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A three-step stacking capillary electrophoresis of
field-amplified sample injection, sweeping, and
micellar collapse for determination of dabigatran and
its active metabolite in human plasma
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Abstract

A three-step stacking capillary electrophoresis (CE) composed of field-amplified sample injection, sweeping, and
analyte focusing by micellar collapse (FASI-sweeping-AFMC) was developed to determine dabigatran (D) and its major
active metabolite, dabigatran acyl-beta-d-glucuronide (DAG), in human plasma. After optimization and validation, this
novel approach was further applied to monitor 5 real samples, and the 25.2—186.8 ng mL™" D could be observed among
those. Based on these results, the novel CE stacking strategy was successfully applied for the analysis of D and DAG in
human plasma and could be served as a tool for clinical assays.

Keywords: Anticoagulant, Dabigatran, Dabigatran acyl-beta-d-glucuronide, FASI-sweeping-AFMC, Human plasma

1. Introduction active thrombin inhibitors possessing few in-
teractions with drugs or food would offer some
potential advantages over these agents. In 2010,
dabigatran etexilate (DE) (Pradaxa®), a novel direct
oral anticoagulant (DOAC), was approved for the
prevention of stroke and thrombosis in patients with
non-valvular atrial fibrillation.

DE is a prodrug and further metabolized by
esterase to its active metabolite, dabigatran (D), in
vivo [2,3], and then this could be further metabolized
to form a glucuronide conjugate possessing phar-
macological activity, dabigatran acyl-beta-d-glucu-
ronide (DAG), which is the final metabolite in

A ntithrombotic therapy plays an important
role in the prevention and treatment of
thromboembolic disorders. However, currently
available agents such as warfarin and oral vitamin K
antagonists show numerous complex drug and food
interactions, resulting in unpredictable pharmaco-
kinetic outcomes [1]. Additionally, some antith-
rombotic agents such as low molecular weight
heparin or fondaparinux are required with paren-
teral administration, resulting in a decrease of pa-
tients’ compliance. For the above reasons, oral
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humans [4]. Although D and DAG both have
pharmacological activity, D is only used as an anti-
coagulant for clinical use, and DAG is generally
regarded as a popular research subject in enzy-
mology. Due to infrequent monitoring of the clot-
ting tendency of blood in the treatment of D, it can
be offered as an alternative therapy for warfarin [5];
however, the U.S. Food and Drug Administration
(FDA) unexpectedly issued warnings in 2011 about
the bleeding risk of DE. Furthermore, related re-
searches exhibited a relationship between plasma
concentration of D with the risk of bleeding (plasma
concentration of D > 200 ng mL ') and thrombosis
(plasma concentration of D < 50 ng mL™Y) [6,7]. For
these above-mentioned arguments, a suitable de-
tective approach for the determination of D and
DAG levels in human plasma is necessary for clin-
ical assays.

Up to now, coagulation tests have been widely
utilized to assess the safe dosage range of antith-
rombotic drugs in clinical settings; for example, the
prothrombin time (PT) and activated partial throm-
boplastin time (aPTT) have been evaluated for the
safety of D, although due to numerous interferences
from other coagulant drugs, endogenous changes in
coagulation factors or variations in responses to drugs
among the individuals, detection of PT or aPTT is
difficult for assaying the safety of D in humans.
Because of these reasons, some approaches such as
HPLC-MS/MS, UPLC-UV, and UPLC-MS/MS have
been developed for detection of the real D level in vivo
to overcome these drawbacks. Among these ap-
proaches, UPLC-MS/MS has been frequently applied
for the determination of D levels in human plasma
due to its specificity and sensitivity while showing
satisfactory outcomes (about 0.2 ng mL 1) [8,9]. Un-
fortunately, most laboratories in hospitals and clinics
can't afford the cost of the UPLC-MS/MS apparatus
and additionally, such instruments require an oper-
ator with specialized experience; consequently, a
specific approach with easy operation and inexpen-
sive property is urgently needed for the determina-
tion of D and DAG levels in human plasma.

Capillary electrophoresis (CE) has become an
attractive analytical technique due to its high sepa-
ration efficiency, short analysis time, less consump-
tion of materials, and its facility to be widely applied
in different practical fields, including medicine,
pharmaceutics, chemistry, and biology [10—20].
However, the sensitivity of CE is comparatively low
due to the minor amount of sample injection and the
short optical length of capillary. To overcome this
problem, various on-line preconcentration ap-
proaches have been developed to increase the
sensitivity of CE, such as field amplified sample

