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ABSTRACT: Alzheimer’s disease (AD) is a neurodegenerative disorder and one of the leading causes of disability 

and mortality in the late life with no curative treatment currently. Thus, it is urgently to establish sensitive and 

non-invasive biomarkers for AD diagnosis, particularly in the early stage. Recently, emerging number of 

microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs) are considered as effective biomarkers in various 

diseases as they possess characteristics of stable, resistant to RNAase digestion and many extreme conditions in 

circulatory fluid. This review highlights recent advances in the identification of the aberrantly expressed miRNAs 

and lncRNAs in circulatory network for detection of AD. We summarized the abnormal expressed miRNAs in 

blood and cerebrospinal fluid (CSF), and detailed discussed the functions and molecular mechanism of serum or 

plasma miRNAs-miR-195, miR-155, miR-34a, miR-9, miR-206, miR-125b and miR-29 in the regulation of AD 

progression. In addition, we also elaborated the role of circulating lncRNA major including beta-site APP 

cleaving enzyme 1 (BACE1) and its antisense lncRNA BACE1-AS in AD pathological advancement. In brief, 

confirming the aberrantly expressed circulating miRNAs and lncRNAs will provide an effective testing tools for 

treatment of AD in the future.   
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Alzheimer’s disease (AD) is one of the most prevalent 

age-related neurodegenerative disorders and a leading 

cause of disability and mortality in the late life [1]. It is 

characterized by the pathological changes including the 

formation of intracellular neurofibrillary tangles, 

accumulation of amyloid-β (Aβ) peptides and Tau 

proteins, which lead to variable emotion alteration, 

personality changes, inappropriate social behaviors, 

progressive memory impairment and cognitive deficits, 

ultimately cause death  [1-5]. With the accelerated process 

of aging society, aging related diseases especially AD 

bring a serious public health challenge. Six to eight in ten 

dementia patients have a diagnosis of AD [6]. An 

estimated 50 million people suffer from AD worldwide 

currently [6]. More seriously, the incidence of AD 

throughout the world is predicted to be 75.6 million by 

2030 and 135.5 million by 2050, which is almost triple the 

existing population affected [7].  

The cause and molecular mechanism of AD 

pathogenesis remain largely unclear due to AD is one of 

the most complicated and complex age-related disease. 

Recently, growing advancement has made in diagnosis 
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and pharmacotherapy of AD, however, no effective cure 

and prevention measure is able to halt the disease 

development or reverse the brain alteration. The diagnosis 

of the disease is based on the history of symptoms, thus, 

reliable biomarker for early diagnosis is extremely pivotal 

for prevention the AD process. In this review, we 

summarized the correlation between the ectopic expressed 

microRNAs (miRNAs), long noncoding RNAs 

(lncRNAs) in circulatory fluid and AD patients (Fig. 1), 

which providing competent evidence for searching novel 

therapy targets and biomarkers for AD.      

 

 

 
Figure 1. Circulating biomarkers in AD pathological condition. Plasma/serum biomarkers including miRNAs and 

lncRNAs, and cerebrospinal fluid (CSF) miRNAs. 
 

1. Circulating miRNA and AD  

Circulating miRNA 

miRNAs are a family of short non-coding RNAs with 

approximately 18~22 nucleotides, which suppress protein 

expression by binding the 3’untranslated region (3’UTR) 

of protein mRNA or promoting mRNA degradation [8]. 

Not surprisingly, miRNAs related pathways participate in 

various diseases including neurodegenerative diseases 

[9]. As one of major great challenges in biomarker 

analysis in central nervous system diseases, it is urgently 

to search a suitable, non-invasive and blood-based early 

biomarker for AD. Recently, circulating miRNAs have 

attracted more attention with several advantages to be 

good biomarkers. They are stable in the circulation, 

resistant to RNAase digestion and many extreme 

conditions including extreme pH, high temperature, 

extended storage, and multiple freeze-thaw cycles [10]. 

