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ABSTRACT

Massively parallel sequencing technologies have
made the generation of genomic data sets a
routine component of many biological investiga-
tions. For example, Chromatin immunoprecipitation
followed by sequence assays detect genomic
regions bound (directly or indirectly) by specific
factors, and DNase-seq identifies regions of open
chromatin. A major bottleneck in the interpretation
of these data is the identification of the underlying
DNA sequence code that defines, and ultimately fa-
cilitates prediction of, these transcription factor (TF)
bound or open chromatin regions. We have recently
developed a novel computational methodology,
which uses a support vector machine (SVM) with
kmer sequence features (kmer-SVM) to identify pre-
dictive combinations of short transcription factor-
binding sites, which determine the tissue specificity
of these genomic assays (Lee, Karchin and Beer,
Discriminative prediction of mammalian enhancers
from DNA sequence. Genome Res. 2011; 21:2167–
80). This regulatory information can (i) give confi-
dence in genomic experiments by recovering
previously known binding sites, and (ii) reveal
novel sequence features for subsequent experimen-
tal testing of cooperative mechanisms. Here, we
describe the development and implementation of a
web server to allow the broader research commu-
nity to independently apply our kmer-SVM to
analyze and interpret their genomic datasets. We
analyze five recently published data sets and dem-
onstrate how this tool identifies accessory factors

and repressive sequence elements. kmer-SVM is
available at http://kmersvm.beerlab.org.

INTRODUCTION

Understanding the function of DNA regulatory elements
in the human genome remains a significant challenge.
These elements include enhancers, repressors and insula-
tors, which regulate the expression of their associated
genes, and are widely believed to play a significant role
in human development, physiological homeostasis and
disease. Recent genome-wide association studies have
found that 80% of common human variants significantly
associated with a phenotypic trait (P< 10�8) lie in
intergenic or intronic regions (1), and a significant
fraction is thus suspected to affect these regulatory
processes. As a result, a major component of current
research development is focused on developing a more
complete understanding of the regulatory biology of
genomes. Genome-wide assays of expression and tran-
scription factor (TF)-binding are essential tools in these
studies and have been greatly enabled by the development
of massively parallel sequencing. Chromatin immuno-
precipitation followed by sequencing (ChIP-seq) is now
routinely used to identify genomic regions bound by a
TF or co-activator in a specific cell-type or condition of
medical interest. However, although these experiments
generate large and reproducible data sets, determining
the underlying molecular mechanisms, which specify the
biological function of these regions, remains extremely dif-
ficult. For example, enhancer activity is modulated by the
cooperative binding of clusters of TFs, which stabilize a
complex of co-activator proteins that then modulate the
activity of RNA Polymerase II at the gene promoter
through direct contacts mediated by DNA looping.
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Chromatin accessibility contributes to the stability of this
complex through histone-modifying activities recruited by
the complex or established by prior events. Because of its
central role in this regulatory process, many bioinformatic
methods have been used to identify single TF-binding sites
overrepresented in a set of genomic regions. De novo iden-
tification of putative position weight matrices (PWMs)
from expression or binding data has met with some
success, particularly in yeast (2), and this conventional
motif finding can be successful when the set of genomic
regions is small (in terms of total bp) or if the specificity of
the TF is strong (e.g. high information content binding
sites). Usually however, when conventional motif-finding
approaches are applied to the high confidence set of
genomic regions identified in a vertebrate ChIP-seq experi-
ment, these approaches generate a large set of putative
binding sites each with relatively weak predictive power,
as will be discussed in greater detail later.

To bridge this gap, we have recently developed an al-
ternative approach to predict enhancers using a complete
set of oligomers or ‘kmers’ as features in a support vector
machine (SVM) (3). This method, which we refer to as
‘kmer-SVM’, can accurately predict regulatory sequences
without any prior knowledge about TF-binding sites.
After training on an experimentally determined set of
regulatory regions, each kmer receives a ‘weight’, which
represents its overall contribution to enhancer activity.
Our approach is significantly different from using a
motif finder to generate a list of overrepresented motifs:
our SVM finds the set of kmers, which in combination
most precisely specifies the full set of bound genomic
regions. Thus, the high weight kmers span the sequence
features (e.g. the set of binding sites for the TFs) needed to
specify the regions’ activity in the tissue or condition
assayed.

In addition to cross-validation (CV) and the human and
mouse examples detailed in ‘Results’ section, the predic-
tions of our kmer-SVM have been independently experi-
mentally validated. In our previous study (3), we trained a
kmer-SVM on EP300 bound enhancers in embryonic
mouse forebrain (4) and verified that our method pre-
dicted independently obtained DNaseI hypersensitive
regions (5) in similar embryonic mouse tissue with
56.3% precision, despite the reduced specificity of the
DNaseI assay for enhancers (DNaseI also detects other
open chromatin regions). We have also recently success-
fully applied this method to identify and experimentally
validate a predictive regulatory sequence vocabulary in
melanocytes (6). Using a kmer-SVM trained on EP300
bound regions in mouse melanocytes, we identified 7361
additional putative enhancers. We subsequently analyzed
11 of these regions with luciferase expression assays and
validated 73% of them as having significant in vitro
enhancer activity in melanocytes, only slightly reduced
from the validation rate on the enhancer training set.
We further showed that at least two of three predicted
enhancers assayed in vivo directed GFP expression in the
melanocytes of mosaic transgenic zebrafish. Additional
unpublished work has broadened these pilot validations
both in enhancer prediction and by targeted mutagenesis
of predictive kmer sequence features.

Here, we present a web server to allow users to inde-
pendently perform this analysis on any set of DNA
sequences identified in a genomic assay. We expect that
this tool will aid experimenters in the analysis of their own
genomic data sets in several ways. First, high kmer-SVM
classification accuracy is an independent measure of the
quality of the genomic data, and can be used, for example,
to optimize normalization methods, thresholds and the
treatment of biological replicates by systematically
maximizing classification performance, as genomic data
sets with reduced noise can be predicted with higher ac-
curacy. Second, identifying recognizable TF-binding sites
among the most significant positive kmer-SVM feature
weights gives further confidence in the positive set of
genomic regions. Third, the identification of unexpected
TF-binding sites among the most predictive features fre-
quently generates novel hypotheses for subsequent experi-
ments. Fourth, the highest scoring kmers provide focused
targets for mutations predicted to modulate enhancer
activity in validation experiments. Finally, predictive
kmer-SVM features can be used to prioritize targets
among disease associated SNPs within larger haplotypes
in linkage disequilibrium.
We have chosen to use the Galaxy platform (7,8) as a

framework for our web server, but our tool can also be
used as a standalone set of programs. Here, we describe its
use and demonstrate how to use the kmer-SVM to extract
useful information from data sets generated by high-
throughput sequencing-based experiments.