stacking (FASS), field amplified or enhanced sample
injection (FASI) [21,22], sweeping [23,24], large vol-
ume sample stacking (LVSS) [25,26], dynamic pH
junction [27], analyte focusing by micelle collapse
(AFMC) [28,29] and micelle to solvent stacking (MSS)
[30—32], etc. These on-line preconcentration ap-
proaches have more favorable traits such as ease of
manipulations without complicated modifications of
commercial CE instrumentation and the significant
enhancement of sensitivity. Among these stacking
approaches, FASI utilizes the electrokinetic injection
of samples in a diluent with conductivity at least 10
times lower than the background solution (BGS). In
other words, it shows that the electric field strength in
the sample zone is higher than that in the BGS zone,
and as a result, the electrophoretic velocity of ions in
the sample zone is faster. Ions migrate rapidly during
electrophoresis and slow down abruptly when they
encounter the BGS zone. The ions can be concen-
trated and stacked at the boundary between the BGS
and sample zone or water zone [33]. Sweeping relies
on the interaction of analytes with the micellar phase
that penetrates the sample zone and creates a
concentrated sample zone by physicochemical
properties. The AFMC mechanism is based on the
use of micellar pseudophase in the sample matrix,
and analytes covered with micelles can collapse into
a diluted zone of micelles to stack in the interface due
to low concentration of micelles resulting from the
difference of electric field strength between the water
and BGS plug zone. The accumulated analytes are
subsequently separated by electrophoresis [34]. The
enhancement of sensitivity is limited when only a
single stacking approach is performed in a study. In
order to obtain further enhancement of sensitivity in
CE, numerous studies indicate the merging of more
than two stacking approaches into one CE separa-
tion. Currently, much of the literature has demon-
strated the efficacy of a three-step stacking approach
in CE is better than that of a single stacking approach
[33,35]. For this reason, the above-mentioned stack-
ing approaches were combined in this study to
develop a novel three-step stacking CE approach.

Accordingly, a novel and convenient CE on-line
three-step stacking approach called FASI-sweeping-
AFMC, including FASI], sweeping, and AFMC was
designed and developed for the determination of D
and DAG levels in human plasma for clinical assays.
To our best knowledge, few studies have reported
the simultaneous determination of D and DAG
levels in human plasma by CE, so this sequential
three-step stacking (FESI, sweeping, and AFMC)
approach should be the first article delineating the
determination of D and DAG levels in human
plasma in the field of CE.

=]
=
g
H
&~
<
|
<
&
o
&~
o




©]
a2
e
z
>
=
>
=~
=
3
=
(s

90 JOURNAL OF FOOD AND DRUG ANALYSIS 2022;30:88—103

2. Materials and methods

2.1. Chemicals and consumables

All of the analytes were analytical grade. D and
DAG were purchased from Cayman Chemical (Ann
Arbor, MI, USA). Clozapine as an internal standard
(IS), verapamil, amiodarone, propranolol, digoxin,
sodium dihydrogen phosphate (NaH,PO,), and so-
dium dodecyl sulfate (SDS) were purchased from
Sigma-Aldrich (St, Louis, MO, USA). Methanol
(MeOH), hydrochloric acid (HCI), and sodium hy-
droxide (NaOH) were obtained from E. Merck
(Darmstadt, Germany). Perchloric acid (HC1O,) was
provided from Honeywell Fluka (Muskegon, MI,
USA). Sudan III was purchased from Katayama
Chemical (Osaka, Japan). The ultrapure water used
for the preparation of buffer and other aqueous
solutions was produced from Millipore Ultra-Pure
water system (Bedford, MA, USA).

2.2. CE system

Beckman PA800 MDQ (Fullerton, CA, USA) elec-
trophoresis instrument equipped with a UV detec-
tor was used for the determination of D and DAG
levels in human plasma. The detective wavelength
was set at 214 nm. An uncoated fused silica capillary
(Polymicro Technologies, Phoenix, AZ, USA) of 50
pm LD. and 50 cm total length (40 cm to the detec-
tor) was used. Before utilization of analysis, each
new capillary should be rinsed with MeOH, ultra-
pure water, 1 M HCI, ultrapure water, 1 M NaOH,
and ultrapure water, and each step was set at 30 psi
for 10 min. The temperature of capillary was main-
tained at 25 °C, and the data obtained from tests
were collected and analyzed by using MDQ 32 Karat
software from Beckman.

2.3. Preparation of the plasma samples

All stock solutions of analytes including IS were
prepared with the acidic water of pH 3.0 at a con-
centration of 1 mg mL™". Patient plasma samples
were obtained from patients (P1—P5) with non-
valvular atrial fibrillation taking DE during antith-
rombotic therapy. Additionally, the plasma obtained
from five healthy volunteers was used as the plasma
matrix in tests. Ethical approval for this study was
obtained from the Institutional Review Board (IRB)
of the Chung-Ho Memorial Hospital, Kaohsiung
Medical University, Kaohsiung, Taiwan (Number of
IRB: KMUHIRB-E(I)-20190422). All samples used in
the tests were stored at —20 °C before use.

