
information is similar in the two conditions.

Overall, the searchlight results indicate that infor-
mation is distributed throughout the body of both
cooperative and competitive initiators with little
difference in the distribution of information between
the two conditions.

Figure 5. (A) From the cooperative condition, the frame at�17 ms is overlaid on the video schematic shown in Figure 2. The overlay

provides an approximation for the body of the initiator relative to the classification accuracies reported. The same approximation is

appropriate for all maps that follow. The average classification accuracy for the within-condition searchlight classifier through time for

(B) competition and (C) cooperation where the accuracy is thresholded at the second level at q , 0.05.

Figure 6. The average difference in classification accuracy at each point between cooperation and competition through time. Redder

indicates those regions more informative in competition, while bluer indicates those more informative in cooperation. (A) Some pixels

show differences before FDR correction within a motion-filtered region at p , 0.05, but (B) few pixels remain after FDR correction.

Note: Panel B should be interpreted by the reader as the difference between the two conditions because the accuracy differences in

Panel A are not controlled for multiple comparisons.
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Discussion

We aimed to investigate the spatiotemporal profile of
the cues people use to predict the actions of others and
whether the social context affects the availability and
distribution of these cues over the body. We found that
people are able to predict the actions of others well
before explicit movement execution. Further, in coop-
eration, the initiators reach more slowly to benefit their
partner, but, aside from reaching more slowly, the
available information is similar in cooperation and
competition. Moreover, the information is distributed
throughout the body, and the spatiotemporal profile of
the information is similar across social contexts.

One contribution of this work is the combination of
behavioral techniques as well as machine learning
classifiers on videos of human actions to characterize
when information becomes available during the course
of a movement. Comparing the accuracy of humans in
a behavioral experiment with the accuracy of a linear
classifier, we found that both humans and the classifier
were able to determine the direction of movement with
above-chance accuracy as early as 150 ms before the
finger had even lifted off the table to begin the reach.
The accuracies were as high as 80% by the time the
finger started to lift-off. These results are in line with
our previous research (Vaziri-Pashkam et al., 2017, see
also Pesquita et al., 2016), demonstrating that subtle
cues in the body of humans reveal actions well in
advance of the action execution. The previous study
used a naturalistic task and showed that removing the
early, predictive cues slows reaction times. Here, we
showed videos of a similar task to participants and
asked them to explicitly indicate the direction of
movement. This allowed us to reveal more precisely the
time at which the information becomes available. We
found that when asked explicitly, participants are able
to predict the direction of movement well before the
initiator’s finger has lifted off.

When we trained a linear classifier to perform the
same task, notably, the classifier’s performance was not
significantly different from human performance. Thus,
a simple algorithm based on instantaneous optical flow

suffices to explain the findings we observed in human
performance. This is surprising given that humans have
ample experience observing the actions of others and
likely have some prior knowledge about biomechanical
limitations of the body and social expectations about
how the initiator will behave. Further, the performance
of the linear classifier also correlated with the
performance of humans. In other words, if it was
difficult for a human to determine the direction of
movement of a given initiator, it was also difficult for
the linear classifier to decode the direction of movement
of the same initiator. What this correlation indicates is
that whatever visual information humans use to
determine the direction of movement may be tightly
linked to the local optical-flow information. Despite
this correlation, we cannot make any strong claims
about the exact nature of the information used by
humans; either local kinematic cues or global biome-
chanical information may be used. Future research
looking at the sensitivity of human action prediction to
different biological movement cues could shed light on
this open question.

Beyond the limitations in conclusions to be drawn
from comparisons of human and classifier perfor-
mance, other limitations exist. There was a notable
difference in the way in which the classifier was trained
and the psychophysics experiment. Humans saw one
subject at a time in a blocked-design, while the classifier
was iteratively trained on nine initiators and tested on a
single left-out initiator. To address if the order of
presentation affected the psychophysics results, we
established that there was no effect of video presenta-
tion order on performance. In other words, no
significant fatigue or training effect was observed
during the course of the psychophysics sessions. The
lack of training effect is in line with our previous
research in which, using similar videos, we found that
subjects’ performance did not change throughout the
course of the experiment (Vaziri-Pashkam et al., 2017).
The lack of training effect in the previous and current
findings suggests that participants must be experts in
predicting the actions of others prior to participation.
Training the classifier in an analogous manner to the
cumulative life experience of our participants is

Figure 7. The average classification accuracy for the cross-condition searchlight classifier through time for (A) competition and (B)

cooperation where the accuracy is thresholded at the second level at q , 0.05.