MATERIALS AND METHODS

Overview of the kmer-SVM galaxy module

Our proposed analysis pipeline to identify regulatory
DNA sequence features consists of three main compo-
nents: (i) Generating the positive and negative sequence
sets, (ii) training the SVM classifier and (iii) analyzing its
performance and predictive sequence features. Although
the positive training sequence set is provided by the ex-
perimenter in the form of a BED file of coordinates or
sequence data in FASTA format, including genomic co-
ordinates, the negative set is generated by our module
‘Generate Null Sequence’. SVM training is fairly transpar-
ent, takes the positive and negative sequence sets as input
and produces a set of kmer weights and predicted class
labels as output using CV. Finally, the performance of the
SVM classifier is summarized by Receiver Operating
Characteristic (ROC) and Precision-Recall (PR) curves,
and features are ranked by their significance. Figure 1
shows the general workflow generated by Galaxy’s
‘Workflow Editing Tool’. This figure uses the actual
Galaxy module names and data files, and this workflow
can also be used as a template for a typical analysis
pipeline.

Details of core modules

Generation of sequence sets
Our kmer-SVM classifier takes as training data a FASTA
file of positive sequences obtained through ChIP-seq,
DNase-seq or another experimental assay, and a
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negative sequence set. To ensure that the SVM identifies
sequence features specific to the positive regions, it is es-
sential to match the GC content, length and repeat
fraction when constructing the negative set, otherwise
sequence features could be predictive simply by their
enrichment or absence in the biased negative set
(Supplementary Table S1). We refer to the set of the
three distributions of GC, length and repeats in the
positive set as its ‘sequence profile’ and the ‘Generate
Null Sequence’ module matches this sequence profile for
the negative set by using the following random sampling
procedure. First, a positive sequence is randomly selected,
and ‘Generate Null Sequence’ samples the same chromo-
some for a match in terms of length, GC content and
repeat fraction, which does not overlap any positive
sequence or existing negative sample by even one base
pair. This random selection process is then repeated
until the negative set has reached the requested size.
This random selection process uses a precomputed table
of genomic indices that are currently provided for the
Caenorhabditis elegans, Drosophila melanogaster, mouse
and human genome. The full negative sequence set then
by construction closely approximates the sequence profile
of the positive set. In special cases, users can exclude
regions other than the input positive sequences from con-
sideration for negative sequence generation through the
‘Excluded Regions’ option. We recommend using a
negative set which is larger than the positive set, as
doing so generally improves the statistical robustness of
the classifier (Supplementary Table S2). We allow the user
to specify the size of the negative set as an integral
multiple of the number of positive sequences (say 10�)
in the ‘# of Fold-Increase field’. As some positive se-
quences may not have exact matches in terms of GC
content or repeat fraction, users can specify the percentage
of GC content or repeat fractions by which a generated
null sequence may differ from its corresponding positive
sequence. This additional flexibility speeds the generation
of the negative set and affects how precisely the negative
set sequence profile matches the positive set sequence
profile. Also, distinct realizations of null sequence sets
may be generated by varying the ‘Random Number
Seed’ parameter. The output of the Generate Null
Sequence tool is a BED file describing the coordinates of
the negative genomic intervals.

After the coordinates are specified, the actual sequences
needed for SVM training are generated from the positive
and negative BED file coordinates by the built-in Galaxy
tool: ‘Fetch Sequences’, whose output is FASTA format
DNA sequence files.

SVM training
An SVM (9,10) is a classifier, which attempts to find a
hyper-plane boundary in feature space that separates
elements of the positive and negative sequence sets.
SVMs use techniques known as ‘kernels’ (9), which
allows to define similarities between any two data points
without explicit mapping of the data into a higher-dimen-
sional feature vector space. A set of kernels called ‘string
kernels’ have been developed for analyses of sequence data
sets and have achieved great success in computational
biology (11). ‘Train SVM’ uses one of these string
kernels, specifically, the spectrum kernel (12). In our
model (3), the features are the complete set of kmers,
and their frequencies are calculated from the input
FASTA files. The training module ‘Train SVM’ generates
the normalized kmer count vector for each sequence and
then finds the SVM internal parameters (support vectors)
that most accurately distinguish the positive and negative
sets. Currently, ‘Train SVM’ supports two kernels: the
spectrum kernel (using a single length kmer) and the
weighted spectrum kernel (using a user specified range of
k’s, with equal weighting). In both cases, reverse comple-
ment kmers are treated as separate instances of the same
feature. This module was implemented using the SVM
Shogun toolbox (13).

‘Train SVM’ performs two tasks: it generates a set of
ranked kmer-SVM weights, and it generates a set of class
predictions using CV. A given kmer’s score can be thought
of as a measure of the degree to which that kmer contrib-
utes to the discriminatory power of the classifier. The
weights are output to the table labeled ‘Weights’.

CV
As is standard in machine learning, CV is used to assess
classifier performance. The initial positive and negative
sets are randomly partitioned into n distinct sets (for
n-fold CV), and the ROC and PR performance of each
test set is generated using a classifier trained on the other
n-1 sets. The number of CV sets is a parameter, which can

Figure 1. An example workflow for the kmer-SVM module. This workflow consists of three different components from the kmer-SVM module,
‘Generate Null Sequence’, ‘Train SVM’ and ‘Plot ROC Curve’ and one built-in Galaxy module, ‘Extract Genomic DNA’.
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be specified by the user. This is repeated for all n partitions
such that in the end each partition is used for both training
and test-set scoring. The result of this process is the set of
scores for test-set sequences in each round of CV, output
in the table labeled ‘Predictions’.