The 250 pL plasma sample was prepared in the
plasma matrix with an expected concentration of D,
DAG, and IS. Subsequently, 10 pL of 70% (V/V)
HCIO, was added into this plasma sample for pre-
cipitation of protein with vortex for 2 min. The
mixture was then centrifuged at 10000 rpm for 15
min. When centrifugation was completed, the su-
pernatant was transferred into a 2 mL eppendorf
tube and then further extracted by solid phase
extraction (SPE). In the SPE procedure, the Oasis
HLB extraction cartridge (Waters, Wexford, Ireland)
was utilized for pretreatment of the supernatant,
with the procedure described as follows. Initially,
the SPE cartridge was conditioned with 2 mL
methanol and 2 mL ultrapure water respectively,
and the supernatant was then loaded into the car-
tridge, and following the loading, the SPE cartridge
was washed with 2 mL ultrapure water and 2 mL
10% (V/V) methanol respectively. The SPE cartridge
then was eluted with 1 mL methanol and the eluent
was collected, evaporated to dryness under vacuum,
and finally reconstituted with acidic water (pH 3.0).
The 100 uL reconstituted solution with 0.5 ug mL ™"
IS was analyzed by the developed CE system. The
real plasma samples from the patients taking DE
were also pretreated in the same procedure without
the addition of D and DAG.

2.4. FASI-sweeping-AFMC electrophoresis

Before separation, the capillary was rinsed with
the BGS (pH = 2.5) composed of 100 mM NaH,PO,
at 30 psi for 10 min. Subsequently, the micellar so-
lution (MS) (pH = 2.5), composed of the BGS con-
taining 50 mM SDS, was injected into the capillary
at 0.5 psi for 20 sec. Next, the BGS plug solution
(pH = 2.5) of 100 mM NaH,PO, was injected into the
capillary at 0.5 psi for 90 sec, and then ultrapure
water was injected into the capillary at 0.5 psi for 60
sec. After the above steps, the analytes were elec-
trokinetically injected into the capillary at 10 kV for
300 sec and then separated at 20 kV. In this study,
the UV detector was set at the cathode side, detec-
tive wavelength was set at 214 nm, and the running
temperature during analysis was maintained at
25 °C.

2.5. Method validation

In order to establish the calibration curves for
quantification of D and DAG levels in human
plasma, five different concentrations of D (2.5, 10,
100, 250, 1000 ng mL~") and DAG (50, 100, 375, 500,
1000 ng mL ") were spiked into the plasma matrix



JOURNAL OF FOOD AND DRUG ANALYSIS 2022;30:88—103 91

and analyzed by this developed CE approach. All of
the plasma samples spiked with known concentra-
tions of D and DAG were also pretreated according
to the procedures of section 2.3. The calibration
curves were established by comparison of the cor-
rected peak area ratio of each analyte to IS (Y axis)
with the concentrations of each analyte in ng mL ™"
(X axis). In the analysis of the precision and accu-
racy, three different concentrations of D (5, 50, and
500 ng mL~") and DAG (75, 250, and 750 ng mL ")
were spiked into the plasma matrix and subse-
quently determined, with the results being evalu-
ated by values of relative standard deviation (RSD)
and relative error (RE) from the three different
spiked concentrations in the analyses of both intra-
day and inter-day. The outcome of intra-day was
defined as three repeated analyses (n = 3) in a single
day, and the outcome of inter-day was defined as
the same analysis over five different days (n = 5). In
this study, the limit of detection (LOD) was deter-
mined in the plasma matrix using the diluted stan-
dard solution where the ratio of signal to noise was
equal to 3 (§/N = 3).

2.6. Stability and selectivity

The stability of our approach in CE during anal-
ysis was evaluated over 24 hours at room tempera-
ture. The RSD value of the peak area ratio (peak
area of analyte/peak area of IS) (n = 3) was utilized
for evaluation of the stability, and it was considered
as stable when the RSD value was within +5%. Be-
sides, the selectivity of our approach in CE was
assessed by a comparison of the plasma matrix
containing 1 ug mL ' D, DAG, 0.5 pg mL ' IS, and 1
nug mL™ ' four antiarrhythmic drugs (verapamil,
amiodarone, propranolol, digoxin) chosen from the
viewpoint of participants under the treatment sug-
gested by physicians [36] and the corresponding
controls.

Initially, the plasma matrix samples in this study
were pretreated and analyzed by the above-
mentioned procedure. Subsequently, the migration
time of any single peak was compared with that of
the corresponding controls to demonstrate the
selectivity of our approach in CE.

2.7. Sensitivity enhancing factors

In order to realize the sensitivity enhancement of
the FASI-sweeping-AFMC, a typical injection CZE as
a control group was performed to calculate the
sensitivity enhancement according to the literature
[31]. In the system of the typical injection CZE, the
analytes were injected into the capillary at 0.5 psi for 5

sec, and the separated voltage and the buffer solution
were the same as those in the FASI-sweeping-AFMC.
However, in the consideration of the low sensitivity
for the typical injection CZE, the concentrations of
the analytes used in the typical injection CZE were 10
fold higher than those used in the FASI-sweeping-
AFMC, and results would be calibrated at the end of
the calculation. Based on the equation described
from these researches [31,37], the sensitivity
enhancement factors (SEFs) of the FASI-sweeping-
AFMC were calculated. The equation was as
following: SEFs = [corrected peak area in the FASI-
sweeping-AFMC/corrected peak area in the typical
injection CZE] x [concentration in the typical injec-
tion CZE/concentration in the FASI-sweeping-
AFMC]. The corrected peak area described in the
equation was peak area of the analyte/migration time
of the analyte.