Journal of Vision (2019) 19(7):16, 1–16 McMahon et al. 11



intractable. Thus, we opted for training the classifier on
all initiators except one to increase the possibility that
the classifier would generalize across initiators while
maximizing the amount of training data. The effect of
various training regimes on the classification results
could be addressed in future studies.

Another difference between the classification analy-
sis and the psychophysics experiment was that the
classifier was trained and tested on a single frame of the
optical-flow data, whereas humans were shown videos
of around 500 ms. Even if humans were not integrating
motion signals from the full ;500 ms clip, it remains
possible that they were integrating motion over
multiple frames of the video. Ideally, we should have
used multiple frames matching the videos humans saw
as the input to the classifier. However, this procedure
would have led to an input data structure with very
high dimensionality without an increase in the number
of features increasing the likelihood of overfitting the
training data. We, therefore, opted for training the
classifier on only a single frame of the optical-flow data.
The effect of training the classifier on a biologically
meaningful timescale remains an open question.
However, the finding that a classifier trained on only a
single frame of the optical flow is able to perform
similarly to humans seeing a longer videoclip may
suggest either that there is shared information between
frames and/or that humans weigh the later frames of
each clip (that contain the largest amount of informa-
tion) higher than the earlier frames. Future studies are
required to systematically address how the cues for
action prediction are integrated across time.

Furthermore, this experiment utilized a linear SVM
to discriminate the two movement directions. In
contrast to nonlinear classifiers, the results of linear
classifiers are more interpretable (Naselaris, Kay,
Nishimoto, & Gallant, 2011). For instance, high
performance of a linear classifier reveals that the data
are linearly separable into classes. Moreover, a linear
SVM is the best classifier for our data considering that
the common alternative linear classifiers (logistic
regression, linear discriminate analysis, and Gaussian
Naı̈ve Bayes classifiers) either have assumptions that
may not be met by our data or are unsuitable for high-
dimensional data (Hastie, Tibshirani, & Friedman,
2009). However, although a linear SVM was chosen
due to the structure of our data, the results should not
be interpreted as specific to a linear SVM. If the
analysis were to be repeated with other linear classifiers,
we expect similar results, which is often true in
comparisons of different linear methods (Naselaris et
al., 2011). Indeed, in our searchlight analysis, we used a
GNB classifier because there were fewer features in
each searchlight window, and we needed to speed up
the process (SVMs are considerably slower than GNB

classifiers) due to the large number of tests performed
in the searchlight analysis.

Although there are fundamental differences between
humans and machines, there are advantages in
combining methodologies. Previous research, particu-
larly in computer science, has had success in validating
the performance of computer algorithms against the
performance of humans. In this approach, human
performance is a standard to be met and eventually
surpassed by the algorithm. Object recognition is one
example of success using this approach (He, Zhang,
Ren, & Sun, 2015). Here, we have taken a different
approach. Notably, we used a vanilla linear classifier
rather than more complex algorithms such as a deep
convolutional neural network, which may have reached
a higher level of performance. This methodological
decision was made because we aimed to use classifica-
tion to uncover the true source of local information
that may have been available to humans. Running a
full psychophysics experiment equivalent to the
searchlight analysis in humans would not be feasible.
However, by uncovering the spatio-temporal profile of
motion information using a machine learning algo-
rithm, we can inform future psychophysics research to
focus on specific body parts and time points to
investigate how humans integrate the available infor-
mation in space and time.

From this combination of analysis methods, we
demonstrated that predictive cues to actions are widely
distributed throughout the initiator’s body. In a
previous study, we suggested that this may be the case
by selectively occluding different regions of the body
and asking participants to predict the direction of
movement (Vaziri-Pashkam et al., 2017; see also
Pesquita et al., 2016). However, these measures were
crude and unable to show the precise spatiotemporal
profile of the informative body regions. Here, using a
novel application of searchlight information mapping
common in neuroimaging (Kriegeskorte et al., 2006),
we were able to measure the spatiotemporal profile of
the informative cues more precisely and comprehen-
sively. This analysis confirmed that the information is
widely distributed throughout the body of the initia-
tors.