Three parameters for SVM learning are adjustable (k, C
and E). If the spectrum kernel is used, k specifies a single
kmer length, whereas if the weighted spectrum kernel is
used, minimum and maximum values for k must be set.
Using a single k is somewhat easier to interpret in the
beginning, as the vocabulary is simpler. Using a range of
k values does have the advantage that similar kmers of
slightly varying length and composition should all
receive significant weights, increasing confidence in inter-
pretation. Also using a range (e.g. 5–8) usually performs
incrementally better than a single k in terms of overall
classification accuracy.

The SVM maximizes the margin between the positive
and negative sequences while simultaneously minimizing
errors (sequences on the wrong side of the boundary). The
relative importance of misclassification error is weighted
by the regularization parameter, C. In practice, this affects
over-fitting. A small C will result in less over-fitting of the
SVM at the expense of slightly greater training classifica-
tion error, whereas a large C will result in more over-
fitting of the SVM (Supplementary Table S3). With
unbalanced positive and negative set sizes, it is often rec-
ommended to use a separate regularization parameter for
positive and negative sequences, reflecting the relative im-
portance of errors. We specify this using an additional
parameter Positive_Set_Weight or PSW. The regulariza-
tion parameter for the positive set is C * PSW, whereas for
the negative set, it is C. The default setting is
PSW=1+log(N/P), which weighs positives more
heavily when the negative set is large. The rationale
behind this formula is our observation that optimal
PSWs usually follow the logarithm of the ratio between
positives and negatives (Supplementary Table S4). In
practice, results are insensitive to C and PSW unless
there is a significant imbalance between the positive and
negative set sizes. Finally, the precision parameter E con-
strains the precision of the SVM classifier. Increasing
E results in a reduced number of support vectors and
can lead to a more robust classifier by reducing the re-
quirements on the accuracy of the classifier on the
training set (14). In practice, the results should be insensi-
tive to the choice of E, and the default value is recom-
mended (Supplementary Table S5).

Example runtimes are provided in Supplementary Table
S6 for kmer-SVM training for several combinations of sizes
for positive and negative data sets, from a positive data size
of 1000 sequences and an equivalently large negative data
set to a positive data set of 10 000 sequences and negative
data set of 100 000 sequences. Briefly, using the ‘Select
Random Lines’ tool default to Galaxy installation and
setting a random seed of 1, either 1000 or 10 000 intervals
were randomly selected from each sample’s BED file.
Negative sequences were generated using kmer-SVM’s
‘Generate Null Sequence’ tool, again with random seed
of 1. Runtime increases as a function of the total number

of sequences in the positive and negative data sets, and
ranges from under 1 to 40min for the data sets listed.

Interpretation of kmer SVM weights
The output of SVM training is a list of kmer weights, and
it is the weighted sum of normalized kmer counts in a
sequence that determines the predicted class. In biological
terms, the presence of kmers with large positive weights
significantly increases a sequence’s likelihood of being
positive (e.g. being an enhancer or being bound by a TF
in a specific cell type). Large negative weights are equally
informative, as their absence significantly increases the
probability of being positive [e.g. a binding site for a tran-
scriptional repressor (3)]. The weights file output by ‘Train
SVM’ lists all kmers and their corresponding scores. The
SVM weight is a continuous valued quantity, and large
absolute value is a direct measure of significance. It is the
scores with large absolute values that will be of particular
value to the biologist. The TFs binding the highest and
lowest scoring kmers, if previously studied, can be found
using database matching programs such as TOMTOM
(15), using the UniPROBE, TRANSFAC and JASPAR
databases (16–18). Finding the best PWM match to a
kmer does not necessarily imply that that factor binds
the kmer in the given context because many TFs have
overlapping specificities, and the PWM databases are far
from complete. However, we have found that large
positive scoring kmers are often recognizable as TF-
binding sites known to be important in the cell type of
interest, whereas large negative scoring kmers have
identified an important role for repressors in previously
unknown contexts (3).

Classification performance analysis

The area under the ROC curve (AUROC) and the PR
curve (AUPRC) are measures of the accuracy of the clas-
sifier. AUROC corresponds to the probability that a
randomly selected positive sequence will score higher
than a randomly selected negative sequence. For each
possible SVM score threshold, we calculate the true
positive rate [TPR=TP/(TP+FN), or sensitivity] and
false positive rate [FPR=FP/(FP+TN), or 1-specificity]
at this threshold, where TP is the number of true positives,
TN is the number of true negatives, FP is the number of
false positives and the FN is the number of false negatives.
The ROC curve plots TPR versus FPR. The PR curve
plots Precision versus Recall, where, Precision=TP/
(TP+FP) and Recall=TPR.
The ROC and PR curves are slightly different measures

of the classification performance of the trained SVM: the
ROC emphasizes true and false positive rates, whereas the
PR curve emphasizes true positive predictions. This differ-
ence results in the ROC possibly overestimating the
accuracy of a classifier for data sets with large imbalances
in the positive and negative class sizes, as is typical of
genomic predictions with large negative sets. The PR
curve is more appropriate in the case of large negative
sets, yielding more accurate evaluations of classifier per-
formance because it directly assesses the accuracy of
positive predictions.
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Details of auxiliary modules

Score sequences of interest
Once the SVM is trained, in addition to classifying the CV
test sets, it can be used to score any sequence of interest.
An additional detail is that although the rank of the SVM
scores is significant, the scale of the SVM scores is not. We
therefore turn this SVM score into a probability that the
element is positive, by reporting the posterior probability
that each sequence is in the positive class, using the algo-
rithm described in (19,20). ‘Score Sequences of Interest’
takes as input a set of sequences in FASTA format and
outputs the SVM score and posterior probability.
Parameters to produce this posterior probability are
included in the weight table output by ‘Train SVM’.
‘Score Sequences of Interest’ can also be used to make
genome-wide predictions using the module ‘Split
Genome’, which splits a genome into chunks of a length
c bp that overlap each other by v bp. The results of ‘Split
Genome’ can then be used as input for ‘Score Sequences of
Interest’.

Sequence profiles
As discussed earlier in the text, the sequence profiles, or
distributions of length, GC content and repeat fraction
content in the positive and negative sequences are
matched by ‘Generate Null Sequence’. It may be useful
to compare the sequence profiles of other sets of genomic
intervals; therefore, we have provided an additional
module to perform this analysis. For a given BED file,
this module calculates and reports the sequence profile
of the regions specified by these coordinates.