3. Results and discussion

3.1. Mechanism of the FASI-sweeping-AFMC
approach

In this study, the stacking CE techniques,
including field-amplified sample injection, sweep-
ing, and analyte-focusing by micellar collapse were
integrated into a three-step stacking CE procedure
(FASI-sweeping-AFMC) to determine the levels of
D and DAG in human plasma. The principle of this
developed CE approach is illustrated in Fig. 1.
Firstly, the fused silica capillary was filled with BGE,
micellar solution, BGS plug, and water sequentially
(Fig. 1A); secondly, the sample was injected elec-
trokinetically into the capillary; and finally, when
the injected voltage was applied (anode was set at
the inlet), the anionic micelles and cationic analytes
would respectively migrate to the anode and cath-
ode electrophoretically. During electrokinetic injec-
tion, it was noted that the stacking of FASI could
create a concentrated sample zone between the
water zone and the BGS plug due to the difference
of electric field strength (Fig. 1B). Subsequently, as
the separation voltage (normal polarity, 20 kV) was
applied, the anionic micelles would penetrate the
sample zone and sweep the analytes toward the
anode to form the second stacking (Fig. 1C). At this
moment, the direction of effective electrophoretic
mobility for analytes was reversed from cathode to
anode due to charge change. However, when the
micelles carrying the analytes moved to the water
zone, the concentration of micelles would decrease
and become lower than the critical micelle concen-
tration (CMC), resulting in the collapse of the mi-
celles. Hence, the micelles would release the
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Fig. 1. Schematic diagrams of the FASI-sweeping-AFMC approach. (A) The starting situation, (B—D) injection, and the stacking process. (E) The
separation. The details of this mechanism have been explained in the results section.

analytes in the dilution zone to accomplish the third
stacking of the analytes. At this moment, the direc-
tion of effective electrophoretic mobility for analytes
was reversed again, and analytes would migrate
toward the cathode (Fig. 1D). Finally, the separation
of analytes was determined by their charge and
mass for separation, and the analytes were deter-
mined by UV detection at 214 nm wavelength
(Fig. 1E). Our approach provided three stacking
techniques, including FASI, sweeping, and AFMC in
the one-pot procedure, to achieve sensitivity
enhancement in CE analysis.

3.2. Optimization of the FASI-sweeping-AFMC
approach

In order to obtain the highest efficiency of stack-
ing and separation in the FASI-sweeping-AFMC
approach, several parameters in CE analysis
including the pH value of the buffer system, the
concentration of BGS, the concentration of SDS, the
concentration of BGS plug, and sample injection
time were investigated as follows.

3.2.1. The pH value of the buffer system

In the CE system, the electrophoretic mobility is
dependent on the ionized level of analytes, and the
electroosmotic flow (EOF) is controlled by the silanol

groups (SiOH) existing in the anionic form (SiO™).
Both of them were greatly affected by the pH values
of the buffer system, so pH values play a key role in
the CE system. In this study, the buffer system was
composed of BGS, MS, and BGS plug solution, and
the pH values of the three solutions were investi-
gated from 2.0 to 3.5 (Fig. 2). According to the results,
there was a noise peak presented at pH 2.0, and it did
not interfere with the separation of analytes. When
the pH value was higher than 2.5, the efficiency of
stacking and separation was similar; however, high
protonation of analytes (pH 2.0) would cause the
analytes to strongly interact with SDS micelles, and
the strong interaction would affect the release of
analytes from the SDS, resulting in poor efficiency of
stacking at pH 2.0 (Fig. 2A). Additionally, although in
the use of pH 3.5 (Fig. 2D), the interfering peaks were
fewer than others in the electropherograms, it con-
sumes more time to separate. Separation time and
interfering peaks are both significant factors for us to
find the optimal condition. Although fewer in-
terferences at pH 3.5, the separation time at pH 2.5
was shorter than that, and interferences at pH 2.5
would not affect the resolution of D and DAG. Due to
these reasons, pH 2.5 was selected as the optimal
condition of the pH value in the buffer system. Under
such pH value (pH 2. 5), the mobility of the EOF is
327 x 10 °em? V!