More importantly, miRNAs were able to be detected in all 

of the 12 body fluids [11], and the differential expression 

levels are tightly involved in various diseases or certain 

biological/pathological stages [12]. Here, blood and 

cerebrospinal fluid (CSF) miRNAs are introduced in this 

review as potential biomarkers in AD diagnosis. 
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Blood miRNA and AD 

It is a simple, affordable, less invasive or time saving 

detection method to explore the circulatory miRNAs in 

the blood as large-scale peripheral markers of patients 

with AD. A quantity of studies elaborated that the 

expression levels of miRNAs were checked in the blood 

of AD patients and normal controls at the same age (Fig. 

1). The expression levels of miRNAs including miR-135a 

[13], miR-384 [13], miR-455-3p [14], miR-4668-5p [14], 

miR-146a-5p, miR-106b-3p, miR-195-5p, miR-20b-5p, 

and miR-497-5p [15], hsa-miR-101, hsa-miR-155, has-

miR-9 [16], miR-206 [17], miR-146a-5p, miR-106b-3p, 

miR-195-5p, miR-20b-5p, miR-497-5p [15], miR-519 

[18], miR-200c [19], miR-590-5p and miR-142-5p [20] 

were up-regulated, while miR-193b [13], has-miR-501-3p 

[21], miR-125b-3p, miR-29c-3p, miR-93-5p, miR-19b-3p 

[15], hsa-let-7d-5p, hsa-let-7g-5p, hsa-miR-15b, has-

miR-191-5p, has-miR-26b-5p, hsa-miR-29b, hsa-miR-

342-3p [16], miR-135b [22], miR-29, miR-125b [16, 20], 

miR-223 [18], miR-545-3p [23] and miR-194-5p [20] 

were down-regulated in serum of AD patients compared 

with that of normal subjects. In addition, serum miR-206 

was enhanced in the individuals with amnestic mild 

cognitive impairment tend to progress to AD [17]. 

Furthermore, circulating miR-28-3p level was elevated 

but expressions of miR-125b, miR-9 and miR-191-5p 

were reduced in the APP/PS1 transgenic mouse model of 

AD [24]. Next, we detailed introduced several serum 

miRNAs which were studied more in AD progression. 

miR-195 and AD 

The serum level of miR-195 is elevated in AD patients 

[15]. Zhang et al reported that decreased expression of 

mitofusin-2 (mfn2) was linked with mitochondrial 

dysfunction during the progression of AD, which was 

considered as mfn2 level being partly modulated by miR-

195 [25]. Discordantly, other studies identified miR-195 

as a negative modulator in AD advancement. The 

formation of Aβ plaques is one of the crucial pathological 

hallmarks of AD [26-28]. Aβ peptide is produced from 

amyloid precursor protein (APP) which is cleavage by 

beta-site APP cleaving enzyme 1 (BACE1) [26]. The level 

of BACE1 was reduced by miR-195 via its binding site 

targeting BACE1 3’UTR, and down-regulation of miR-

195 resulted amyloidogenesis in senescence-accelerated 

mice (SAMP8) or in chronic brain hypoperfusion rats 

with bilateral common carotid artery occlusion [27, 28]. 

On the basis, abnormal expression level of miR-195 

promotes the pathological process of AD. 

miR-155 and AD 

Neuroinflammation and immune-defense are considered 

as key factors in AD progression and pathogenesis [29]. 

MiR-155 is one of the most well studied immune-related 

miRNAs in AD-related neuroinflammatory events. 

Persistent microglial activation is able to initiate neuronal 

damage and eventually causes AD [30]. MiR-155 level 

was remarkably increased in SH-5Y5Y cells transfected 

with Swedish mutant of APP695 accompanying with 

higher APP and Aβ1-40 production and enhanced 

inflammatory marker expressions [31]. A highly 

expression level of miR-155 was also confirmed in 3xTg 

AD animal model [32]. This early up-regulated miR-155 

and c-Jun simultaneously accompanied with an enhanced 

activation of microglia and astrocyte, thus triggered the 

production of inflammatory mediators [32]. Moreover, 

dipeptidyl vinyl sulfone (VS) reduced Aβ-induced 

microglia activation via suppression the expression of 

inflammatory mediators, as well as prevention the 

elevated expression levels of miR-155 and miR-146a 

upon Aβ treatment [30]. miR-155 was also observed 

differentially expressed in blood-derived monocytes and 

monocyte-derived macrophages which were isolated from 

blood of AD, mild cognitive impairment (MCI) patients 

and healthy controls [33]. Lipopolysaccharide (LPS) 