Kmer to MEME
This utility module takes the output file of weights created
by training a kmer-SVM and generates PWMs for kmers
with the largest and smallest (most positive and most
negative) weights. The user specifies how many kmers to
be returned, with a maximum of 50. The output of this
program is a MEME-formatted (21) list of PWMs.

Tomtom
To enable users to visualize the kmers identified as pre-
dictive by kmer-SVM, we also have implemented a local
instance of the Tomtom (15) program. Briefly, Tomtom
searches databases of TF motifs for matches with input
motifs by using column-wise similarity measures between
PWMs. Users can create PWMs using our ‘Kmer To
MEME’ tool and use this as input for Tomtom. For
measures of similarity, we offer the Euclidean distance,
which can be thought of as the length of the straight line
between two PWMs, the Pearson correlation coefficient,
which measures the similarity between two PWMs, and
the Sandelin–Wasserman function (22), which sums the
column-wise differences between PWMs. We also offer
the choice of E-value or q-value (23) as scoring criteria.
The E-value controls the expected number of false posi-
tives and can be any number, whereas the q-value controls
the false discovery rate and is a number between 0 and 1.
Most users are advised to run Tomtom in the default
configuration of the Pearson correlation coefficient as

distance metric and the q-value as criteria. At this time,
we only offer text output from Tomtom.

Tutorial

We offer a tutorial on kmer-SVM, and the Galaxy inter-
face generally, to introduce users to our software. Our
tutorial walks users through navigating the Galaxy inter-
face and then shows the steps of a typical kmer-SVM
workflow. Our tutorial is at http://kmersvm.beerlab.org/
tutorial/ and can also be reached from the kmer-SVM
homepage.

Software availability

kmer-SVM is available to users through a variety of chan-
nels. Primarily and for greatest ease of use, we offer
a web server, located at http://kmersvm.beerlab.org.
Additionally, the kmser-SVM suite can be downloaded
from the Galaxy Toolshed (http://toolshed.g2.bx.psu.
edu/) by visiting the Toolshed and searching for ‘kmer-
SVM’ and can be installed locally together with the
Galaxy project framework. Supporting files for kmer-
SVM suite, a list of dependencies required to run kmer-
SVM suite, as well as an installation guide, can be found
at http://kmersvm.beerlab.org/install/. Additionally, this
information and further documentation is also provided
as part of the kmer-SVM download (see README.txt).

RESULTS

Prediction of estrogen-related-receptor beta bound regions
in mouse ES cells

To take a specific example, we first consider the ChIP-seq
data set of Chen et al. (24), who identified binding loci of
TFs in mouse embryonic stem (ES) cells. As an example, we
analyze their ChIP-seq data for estrogen-related-receptor
beta (ESRRB) known to play a role in maintaining the
pluripotency of ES cells (25). Because the ESRRB bound
regions reported by Chen et al. (24) were short (10–30bp),
we extended from the midpoint of these regions and used
100 bp elements as the positive sequence set. Following the
workflow in Figure 1, we then used ‘Generate Null
Sequence’ to produce a 10� negative set, trained the
SVM, then generated the ROC and PR curves for Chen’s
ESRRB data set as shown in Figure 2a. These curves are
typical of an accurate classifier, and we obtained summary
statistics of AUROC=0.921 and AUPRC=0.74 for this
data set. To directly compare the kmer-SVM prediction
results with the PWM scores, we calculated the maximum
log-odd score of the ESRRB PWM for each sequence
and then plotted the ROC and PR curves as shown in
Figure 2b. Although the ESRRB PWM is regarded as an
easy motif, its classification performance (AUROC=0.88
and AUPRC=0.654) is significantly lower than kmer-
SVM.

The top five positive and negative kmers reported by
‘Train SVM’ are shown in Figure 2b. Also in Figure 2c
for comparison is the PWM for ESRRB found and
reported in Chen et al. (24). As expected, the top kmers
span the core motif of the ESRRB-binding site, but
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interestingly, several SVM-predicted kmers contribute to
the specificity of the ESRRB. For example, AAGGTC
(first), AGGTCA (second), CAAGGT (third), AGGTC
G (forth) and so forth have large positive weights, but A
GGTCC and AGGTCT have large negative weights,
showing that A or G is allowed in the binding site at the
11th position of the PWM, but that C and T are not. This

subtlety is not reflected in the PWM found by Weeder, the
motif discovery algorithm used in Chen et al. (24).

Prediction of distinct Glucocorticoid receptor bound
regions in 3134 and AtT20 cells

We next show how our kmer-SVM can be applied to
identify sequence features responsible for directing the

B 

C
6-mers Revcomp SVM 

Scores 
Positive 6-mers

AAGGTC GACCTT 10.05 
AGGTCA TGACCT 8.47 
ACCTTG CAAGGT 5.33 
AGGTCG CGACCT 5.17 
GGTCAA TTGACC 4.01 

 Negative 6-mers
GCAATA TATTGC -2.05 
TGACCA TGGTCA -3.33 
AAGGTA TACCTT -4.23 
AGACCT AGGTCT -4.55 
AGGTCC GGACCT -4.98 

D

A

Figure 2. kmer-SVM analysis of ESRRB-binding sites. (A) ROC and PR curves for a kmer-SVM trained on ESRRB-bound genomic loci in ES cells
versus 10-fold larger random genomic sequence. Default parameters were used for this analysis; Kernel type=Spectrum, K=6, C=1, E=1e-5,
PSW=auto. (B) ROC and PR curves for the ESRRB PWM scores. (C) The top five positive and negative 6 mers recover the ESRRB motif
(D) reported in Chen et al. (24).
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binding of a single TF to different genomic locations in
distinct tissues, developmental states or cell lines. As an
example, John et al. (26) investigated the genomic binding
of the Glucocorticoid Receptor (GR) TF in response
to hormone stimulation in two divergent cell lines.
Specifically, GR binding was profiled via ChIP-seq on a
mouse mammary adenocarcinoma derived cell line (3134)
and mouse pituitary (AtT20) cells. The binding of GR in
these two cell lines were largely at non-overlapping
genomic loci. John et al. (26) showed that the consensus
GR-binding element (GRBE) was present in both 3134
and AtT20 bound regions, but that distinct sets of acces-
sory sequence motifs were detected in the two cell lines,
including binding sites for AP1, AML1, HNF3, TAL1 and
NF1.
We followed the Galaxy pipeline described earlier in the