JOURNAL OF FOOD AND DRUG ANALYSIS 2022;30:88—103 93

0.10

0.08 X

0.06

Abs
i

0.04

0.02 IS D AG

0.00

0.10 4

0.08 1

0.06

Abs

0.04

o IS
0.02 DAG
I

000 i T T T T T T d
0 2 4 6 8 10 12 14

Time (min)

010

.
0.04
o IS| pac
000 = N P
0 2 4 6 8 10 12 14
Time (enin)
0.10 -
0.08 4 D
D
0.06 4
é

0.04 4

IS
" l DAG
000 | . i ___«__,JL_

0 2 4 6 8 10 12 14

Time (min)

Fig. 2. Effect of pH ((A) pH 2.0; (B) pH 2.5; (C) pH 3.0; (D) pH 3.5) of buffer system on stacking and separation efficiency by the FASI-sweeping-
AFMC approach. The symbol x represents the signal of interference from plasma matrix. Sample concentrations: 1 ug mL™" D; 1 ug mL™" DAG; 0.5
ug mL~L IS. CE conditions: BGS, 100 mM NaH,PO, MS, BGS contains 50 mM SDS; BGS plug, 100 mM NaH,PO Sample injection, 300 sec (10

kV); Separation voltage, 20 kV; Detection wavelength, 214 nm.

3.2.2. The BGS concentration

In this study, the BGS concentration was inves-
tigated from 75 to 150 mM (Fig. 3). When the BGS
concentration was 75 mM (Fig. 3A), the peak
heights of D and DAG were short. That was
because the ionic strength was not high enough for
focusing the D and DAG in the capillary. As the
BGS concentration increased, although the migra-
tion time of analytes was prolonged due to the low
electric field strength at a higher concentration of
BGS, the higher concentrations of BGS could make
the D and DAG peaks taller and sharper. However,
when the BGS concentration reached 150 mM, the
peak shape of analytes became broad and crotched
(Fig. 3D). This was because higher BGS concen-
tration has higher ionic strength, which generates a
higher current (up to 120 pA) to cause Joule heat-
ing, resulting in poor efficiency of stacking. Finally,
100 mM BGS solution was utilized in this CE
approach.

3.2.3. The SDS concentration
In the AFMC mechanism [38], proper SDS con-
centration would make micelles collapse easily at

the boundary between the water zone and the BGS
plug. The research indicated that the larger differ-
ence of electric field strength or conductivity be-
tween both could obtain more improvement of
stacking efficiency. As the surfactant plays a key role
to improve sensitivity and resolution, the anionic
surfactant, SDS, was investigated from 0 to 100 mM
(Fig. 4). When the SDS concentration reached 100
mM, the SDS micelles were difficult to collapse, and
the analytes could not be further accumulated in the
interface between the water zone and the BGS plug,
so the poor efficiency of stacking could be observed
at 100 mM of SDS (Fig. 4E). For the use of 25, 50, and
75 mM SDS (Fig. 4B—D), the efficiency of separation
and stacking were similar. An increase of SDS
concentration was beneficial to sweeping, but it also
resulted in the insufficiency of collapsed micelles.
When 25 mM SDS was used, there were several
noise peaks closed to IS (Fig. 4B). Finally, 50 mM
SDS was selected as the optimal condition. Addi-
tionally, in the use of 0 mM SDS (Fig. 4A), poor ef-
ficiency of stacking was observed, so this indicated
that sweeping of the SDS micelles could improve
the stacking of analytes.
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Fig. 3. Effect of BGS concentration ((A) 75 mM; (B) 100 mM; (C) 125 mM; (D) 150 mM) on stacking and separation efficiency by the FASI-sweeping-
AFMC approach. Sample concentrations: 1 ug mL™ D; 1 ug mL™ DAG; 0.5 ug mL™" IS. CE conditions: BGS, NaH,PO,, pH 2.5; MS, BGS contains
50 mM SDS, pH 2.5; BGS plug, 100 mM NaH,PO,, pH 2.5; Sample injection, 300 sec (10 kV); Separation voltage, 20 kV; Detection wavelength, 214

nm.

3.2.4. The BGS plug concentration

In order to obtain better efficiency of stacking in
the FASI mechanism, the BGS plug was introduced
to produce the difference of electric field strength
between the water zone and the BGS plug. Addi-
tionally, the BGS plug also affects the migration of
micelles sweeping toward the analytes. In this
study, the BGS plug concentration was investigated
from 50 to 200 mM (Fig. S1). As the concentration of
the BGS plug reached 150 and 200 mM (Fig. S1C-D),
the efficiency of stacking became worse, illustrating
that a high concentration of the BGS plug could
result in slow migration of micelles in the BGS plug,
which might cause the insufficiency of collapsed
micelles or poor sweeping. In the use of 50 mM BGS
plug, poor efficiency of stacking was also observed.
This was because that the difference of electric field
strength between the water zone and the BGS plug
was not high enough to produce the stacking of
analytes in the interface during the electrokinetic
injection. Finally, this approach was performed by
using a 100 mM BGS plug.