From the searchlight information mapping, we note
that while the earliest information appears to be
located in the head, the hand and wrist are added next,
and then the information quickly becomes distributed
throughout the body. Speculating on the source of the
observed patterns in the SVM, initiators may first
orient their attention to the directed target, which
causes the head and the upper torso to reveal
information. They may then begin to make small
preparatory movements in the hand and wrist, adding
additional sources of information. Next, as they
prepare to make a large reach, they make stabilizing
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postural adjustments in other regions of the body to
prepare for the shift in the center of gravity, causing the
information to be distributed over larger regions of the
arm and torso. It has been known for some time that
such adjustments occur (Hodges, Cresswell, Daggfeldt,
& Thorstensson, 2000; Hodges, Cresswell, & Thor-
stensson, 1999), but it was unknown until recently that
these movements may be visually informative to others
about the direction of a reaching action (Vaziri-
Pashkam et al., 2017).

The searchlight results do indicate that information
is distributed throughout the body of the initiators.
However, the analysis does not show what information
people are actually using to inform their decision.
People may not be performing the task optimally by
simultaneously integrating all the available informa-
tion. For instance, they may attend to local regions of
the body without integrating more diffuse information,
or they may be attending to regions that do not seem to
contain predictive information. The searchlight results
should be interpreted as where local information is
available and may be used in future research to
constrain hypotheses on how humans may be per-
forming the task.

Relatedly, our searchlight information mapping did
not reveal the eyes to be particularly predictive. One
outstanding possibility is that people may primarily
rely on the gaze direction of the initiators to predict
their actions. Although this seems to be an obvious
source of information, we think that it is unlikely that
gaze was a substantial source of information in our
experiments. First, others have found that viewers are
more sensitive to kinematic cues than to gaze (Quesque
& Coello, 2014). Further, researchers who have used
occlusion paradigms have shown that participants are
able to perform the task even when the eyes are
occluded (Pesquita et al., 2016; Vaziri-Pashkam et al.,
2017). Thus, we do not think it likely that gaze is the
most significant contributor to the ability of humans to
predict the actions of others.

Investigating the effects of social context on the
availability of predictive cues revealed by information
mapping, we found that the classifier was able to
predict the direction of movement of the cooperative
initiators earlier than the competitive initiators. This
contrast would seem to suggest that the cooperative
initiators may be able to augment the information
revealed by their movements to benefit their partner or,
conversely, that the competitive initiators may reveal
less information to their opponent. Contrasting the
searchlight accuracies for the two conditions, we saw
that there were only subtle differences without multiple
comparisons correction, which disappeared after cor-
rection for multiple comparisons. Thus, overall, there
was little significant difference in the distribution of
information between the two social conditions. How-

ever, given the small number of participants and the
large number of pixels, this analysis may not have
enough power to detect small differences. Nevertheless,
the high accuracies in the cross-condition whole-frame
and cross-condition searchlight analysis showed that
the classifier trained on the optical-flow information
from one condition can predict the direction of
movement in the other condition. This result strongly
suggests that the information available in the two
conditions is highly similar.

Yet, the difference in classification performance
between the two conditions remains, which seems to
contradict the searchlight findings. Note, however, that
the whole-frame classification is more powerful in
detecting differences between the two conditions, as it
aggregates the information across all pixels. What
could account for these conflicting results? One feature
unambiguously different between cooperation and
competition is the speed of movement. Perhaps in order
to coordinate their actions (Sebanz, Bekkering, &
Knoblich, 2006), the actors reach more slowly in
cooperation. Similar speed differences have also been
found by others (Becchio et al., 2008; Georgious et al.,
2007; Manera et al., 2011; Sartori et al., 2011; but see
Quesque, Mignon, & Coello, 2017 for evidence to the
contrary). When the effect of movement time (increased
movement time is associated with decreased T75) was
taken into account in the analysis of the time of 75%
accuracy, there was no longer a difference in the time
that classification reached 75% accuracy between
cooperation and competition. This analysis, combined
with the fact that information becomes available earlier
in cooperation than in competition, suggests that the
cooperative and competitive initiators may be em-
ploying different strategies to achieve their different
social goals. The competitive initiators reveal infor-
mation later and reach quickly, compressing how much
information is available in time. In contrast, the
cooperative initiators begin revealing information
earlier and reach more slowly, stretching the availabil-
ity of information in time. This may afford their
partners more time over which to accumulate infor-
mation. This trend seems to be reflected in the
searchlight maps. Although there were no significant
differences after controlling for multiple comparisons,
qualitatively, the maps do suggest that information
becomes available earlier and is stretched in time in
cooperation relative to competition.