text to train a kmer-SVM on the ChIP-seq GR bound loci
in 3134 cells versus 10� random genomic sequence and
separately on GR bound loci in AtT20 cells versus 10�
random genomic sequence, using the coordinates in John
et al. (26) as positive set input. Our kmer-SVM classifier
achieved an AUROC of 0.901 and AUPRC of 0.569 in
3134 cells, and AUROC of 0.909 and AUPRC of 0.596 in
the AtT20 cell line (Figure 3a), indicating that GR binding
in both cell lines is predictable based on sequence. The top
10 positive and negative weight kmers for each cell line are
shown in Figure 3b, recovering kmers that span the
GRBE and binding sites for accessory factors reported
in John et al. (26). Although high scoring kmers
matching the GRBE consensus were found in both cell
lines, the accessory factors are specific to each cell line.
In 3134 cells, the top two ranking kmers both match
AP-1, and the eight and ninth highest kmers in 3134
cells matched AML1. Our kmer-SVM also identified
TEAD1 as the fifth most important kmer (ACATTC), a
binding site not found in John et al. (26). In addition, four
of the most negative kmers match the binding site for
ZEB1 or Snail, a common negative sequence feature in
our analysis (3), indicating that the absence of ACCT or
AGGT is predictive for GR bound regions. Thus, we hy-
pothesize that either the presence of a ZEB1-binding site
would directly inhibit the binding of GR, presumably
through the binding of ZEB1 or another factor that
binds specifically to this site. In other cases, this binding
site could otherwise disrupt the normal function of the
enhancer elements and is thus required to be absent (3).
In the AtT20 cells, a separate set of accessory sites is

found: the forth, fifth and seventh most positive kmers
match HNF3, whereas the second and third match
TAL1. The sixth ranked kmer matched NF1. The eight
and tenth ranked kmers match CREB, not reported in
John et al. (26). In summary, our analysis uncovered
most of the accessory factors described in John et al.
(26), but also identifies novel positive and novel negative
binding sites. Further, we demonstrate that these features
are predictive, in the sense that these features can be used
to accurately classify the positive and negative regions,
and are not simply over (or under) represented in one of
the sets.
We next demonstrate that our kmer-SVM is able to

directly distinguish the GR bound regions in 3134 cells

from the GR-bound regions in AtT20 cells from DNA
sequence. In this case, we do not use random genomic
sequence as the negative set, but instead train a kmer-
SVM using the AtT20 regions as the positive sequence
set, and the 3134 regions as the negative sequence set.
The ROC and PR curves are shown in Figure 4a,
yielding AUROC of 0.889 and AUPRC of 0.794. Thus,
DNA sequence is sufficient to distinguish the cell specific
binding of GR. Now, as both sets are bound by GR, the
kmer weights shown in Figure 4b do not include the
GRBE, as it is present in both sets. The distinguishing
features are now binding sites for the GR accessory
factors. The kmer CAGGTG (ZEB1), which was
negative for 3134 versus random is now the most
positive kmer for AtT20 versus 3134. The other positive
kmers match the AtT20-specific accessory factors TAL1
and HNF3. The negative weight kmers are the 3134
specific accessory factors AML1 and AP1. This demon-
strates that these accessory sequence elements are predict-
ive of the tissue-specific binding of GR because the
sequence information in the accessory factor-binding
sites is sufficient to distinguish GR binding in these two
contexts. We emphasize that this is a stronger statement
than simply observing the enrichment of distinct sequence
features in the two cases: we further propose the hypoth-
esis that these sequence features are sufficient to specify
which GR-binding sites will be occupied in each tissue.
This differential occupancy is determined by the
presence of binding sites for accessory factors, which can
be identified from the kmer weights.

Prediction of distinct EWS-FLI bound regions in EWS502
and HUVEC cells

Although the previous example showed that binding of a
sequence specific TF to different loci in different tissues
was predictable from DNA sequence, we now turn to an
example where a wild-type and mutant TF were shown to
bind distinct regions, and that this differential binding is
also predictable from DNA sequence. Most Ewing-
Sarcoma tumors harbor a mutation, which creates an
oncogenic chimerical EWS-FLI TF by fusing the transac-
tivation domain of EWS to the DNA-binding domain of
FLI. Patel et al. (27) showed that this chimeric EWS-FLI
TF targets different genomic regions in tumor cells and in
non-tumor cells, and that additionally the wild-type
protein FLI1 binds to largely the same regions as the
fusion protein in non-tumor cells. Specifically, the
authors assayed binding in the EWS502 cell line (derived
from a Ewing Sarcoma tumor) and primary human endo-
thelial cells (HUVEC). They reported a preferential
binding for regions containing repeats of the
tetranucleotide GGAA by EWS-FLI in both EWS502
and HUVEC cells (although the tumor cell line showed
a greater enrichment). Additionally, binding of EWS-FLI
in HUVEC cells was shown to be enriched in ETS, AP1
and GATA motifs, but that these accessory motifs were
largely absent from the EWS-FLI bound regions in
EWS502 cells.

To analyze these data sets, we used as positive sets the
ChIP-seq regions in Patel et al. (27) bound by EWS-FLI in
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Top Positive 6-mers  Top Positive 6-mers  
GACTCA TGAGTC 7.23 AP1 GGAACA TGTTCC 5.36 GRBE 
GAGTCA TGACTC 6.93 AP1 CAGATG CATCTG 5.33 TAL1 
GGAACA TGTTCC 6.10 GRBE CAGCTG CAGCTG 4.79 TAL1 
AGAACA TGTTCT 4.99 GRBE GTAAAC GTTTAC 4.56 HNF3 
ACATTC GAATGT 4.80 TEAD1 CAAACA TGTTTG 4.43 HNF3 
GGTACA TGTACC 4.71 GRBE TGCCAA TTGGCA 4.20 NF1 
ATGTTC GAACAT 4.67 GRBE GCAAAC GTTTGC 4.09 HNF3 
ACCACA TGTGGT 4.64 AML1 ACGTCA TGACGT 3.99 CREB 
AACCAC GTGGTT 4.61 AML1 AGAACA TGTTCT 3.97 GRBE 
AGTACA TGTACT 4.58 GRBE ATGACG CGTCAT 3.97 CREB 