3.2.5. The injection time of analytes

When analytes were electrokinetically injected
into the capillary (10 kV), the amount of analytes
introduced into the capillary was dependent on the
injection time. Therefore, the injection time was
investigated from 240 to 420 sec in this study
(Fig. S2). When the condition was set at 360 sec or
420 sec, the efficacy of stacking decreased obviously,
and the peak shape became broad and crotched
(Fig. S2C-D). This showed that the length of the
sample zone was too long to stack effectively. For
this reason, injection time was set at 300 sec as the
optimal condition.

3.3. Method validations

In this study, the LOD (S/N = 3) values of the D and
DAG in the FASI-sweeping-AFMC approach were
0.25 ng mL ' and 10 ng mL ' respectively. Addi-
tionally, the calibration curves of the D and DAG
were linear over the range of 2.5—-1000 ng mL ™" and
50—1000 ng mL ™" respectively (data are shown in
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Fig. 4. Effect of SDS concentration ((A) 0 mM; (B) 25 mM; (C) 50 mM; (D) 75 mM; (E) 100 mM) on stacking and separation efficiency by the FASI-
sweeping-AFMC approach. Sample concentrations: 1 ug mL™" D; 1 ug mL™" DAG; 0.5 ug mL™" IS. CE conditions: BGS, 100 mM NaH,PO,, pH 2.5;
MS, BGS contains SDS, pH 2.5; BGS plug, 100 mM NaH,PO,, pH 2.5; Sample injection, 300 sec (10 kV); Separation voltage, 20 kV; Detection

wavelength, 214 nm.

Table 1). In the analysis of intra-day and inter-day,
the correlation coefficients (r) of D and DAG were all
above 0.999, indicating a good linear response of this
FASI-sweeping-AFMC approach. In the analysis of
precision and accuracy, three different concentra-
tions of D (5, 50, and 500 ng mL 1) and DAG (75, 250,
and 750 ng mL ") were spiked into the plasma matrix
and then determined. The values of RSD and RE
could be obtained to evaluate the precision and ac-
curacy respectively, and according to Table 2, the
good precision and accuracy of our approach were
obtained. All values of the RSD and RE obtained from
the analysis of intra-day and inter-day were less than
5%, and it showed good applicability of our approach
for the analysis of biological samples.

3.4. Stability and selectivity

In order to evaluate the stability of our approach
during analysis, the study of stability was executed for
24 hours at room temperature. In this study, the sta-
bility was presented as the RSD value of the peak area
ratios for 24 hours (data shown in Fig. S3). During the
24 hour analysis, the RSD values of the peak area

Table 1. Regression analysis for the determination of D and DAG levels.

ratios of D and DAG were 3.7% and 3.4% respectively.
This data validated the excellent stability of our
approach and ensured stable outcomes for the
quantification of D and DAG levels in plasma over 24
hours. Additionally, the selectivity of our approach
was confirmed by a comparison of the plasma matrix
containing 1 pg mL™" D, DAG, 0.5 ug mL ™" IS, and 1
ug mL™' four antiarrhythmic drugs (verapamil,
amiodarone, propranolol, digoxin) chosen from the
viewpoint of participants under treatment suggested
by physicians [32] and the corresponding controls.
The data (Fig. S3B) showed that these analytes could
be well-resolved under interferences resulting from
the plasma matrix and interaction of these antiar-
rhythmic drugs. In summary, the results of this study
indicated the high selectivity of this approach towards
the identification of the target analytes, and four other
antiarrhythmic drugs were confirmed.

3.5. The comparison with other stacking CE
methods

In this research, the various stacking CE strategies
and the typical injection CZE method were also

Analytes Linear range Regression equation Correlation
(ng mL™Y) coefficient (r)

Intra-day (n = 3)

Dabigatran 2.5—1000 Y = (0.0092 + 0.0002) X + (0.2219 + 0.0513) 0.9991
Dabigatran acyl-beta-d- glucuronide 50.0—1000 Y = (0.0035 + 0.0005) X + (0.0175 + 0.0548) 0.9995
Inter-day (n = 5)

Dabigatran 2.5—1000 Y = (0.0090 + 0.0002)X + (0.1295 + 0.0616) 0.9995
Dabigatran acyl-beta-d- glucuronide 50.0—1000 Y = (0.0034 + 0.0002)X — (0.0418 + 0.0534) 0.9993
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Table 2. Analysis of the precision and accuracy for the determination of D and DAG levels.