treatment can lead to peripheral- and neuro- inflammation 

[34]. The recipient mice that received serum-derived 

exosomes from LPS-challenged mice showed 

characteristics of enhanced microglial activation, elevated 

pro-inflammation cytokine and its mRNA production, 

especially increased the miR-155 expression level [35]. In 

addition, miR-155 contributed to regulation of AD disease 

via activation of diverse of T cells functions during 

inflammation which may alleviated AD related severe 

pathologies [36]. On the basis, as a key inflammation and 

immune related miRNA, miR-155 exerts a positive 

function in promoting screening effective treatments for 

AD. 

miR-34a and AD 

The expression of peripheral miR-34a was dramatically 

up-regulated in AD subjects compared to normal elderly 

controls [16, 37]. MiR-34a was also highly expressed in 

specific brain regions of AD patients, 3xTg-AD mouse 

model as well as cerebral cortex of APPswe/PS mice [38-

40]. Moreover, the enhanced miR-34a expression in brain 

compared to age matched healthy control was closely 

associated with severity of AD pathology [38]. P53 is a 

crucial response element of miR-34a, p53/miR-34a axis 

promotes cell apoptosis via activating caspase-3 and 

suppressing Sirt1 and Bcl2 expressions in AD transgenic 

mice brain [39, 41]. Another p53-family member Tap73 

(p73) drives miR-34a expression through binding specific 

sites of miR-34a promoter. A remarkable raised miR-

34a/p73 expression was found in AD hippocampus, which 

participated in modulating synaptic activity by lessening 

synaptotagmin-1 expression in brain from AD patients 
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[42]. In addition, knockout of miR-34a in APP/PS1 mice 

decreased Aβ plague production and improved cognitive 

function by depression of γ-secretase activity [40]. Thus, 

miR-34a is considered as a key modulator in process of 

AD pathology.  

miR-9 and AD 

The declined level of whole-blood has-miR-9-5p was 

tightly linked with a raised risk of AD [24, 43]. In Aβ 

treated hippocampal cells, as well as in APP23 transgenic 

mice or human AD cortex, miR-9 and miR-181c were 

down-regulated and exerted their roles in brain 

homeostasis via targeting TGFBI, TRIM2, SIRT1 and 

BTBD3 [44]. Aβ42 treatment initiated CAMK2-AMPK 

signaling activation and synaptotoxic impairment as the 

result of the reduced expression of miR-9, while up-

regulation of miR-9 was sufficient to restore Aβ42-

induced dendritic spine loss [45]. Thus, as a drug 

treatment target, osthole exerts its powerful 

neuroprotective effect against AD via promoting miR-9 

level, reducing CAMKK2 and p-AMPKα expressions and 

subsequently suppressing the Notch signaling pathway 

[46, 47]. Hence miR-9 was a neuroprotective regulator 

in AD development. 

miR-206 and AD  

The level of serum miR-206 and miR-132 were elevated 

in MCI patients compared with age-matched normal 

controls. Combining detection of miR-206 and miR-132 

achieved a highest areas under curves (AUC), which is an 

index of miRNA’s diagnostic performance [48, 49]. Yet, 

the serum miR-206 level was increased in amnestic MCI 

(aMCI)-AD patients than aMCI-aMCI group whereas no 

notable differences in serum levels of miR-132 [17]. The 

miR-206 levels were also up-regulated in the Tg2576 

mice brain and the temporal cortex of human AD brains 

[50], the hippocampal tissue and plasma of embryonic 

APP/PS1 transgenic mice [51]. The enhanced expression 

of miR-206 major promoted the detrimental effect of Aβ42 

on brain-derived neurotrophic factor (BDNF) via 

inhibiting the level of BDNF [50, 51]. Further, miR-206 

inhibitor is able to relive the detrimental effects of Aβ42, 

and it is a target of donepezil, a drug approved for treating 

AD in clinic [52]. Therefore, miR-206 was a modulator to 

exacerbate the AD advancement. 