Top Negative 6-mers  Top Negative 6-mers  
AGGTAA TTACCT -2.34 ZEB1 ATGTAG CTACAT -2.20  
CCTATA TATAGG -2.39  TTATAA TTATAA -2.20  
GTGCAC GTGCAC -2.43  ATATAT ATATAT -2.24  
AGACCC GGGTCT -2.46  CTTATA TATAAG -2.26  
AACTCA TGAGTT -2.62 AP1-var AAAGTT AACTTT -2.34  
CACTCA TGAGTG -2.80 AP1-var GCCCAC GTGGGC -2.36  
CGAGAC GTCTCG -2.95  CATATA TATATG -2.39  
ACAGGT ACCTGT -3.29 ZEB1 GGACCC GGGTCC -2.42  
CACCTG CAGGTG -3.88 ZEB1 AGGGTC GACCCT -2.48  
CAGGTA TACCTG -4.29 ZEB1 CAGGTA TACCTG -2.88 ZEB1 

3134 

AtT20 

A

B

C

Figure 3. kmer-SVM analysis of GR-binding sites. (A) ROC and PR curves for a kmer-SVM trained on GR bound loci in 3134 cells and AtT20 cells
versus 10-fold larger random sequence. Default parameters were used; Kernel type=Spectrum, K=6, C=1, E=1e-5, PSW=auto. (B) The 10
most positive and negative 6 mers from 3134 cells and AtT20 cells recover the previously reported GRBE, AP1, AML1, HNF3, TAL1 and NF1
motifs (C) from John et al. (26), and additional novel accessory factors: CREB, TEAD1 and ZEB1.
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EWS502 cells and HUVEC cells, and we generated
separate 10� negative sets for each cell line. After
training the kmer-SVM, in EWS502 cells, the AUROC
was 0.965 and AUPRC was 0.884, and in HUVEC cells,
the AUROC for this data set was 0.964 and AUPRC was
0.798 (Figure 5a), again showing that the cell line specific
binding of the EWS-FLI TF is predictable from primary
DNA sequence features. In this case, the training data
were optimized for length by the peak-calling algorithm
ZINBA (28), which may account for the extremely high
classification performance. Another possible factor is that
the repeat fraction in these positive sets is relatively high.
Our method finds some motifs common to both cell

lines. Positive sequence features reflect both the ETS
motif recognized by FLI1 and the repetitive structure
reported by Patel et al. (27), with the ETS motif GGAA
as part of the highest ranked kmers in both cell lines, as
shown in Figure 5b. Negative weight kmers are again
found to be significant. Kmers that disrupt the repetitive
GGAA structure (e.g. TGGAAG) score negatively in both
cell lines, but more negatively in EWS502 cells. Notably,

many of the most negative kmers for both cell lines
contain AGGT, again emphasizing the importance of
the absence of ZEB1 or Snail repressor family-binding
sites for EWS-FLI binding or function.

Cell line-specific kmers recover the AP1 motif reported
in Patel et al. (27), and a potentially novel role for
TEAD1. The HUVEC specific accessory factor AP1 is
found as a high scoring motif in HUVEC cells, but not
EWS502 cells. Two highly negative kmers in EWS502 cells
correspond to the binding site for TEAD1. TEAD1 has
been implicated in tumor suppression and growth control
and because the absence of TEAD1 binding sites is pre-
dictive of EWS-FLI binding in EWS502 cells, but not
HUVEC cells, it is tempting to speculate that TEAD1-
binding would disrupt EWS-FLI binding in EWS502
cells, but not in HUVEC cells.

Kmer-SVM versus PWM

To systematically evaluate our kmer-SVM method on a
more exhaustive collection of data, we analyzed all ChIP-
seq data sets generated as part of the ENCODE project

6-mers Revcomp SVM 
Scores 

TF  
Match 

Positive 6-mers 
CACCTG CAGGTG 5.95 ZEB1 
CAGATG CATCTG 4.24 TAL1 
CAAACA TGTTTG 4.15 HNF3 
GTAAAC GTTTAC 4.13 HNF3 
ATTTAC 
CAGCTG 

GTAAAT 
CAGCTG 

3.39 
3.36 

HNF3 
TAL1 

 Negative 6-mers 
  CCACAA TTGTGG -2.62 AML1 

AACCAC GTGGTT -2.89 AML1 
AGTCAT ATGACT -3.05 AP1 
GACTCA TGAGTC -3.75 AP1 
GAGTCA 
ACCACA 

TGACTC 
TGTGGT 

-3.77 
-4.39 
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AML1 
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Figure 4. kmer-SVM analysis of sequence determinants of cell-type-specific GR binding. (A) ROC and PR curves for a kmer-SVM trained on GR-
bound regions in AtT20 cells (positive set) versus GR-bound regions in 3134 Cells (negative set). Default parameters were used; Kernel
type=Spectrum, K=6, C=1, E=1e-5, PSW=auto. (B) The accessory factor binding sites, including ZEB1, TAL1, HNF3, AML1 and AP1,
are sufficient to distinguish the distinct sets of GR-bound regions in these two cell lines. The GRBE element is now present in both sets, is not
predictive in this context and therefore does not receive a large weight. (C) ZEB1 motif from JASPAR database (18) is shown.
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CGGAAA TTTCCG 6.56 ETS ACTTCC GGAAGT 9.45 ETS 
AGGAAG CTTCCT 6.23 ETS CGGAAA TTTCCG 8.92 ETS 
CGGAAG CTTCCG 5.72 ETS AGGAAG CTTCCT 8.82 ETS 
ACTTCC GGAAGT 5.18 ETS GACTCA TGAGTC 7.53 AP1 
ACAGGA TCCTGT 5.17  CGGAAG CTTCCG 7.09 ETS 
ACCGGA TCCGGT 4.26 ETS AGGAAA TTTCCT 6.70  
AGGAAA TTTCCT 4.14  ACAGGA TCCTGT 6.56  