Analytes Concentration Concentration RSD (%) RE (%)
known (ng mL™") found (ng mL™)

Intra-day (n = 3)

Dabigatran 5 514 + 0.11 2.08 2.79
50 50.68 + 2.15 424 1.37
500 505.17 + 6.31 1.25 1.03

Dabigatran acyl-beta-d- glucuronide 75 78.05 + 1.02 1.30 4.07
250 251.28 + 0.79 0.31 0.51
750 761.03 + 3.15 0.41 1.47

Inter-day (n = 5)

Dabigatran 5 5.05 + 0.11 2.22 1.04
50 50.12 + 0.82 1.63 0.25
500 502.00 + 6.35 1.26 1.01

Dabigatran acyl-beta-d- glucuronide 75 76.32 + 1.97 2.59 1.76
250 252.89 + 3.00 1.19 1.16
750 753.74 + 2.59 0.34 0.50

performed to compare with the FASI-sweeping-
AFMC by using the standard analytes. The data was
as shown in Fig. S4. In the FASI-sweeping-AFMC
(Fig. S4A), the D and DAG were well separated and
stacked. When the separation was performed in the
mode of the FASI-sweeping (Fig. S4B), the D and
DAG were coupled. In the FASI-sweeping mode, the
separation was set in the reverse polarity (The anode
is set in the outlet), and the SDS (50 mM) micelles set
in the inlet and outlet reservoir were continuously
introduced into the capillary to sweep the analytes.
The data indicated the continuous anionic SDS mi-
celles under such conditions could sweep the ana-
lytes to the detector (anode), but could not resolve D
and DAG. However, in the mode of the FASI-
sweeping-AFMC, the separation was set in the
normal polarity (The detector and cathode are in the
outlet) and the SDS (50 mM) was present in a short
plug (0.5 psi, 20 sec, about 1.3 cm of 50.0 cm total
capillary length). Theoretically, the analytes would
migrate to the inlet of the capillary due to the
sweeping of the micelles, but the D and DAG could
also be detected. Additionally, the mobility of the
SDS micelles (3.40 x 10™* cm? V 'sec!) was about
ten-fold higher than that of EOF (3.27 x 10> cm?
V~'sec ") under pH 2.5, and the analytes could not be
pushed to the detector by EOF in the presence of the
SDS micelles. Therefore, that meant the anionic mi-
celles would be collapsed during separation, and the
analytes were released to the free solution and
moved to the cathode by EOF and their cationic
charge. Second, in this study, the SDS (50 mM) mi-
celles only occupied 2.6% of the total capillary (0.5
psi, 20 sec, about 1.3 cm of 50.0 cm total capillary
length), and the SDS concentration would be
decreased gradually due to distribution in the BGS
plug and the water zone as micellar dilution zone
(MDZ) during analysis. Finally, it would be low than

CMC to be collapsed and release the cationic analy-
tes. If the micelles were not collapsed, the analytes
would migrate to the inlet by the sweeping of the
anionic micelles, and the signals of analytes were not
detected by the detector in the cathode. In the FASI
mode (Fig. 54C), the stacking efficiency was very
poor for D and DAG, although they were well sepa-
rated. In the comparison of the FASI-sweeping-
AFMC and the FAS], it could be found the migration
time became longer in the FASI-sweeping-AFMC
due to the transient sweeping of the analytes to inlet
by the short plug of SDS, and that also demonstrated
the sweeping of the anionic SDS micelles were much
helpful for sacking D and DAG.

3.6. Sensitivity enhancing factors

In order to know the sensitivity enhancement of the
FASI-sweeping-AFMC, a typical injection CZE was
also performed (Fig. S4D), and the sensitivity
enhancement factors (SEFs) of the FASI-sweeping-
AFMC were calculated. In the comparison of the
typical injection CZE as the controlled group, the
SEFs of the FASI-sweeping-AFMC were obtained.
Based on the results (Table S1), the sensitivity was
increased significantly in the FASI-sweeping-AFMC,
and the SEFs of the FASI-sweeping-AFMC for D and
DAG were 1572 and 634, respectively. The data has
demonstrated that there was a sensitivity improve-
ment by using the FASI-sweeping-AFMC for the
determination of D and DAG when compared to the
typical injection CZE.

3.7. Evaluation of SDS micelles collapse by using
Sudan II1

In this approach, the sweeping and the collapse of
micelles played important roles for stacking the
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Table 3. Characteristics and detected results of five patients in this study.

Patient Sex Age Weight Dosage eGFR D level® DAG level

No. (yr) (kg) (mg/kg/day) (mL/min/1.73 m?) (ng mL™Y) (n = 3) (ng mL™Y) (n = 3)
P1 F 85 60 3.7 61.7 186.8 + 17.4 NDP

P2 M 77 61.3 3.6 66.3 170.4 + 14.2 57.6 + 2.1

P3 M 78 79 2.8 49.0 110.6 + 9.5 <50.0°

P4 F 59 78.2 2.8 90.0 184.7 + 8.9 <50.0°

P5 M 69 59.4 5.1 84.7 252 + 1.6 745 + 3.4

? Normal therapy range: 50—200 ng mL™".
® ND, not detected. The value is lower than LOD (<10 ng mL ™).
¢ The value was higher than LOD (>10 ng mL™Y), but lower than