Note, although there is a large difference in the
velocity of the initiators in cooperation compared to
competition, we did not find a difference in the
accuracy or reaction time of the initiators in responding
to the instructed target. Thus, while the initiators are
modulating the speed of their movement based on the
social motivations; they did not respond differently to
the trial cue. In both conditions, only the initiators
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heard the cue, while the responders did not. The
responders had no way of assessing the changes in the
reaction time of the initiators without hearing the cue.
Therefore, the initiators could not use a modulation of
reaction time to either advantage or disadvantage the
responders. Different results may be observed in a
paradigm in which both partners are cued at the
beginning of the trial.

Our study may seem at odds with previous studies
showing that observers can discriminate cooperative
from competitive movements in videos (Manera et al.,
2011; Sartori et al., 2011). Note, however, that our
design differs from these previous studies in that
viewers of the movement were not asked to discrimi-
nate between cooperation and competition but, rather,
simply to predict the intended direction of movements.
Additionally, although previous studies kept the
beginning of the actors’ movements the same between
cooperation and competition, the end of the motor
sequence differed between the two conditions. Here, the
action performed in both contexts was the same
throughout. Moreover, our analysis considering the
speed of movement suggests that the ability to
discriminate between cooperation and competition may
be explained by differences in speed.

Whereas we found predictive cues were present in the
body of the competitive initiators, in the present study,
we explicitly instructed participants in the competitive
condition not to deceive their partner and to reach
directly for one of two targets based on instructions.
Yet, we know that deception is used to conceal intent in
many different social interactions, such as sports and
poker. Previous studies have investigated the detection
of deception in sports, such as fake passes in basketball
(Sebanz & Shiffrar, 2009). The results of our study
suggest that the reason that humans use deception in
competition is to distract their opponent from the
relevant information betraying their action goals.
Future investigations could reveal how deception
modulates the availability of information in the body of
the actor.

In addition to the lack of deception in our
experiment, in further contrast to daily life in which
most of actions are freely chosen, in the current study,
the initiators were always instructed to reach to one of
the two targets. It has been suggested that freely
choosing an action may affect the predictive cues
available to others (Pesquita et al., 2016). We suspect
that our findings would be comparable if our initiators
freely chose the target of their reach rather than being
instructed, but future research is needed to establish the
generalizability of our findings.

Finally, our results have implications for future
models of action prediction. Researchers have previ-
ously proposed that to predict action goals humans
either simulate the full course of actions (Flanagan &

Johansson, 2003; Rizzolatti, Fogassi, & Gallese, 2001),
infer the goal of the action from contextual knowledge
(Brass, Schmitt, Spengler, & Gergely, 2007; Csibra,
2008), or some combination of the two (Ambrosini et
al., 2015; Falck-Ytter, 2012). While we are unable to
specifically support or refute any of these different
models, we found that, first, the predictive cues to
actions emerge well before the explicit part of the
movement starts, and second, human performance is
similar to and correlated with a linear classifier based
on local motion information. Thus, even though we
cannot directly address the underlying mechanisms of
action prediction, our results suggest that, to predict
actions, simulations or inferences should heavily weigh
the early, subtle predictive movements and may have
features that are linked to the local kinematic
information.

In sum, our findings indicate that people are able to
predict the actions of others even before explicit
movement execution and that the availability of this
information does not change across social contexts,
even when those contexts demand such modulations.
Determining whether these findings generalize to other
settings could have implications for models of human
action prediction and may inform the development of
computer systems interacting in social settings.

Keywords: action prediction, machine learning,
psychophysics
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