Top Negative 6-mers  Top Negative 6-mers  
CAAGGA TCCTTG -1.84 TEAD1 ACGTAT ATACGT -2.26  
AGTCCA TGGACT -1.92  ACCTGC GCAGGT -2.27 ZEB1 
AGGTGA TCACCT -1.97 ZEB1 AGACTC GAGTCT -2.28  
CTGGAC GTCCAG -1.99  AGGTGA TCACCT -2.34 ZEB1 
TGGAAA TTTCCA -2.29 ETS-var CTTCCA TGGAAG -2.58 ETS-var 
ACAGGT ACCTGT -2.33 ZEB1 AGGAAT ATTCCT -2.82  
AAGGTG CACCTT -2.60  AGGTAA TTACCT -2.90  
AGGAAT ATTCCT -2.61 TEAD1 ACAGGT ACCTGT -3.10 ZEB1 
CTTCCA TGGAAG -2.67 ETS-var CACCTG CAGGTG -3.24 ZEB1 
CAGGTA TACCTG -3.28 ZEB1 CAGGTA TACCTG -4.45 ZEB1 
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Figure 5. kmer-SVM analysis of EWS-FLI-binding sites.(A) ROC and PR curves for a kmer-SVM trained on EWS-FLI-bound regions in EWS502
cells and HUVEC cells versus random genomic sequence. Default parameters were used; Kernel type=Spectrum, K=6, C=1, E=1e-5,
PSW=auto. (B) The 10 most positive, negative 6 mers from EWS502 cells and HUVEC Cells include binding sites the previously reported ETS
and AP1 accessory factors, and novel accessory factors TEAD1 and ZEB1. (C) ETS (FLI1) from UniPROBE (16) and TEAD1 motif from JASPAR
database (18) are shown.
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(29,30). We directly used the 468 sets of peaks generated
by ENCODE Uniform processing pipeline (29), after
removing any data sets containing <500 peaks (27 sets
were excluded by this criterion). We then trained a
kmer-SVM model on each set versus an equal size (1�)
set of corresponding random genomic regions and
calculated the AUROC. As a comparison, we independ-
ently calculated the AUROC of each single PWM in a
combined database of 890 PWMs, using as predictors
the PWM score of the top hit in each region. Figure 6
shows that our kmer-SVM prediction outperforms the
best single PWM in almost all cases. The only notable
exception is the CTCF PWM (red circles), which is pre-
dictive for ChIP on CTCF and members of the cohesin
complex (RAD21, SMC3), which are known to co-localize
with CTCF (31). CTCF is one of the longest and infor-
mation rich PWMs and seems to operate in a non-com-
binatorial manner; therefore, it seems to be relatively
unique in that its genomic binding can be predicted with
a single PWM. In addition, its long binding site is not
handled optimally by the current kmer-SVM model.

DISCUSSION

We have shown that our kmer-SVM model as offered in
this web server is able to find predictive sets of DNA
sequence features in several different genomic data sets
and can be used to assess and explore the genomic data
and generate testable hypotheses for subsequent biological
analysis. Using the existing sequence tools and pipeline
flow of the Galaxy platform has greatly facilitated the
ease of distribution of this tool. The examples we have
highlighted earlier in the text, in addition to our

previous results on mouse EP300 bound enhancers (3)
and melanocyte enhancers (6), emphasize several key
benefits of our kmer-SVM analysis. Using our web
server, users can find the essential sequence features,
which distinguish a set of experimentally determined
genomic regions from random sequence, and identify
key accessory factors and repressive elements for biolo-
gical interpretation and follow-up investigations. In
addition, users can use the kmer-SVM to score alternative
sequence sets or entire genomes to make predictions of the
activity of these regions in the relevant context. We hope
that release in this form will facilitate open availability and
ease of access to the broader research community.

Our web server provides complementarity to existing
PWM discovery and scoring tools, including XXmotif
(32), MEME (21), SCOPE (33), RSAT (34), RegAnalyst
(35) and Amadeus (36). XXmotif operates by attempting
to optimize the statistical significance of a given PWM.
Specifically, XXmotif develops and then iteratively
merges PWMs for motifs until P-values cannot be
improved. The core of MEME is the use of mixture
models, arrived at by means of expectation maximization,
to identify motifs. SCOPE uses three different algorithms,
separately directed toward identify short non-degenerate
motifs, short degenerate motifs and long degenerate
motifs, and uses a scoring method to integrate the
output from each of these algorithms. SCOPE is a param-
eter-free program and requires no parameters to be
provided by the user. RSAT is a more general toolbox
for the analysis of sequence data and uses a tool for
motif discovery, which compares the observed occurrence
of motifs against the expected presence of that motif,
given the distribution of nucleotide occurrence in an
organism (37). RegAnalyst uses a series of thresholds
applied to the counts of motifs observed in a set of se-
quences. Amadeus also compares the frequency of the
presence of motifs against a background model. In
contrast, our web server focuses on finding combinations
of sequence features, which are usually more predictive
than single motifs, as show in Figure 6.

To the best of our knowledge, there is only one web
server available that provides tools (13) with some simi-
larity to our kmer-SVM module. The web server (http://
galaxy.raetschlab.org/) offers simple SVM functions
including several string kernels as well as other common
kernels, such as linear and Gaussian. It also provides
means to evaluate prediction performance using ROC
and PR curves. This server, however, is mainly intended
for general use of SVMs by users with a certain level of
computational experience. In contrast, our kmer-SVM is
specifically designed to allow biologists with no prior
machine learning expertise to quickly and rigorously
analyze regulatory sequence data sets. To do so, our
tool incorporates modules with functionality required
for regulatory sequence analyses and takes into account
the specific properties of regulatory elements. First, we
modified the spectrum kernel function to account for the
fact that TFs bind to double-stranded DNA. We not only
count an exact kmer but also count its reverse complement
kmer. Redundant kmers are then eliminated from the final
feature set to remove the possible bias caused by double
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Figure 6. kmer-SVM versus PWM scores. The kmer-SVM AUROCs
(Y-axis) of the 468 ChIP-seq data sets are compared with the best
PWM AUROCs (X-axis). Default parameters were used; Kernel
type=Spectrum, K=6, C=1, E=1e-5, PSW=auto. In general,
kmer-SVM is much more accurate than any single PWM with one
exception; the CTCF PWM (red circle).
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counting. Second, we offer a module that generates
negative sequence sets to match the distribution of
sequence length, GC content and repeat fraction of the
corresponding positive sets. This ensures that the SVM
classification reflects the most biologically relevant mech-
anisms. Third, we provide a means to interpret and
explain the results by calculating the SVM weights of
kmers from a list of support vectors, the primary output
of SVM training. Although a useful tool for its intended
audience, none of these functionalities aforementioned
provided by our web server is available at the Galaxy
server at Rätsch’s laboratory.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–6.
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Hehl,R., Hornischer,K., Karas,D., Kel,A.E., Kel-Margoulis,O.V.
et al. (2003) TRANSFAC(R): transcriptional regulation, from
patterns to profiles. Nucleic Acids Res., 31, 374–378.