miR-125b and AD 

The serum miR-125b was down-regulated in AD patients 

compared with that of control subjects [15, 53-55]. In 

addition, decreased circulating miR-125b was also found 

in the APP/PS1 transgenic mouse models of AD [24]. In 

the Aβ pathological condition, the reduced expression of 

miR-125b is a critical event for the neurotoxic effect in 

cortical neurons. 17β-estradiol can protect neurons from 

the Aβ-peptide caused neurotoxicity via up-regulation 

miR-125b expression [56]. However, it is inconsistently 

with the protection role of miR-125b in AD. MiR-125b 

was found highly expression in AD patients [57]. Up-

regulation of miR-125b caused tau hyperphosphorylation, 

inhibited cell proliferation, promoted apoptosis, induced 

inflammation and oxidative stress by activation of CDK5 

and p35/25, p44/42-MAPK signaling pathway, and 

suppressed expressions of forkhead box Q1 (FOXQ1), 

anti-apoptotic factor Bcl-W, and sphingosine kinase 1 

(SphK1) [57-59]. It is probably that the aberrant 

expression of miR-125b contributes to the neural 

dysfunction in AD brain.  

miR-29 and AD 

The serum of miR-29 expression was remarkably 

depressed in AD patients verse control subjects [15, 60-

62]. The major events associated with the aberrant 

expression of miR-29 up-regulated the Aβ precursor 

protein BACE1 expression and subsequent caused Aβ 

accumulation [62, 63]. MiR-29c directly targets the 

3’UTR of BACE1 mRNA [63]. Overexpression of miR-

29 was able to reduce the level of BACE1 and Aβ 

accumulation in vitro, and ameliorate learning and 

memory in SAMP9 mice partially through enhancing the 

activity of protein kinase A/cAMP response element-

binding protein [62, 63]. Thus, its highly pure and 

biologically active pre-miR-29b deliver using polyplexes 

to N2a695 cells can reduce BACE1 expression and Aβ42 

level, which was considered as a potentially therapy way 

for AD [61]. In AD brains, neuron navigator 3 (NAV3) 

was highly expressed as the result of the attenuated miR-

29a and miR-29c expressions, which also referred to 

dysregulation of axon guidance [64, 65]. The up-regulated 

expression of miR-29c-3p and miR-29b also exhibited 

neuroprotective functions in AD via targeting signal 

activators of transcription 3 (STAT3) and specificity 

protein 1 (Sp1), respectively [15, 60]. Thus, miR-29 

family are potentially biomarkers for AD treatment. 

2. CSF miRNAs and AD 

Cerebrospinal fluid is a continuum of the brain, which is 

an attractive source of biomarkers reflecting central 

neuropathological features of the brain diseases including 

AD [66]. Recently, emerging studies have suggested that 

CSF contains circulating miRNAs, which were critical 

biomarkers with a high predictive accuracy in the 

pathogenesis process of AD (Fig. 1). The expression 

levels of miR-let-7e [67], miR-let-7b [67, 68], miR-29a 

[69], miR-613 [70], miR-206 [51], miR-222 [71], miR-

125b [71], miR-let7i-5p [20] and miR-15a-5p [20] were 

increased, while miR-135a [72], miR-200b [72], miR-

193b [73], miR-299-5p [74], miR-29c [20, 75], miR-27a-
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3p [76], miR-210 [77], miR-384 [78] and miR-214-3p 

[79] were decreased in the CSF from AD patients 

compared to healthy controls. The elevated miR-let-7b 

level in CSF from AD patients mainly originated from 

CD4+ T lymphocyte and was associated with 

neurotoxicity and t-tau/p-tau expression [67, 68]. miR-

613 or miR-206 was responsible for the AD pathology via 

suppression the neuroprotector-BDNF [51, 70], which 

also accompanied with a decreased expression of miR-29c 

[75]. Under AD pathological conditions, the expressions 

of miR-384, miR-135a and miR-200b in CSF were 

declined, which attenuated their repression roles on the 

APP and BACE1 levels. Meanwhile, Aβ42 could also 

restrain miR-384 and miR-200 expression. The above 

may generated a vicious cycle resulted in accumulation of 

Aβ42 [72, 78]. Moreover, miR-193b was negatively 

correlated with Aβ42 in the CSF of dementia of 

Alzheimer-type (DAT) patients [73]. The low level of 

miR-27a-3p was linked with the enhanced tau but 

decreased Aβ levels [76] in the CSF from AD patients. 

The expressions of miR-299-5p and miR-214-3p were 

reduced upon AD conditions and resulted in autophagy by 

disinhibition of Atg5, LC3βII and Beclin1 levels, 

respectively [73, 79]. MiR-210 expression was abated in 

the CSF and serum accompanied with the decreased level 

of VEGF, which were associated with the severity of the 

AD [77]. With the thorough studies on CSF miRNAs in 

AD, they will be used as biomarkers to assess disease 

progression and therapeutic efficacy.   

3. Circulating lncRNAs and Alzheimer’s disease  

Recently, lncRNAs are also found in circulating fluid and 

play pivotal roles in various diseases [80]. LncRNAs are 

classically defined as > 200 nucleotides transcripts 

lacking protein-coding ability with biological regulatory 

and modificatory functions [81, 82]. As advanced 

transcriptome-wide profiling approach, emerging number 

of lncRNAs were comprehensively identified 

dysregulated in AD pathological brains [83, 84]. 

Circulating lncRNA was also described to participate in 

the occurrence and development of AD (Fig. 1) [85]. The 

lncRNA BACE1 level was dramatically up-regulated in 

AD patient’s plasma compared with normal control 

subjects, while no significantly alteration of plasma 

lncRNA 17A, 51A and BC200. Accordantly, Manzine et 

al also confirmed that plasma BACE1 level was elevated 

in AD patients [86]. However, Marison et al proved that 

there was no dramatically difference of BACE1 

expression in blood between control, AD and non-AD 

neuropathology’s individuals. Interestingly, it was still 

considered as a potential marker used in diagnosis as that 

have somehow been involved with AD or AD-related 

elements [87]. In the context, we have introduced that 

BACE1 is a key modulator and its mediated the 

production of Aβ from APP is the rate limiting step in AD 

progression. BACE1 is also positively regulated by its 

antisense transcript (lncRNA BACE1-AS) [88], which 

partly binds with BACE1 mRNA and promotes BACE1 

expression [89]. LncRNA BACE1 and BACE1-AS were 

checked highly expressed in the blood in brain related 

disease [90]. They promoted AD pathogenesis via 

enhancing Aβ and APP level and they were able to 

participate in learning and memory impairment via being 

stabilized by the primarily neuronal RNA-binding protein 

HuD in AD advancement [89]. In addition, the abnormal 

expressed BACE1 can be not only a biomarker for AD 

diagnosis, but also a therapeutic target by systemic 

delivery of BACE1 siRNA and its inhibitors [91, 92]. In 

brief, the lncRNAs in circulatory fluid from AD patients 

need to be intensively studied for supplying novel 

biomarkers or providing new drug treatment targets in AD 

development in the future. 

4. Conclusions  

The dementia related diseases are difficult to be definitive 

diagnosed. They are traditionally based on the history of 

the disease, the pattern of cognitive impairment, and on 

additional parameters evaluated via clinical examination, 

including blood tests and brain structural imaging, to 

exclude nondegenerative causes of the symptoms [93]. It 

is necessary and urgent to seek novel simple and effective 

biomarkers for diagnosis specific forms of dementia 

earlier, also in the pre-dementia stages of the disease, and 

with more specificity. As the increasing number of 

circulating miRNAs and lncRNAs are being to be 

reported abnormally expressed in AD patients. 

Characterizations of these AD-associated circulating 

miRNAs and lncRNAs offer the possibility of providing 

new insights into disease pathogenesis. In consideration 

of that non-coding RNAs in circulatory fluids are easily 

accessible and relatively stable, it is more reality to make 

a correct clinical prognosis for AD. Thus, confirming the 

aberrant expressed circulating miRNAs and lncRNAs will 

provide an effective testing tools for treatment of AD in 

the future. 
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