18. Sandelin,A., Alkema,W., Engström,P., Wasserman,W.W. and
Lenhard,B. (2004) JASPAR: an open-access database for
eukaryotic transcription factor binding profiles. Nucleic Acids
Res., 32, 91D–94D.

19. Platt,J.C. (1999) Probablistic outputs for support vector machines
and comparisons to regularized likelihood methods. In: Smola,A.,
Bartlett,P., Scholkopf,B. and Schuurmans,D. (eds), Advances in
Large Margin Classifiers. MIT Press, Cambridge, MA, pp. 61–74.

20. Lin,H.T., Lin,C.J. and Weng,R.C. (2003) A note on Platt’s
probabilistic outputs for support vector machines machine
learning. Mach. Learn., 68, 267–276.

21. Bailey,T.L. and Elkan,C. (1994) Fitting a mixture model by
expectation maximization to discover motifs in biopolymers. Proc.
Int. Conf. Intell. Syst. Mol. Biol., 2, 28–36.

22. Sandelin,A. and Wasserman,W.W. (2004) Constrained binding site
diversity within families of transcription factors enhances pattern
discovery bioinformatics. J. Mol. Biol., 338, 207–215.

23. Storey,J.D. and Tibshirani,R. (2003) Statistical significance for
genomewide studies. Proc. Natl Acad. Sci. USA, 100, 9440–9445.

24. Chen,X., Xu,H., Yuan,P., Fang,F., Huss,M., Vega,V.B., Wong,E.,
Orlov,Y.L., Zhang,W., Jiang,J. et al. (2008) Integration of
external signaling pathways with the core transcriptional network
in embryonic stem cells. Cell, 133, 1106–1117.

25. Ivanova,N., Dobrin,R., Lu,R., Kotenko,I., Levorse,J.,
DeCoste,C., Schafer,X., Lun,Y. and Lemischka,I.R. (2006)
Dissecting self-renewal in stem cells with RNA interference.
Nature, 442, 533–538.

26. John,S., Sabo,P.J., Thurman,R.E., Sung,M.H., Biddie,S.C.,
Johnson,T.A., Hager,G.L. and Stamatoyannopoulos,J.A. (2011)
Chromatin accessibility pre-determines glucocorticoid receptor
binding patterns. Nat. Genet., 43, 264–268.

27. Patel,M., Simon,J., Iglesia,M., Wu,S.B., McFadden,A., Lieb,J.D.
and Davis,I.J. (2012) Tumor-specific retargeting of an oncogenic
transcription factor chimera results in dysregulation of chromatin
and transcription. Genome Res., 22, 259–270.

28. Rashid,N.U., Giresi,P.G., Ibrahim,J.G., Sun,W. and Lieb,J.D.
(2011) ZINBA integrates local covariates with DNA-seq data to
identify broad and narrow regions of enrichment, even within
amplified genomic regions. Genome Biol., 12, R67.

Nucleic Acids Research, 2013, Vol. 41, Web Server issue W555

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt519/-/DC1


29. Gerstein,M.B., Kundaje,A., Hariharan,M., Landt,S.G., Yan,K.K.,
Cheng,C., Mu,X.J., Khurana,E., Rozowsky,J., Alexander,R. et al.
(2012) Architecture of the human regulatory network derived
from ENCODE data. Nature, 489, 91–100.

30. Wang,J., Zhuang,J., Iyer,S., Lin,X., Whitfield,T.W., Greven,M.C.,
Pierce,B.G., Dong,X., Kundaje,A., Cheng,Y. et al. (2012)
Sequence features and chromatin structure around the genomic
regions bound by 119 human transcription factors. Genome Res.,
22, 1798–1812.

31. Parelho,V., Hadjur,S., Spivakov,M., Leleu,M., Sauer,S.,
Gregson,H.C., Jarmuz,A., Canzonetta,C., Webster,Z.,
Nesterova,T. et al. (2008) Cohesins functionally associate with
CTCF on mammalian chromosome arms. Cell, 132, 422–433.

32. Luehr,S., Hartmann,H. and Soding,J. (2012) The XXmotif web
server for eXhaustive, weight matriX-based motif discovery in
nucleotide sequences. Nucleic Acids Res., 40, W104–W109.

33. Chakravarty,A., Carlson,J.M., Khetani,R.S. and Gross,R.H.
(2007) A novel ensemble learning method for de novo

computational identification of DNA binding sites. BMC
Bioinformatics, 8, 249.

34. Thomas-Chollier,M., Defrance,M., Medina-Rivera,A., Sand,O.,
Herrmann,C., Thieffry,D. and van Helden,J. (2011) RSAT 2011:
regulatory sequence analysis tools. Nucleic Acids Res., 39,
W86–W91.

35. Sharma,D., Mohanty,D. and Surolia,A. (2009) RegAnalyst: a web
interface for the analysis of regulatory motifs, networks and
pathways. Nucleic Acids Res., 37, W193–W201.

36. Linhart,C., Halperin,Y. and Shamir,R. (2008) Transcription factor
and microRNA motif discovery: the Amadeus platform and a
compendium of metazoan target sets. Genome Res., 18,
1180–1189.

37. van Helden,J., Andre,B. and Collado-Vides,J. (1998) Extracting
regulatory sites from the upstream region of yeast genes by
computational analysis of oligonucleotide frequencies. J. Mol.
Biol., 281, 827–842.

W556 Nucleic Acids Research, 2013, Vol. 41, Web Server issue