analytes. In order to further confirm the collapse of
SDS micelles in the use of such SDS concentrations,
the Sudan III was utilized as a marker to evaluate the
collapses of SDS micelles. Sudan III is utilized as a
micellar marker, because it would be totally included
into the micelles. In this study, the separation was set
in the normal polarity (20 kV), and the detector was
set in the cathode (the cathode is in the outlet).
Therefore, the Sudan III was used as the analyte to
perform this investigation under the same experi-
mental setting (section 2.4) and conditions (BGS, 100
mM NaH,PO,, pH 2.5; MS, BGS contains SDS, pH 2.5;
BGS plug, 100 mM NaH,PO,, pH 2.5; Sample injec-
tion, 300 sec, 10 kV; Separation voltage, 20 kV;
Detection wavelength, 214 nm.) as those for the
determination of D and DAG in this study, and the
data was as shown in Fig. S5. The various SDS con-
centrations from 0 mM to 100 mM were tested
(Fig. S5B-F). The concentration of Sudan III utilized in
the experiment was 300 pg mL~! (about 0.85 mM)
which was much less than the SDS concentrations
and could be totally included by the SDS micelles.
When no SDS was used, the peak of the Sudan IIl was
broad (Fig. S5B), and it also displayed the Sudan III
carried the positive charge. As soon as increasing the
SDS concentrations from 25 to 100 mM, the peak of
the Sudan III became sharper. That is meaning the
sweeping of the SDS micelles would be beneficial for
stacking. However, in such normal polarity (20 kV),
the SDS micelles possessing the large negative charge
would move toward the inlet (anode). In the consid-
eration of the EOF, the mobility of the SDS micelles
(3.40 x 10~* cm? V'sec™!) was about ten-fold higher
than that of EOF (3.27 x 10 > cm?®V~'sec ') under pH
2.5, and the analytes could not be pushed to the de-
tector by EOF in the presence of the SDS micelles.
Nevertheless, the Sudan III could be detected in such
conditions, meaning the micelles must be collapsed.
If the SDS micelles were not collapsed, the Sudan III
would be totally included by the SDS micelles and
migrate to the inlet (the anode is in the inlet, and the
detector (cathode) is in the outlet). Therefore, the data
demonstrated the Sudan III was firstly swept by the
SDS micelles to make the sharp peak and then

LOQ (<50 ng mL™Y).

released by the collapse of the SDS micelles, and
finally moved to the detector (cathode) by its elec-
trophoretic mobility and EOF. Additionally, in the use
of the 100 mM SDS, the peak of the Sudan IIl became
small. That could be supported the SDS micelles were
more difficultly collapsed under such high SDS con-
centration, and a portion of the Sudan III was lost by
the including of the micelles without collapsing. In
the use of 50 mM SDS (Fig. S5D) which was the
optimal condition in this research, the peak area was
almost the same as that in the use of no SDS, meaning
the SDS micelles were almost completely collapsed.
The data could demonstrate the sweeping and the
collapse of the SDS micelles were both helpful for
stacking analytes in this research.

3.8. Application

In this study, 5 patients with nonvalvular atrial
fibrillation participated in this experiment and pro-
vided their plasma after taking DE. All blood sam-
pling time was within 3 hours after taking DE. After
the pretreatment of the sample and the analysis in
CE, different D and DAG levels could be observed
in plasma samples of five different patients (as
shown in Table 3). These real plasma samples from
the patients were also pretreated in the same pro-
cedure (section 2.3) without spiking D and DAG.
Although 250 uL plasma was used and then 100 pL
solution was reconstituted, the calibration curves
were also established according to the same pro-
cedure. According to this uniformity of pretreated
procedures, the concentrations of D and DAG in the
real samples could be directed quantified through
the calibration curves. The electropherograms of the
plasma samples obtained from two patients (P2 and
P5) are as shown in Fig. 5, and the data indicated
that this developed CE approach could be utilized
for the detection of D and DAG levels in human
plasma for clinical evaluation. In the electrophero-
grams, there was an interference next to the peak of
D. It's worth noting that the interference next to D is
also increased after spiking. In the comparison of
the electropherogram by using standard solutions
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Fig. 5. Electropherograms of D and DAG levels in the plasma samples obtained from two (P2 and P5) patients. (A) P2, black line: real patient's
plasma sample; red dotted line: patient's plasma sample spiked with standard solutions (B) P5, black line: real patient's plasma sample; red dotted

line: patient's plasma sample spiked with standard solutions.

as analytes (Fig. S4A), that could be found the
interference peak resulted from plasma. The signal
increase after spiking was supported from the
electrokinetic injection in this mode, and the un-
known interaction between this endogenous inter-
ference and target analytes. However, the
interference would not affect the separation and
quantification of D.

Among these data (Table 3), the D level of one
patient (P5) was lower than the normal therapeutic
range (50—200 ng mL ') in human plasma after
intake of high DE dosage (150 mg BID). After
tracking this patient's records, it was found that his
medication compliance was very poor. Additionally,
his DAG level was the highest among the 5 plasma
samples, indicating that the sampling time of this
patient was inaccurate, resulting in the low level of
D and the high level of DAG. Although the plasma
DAG levels in the P3 and P4 were less than the
LOQ, those in P2 and P5 could be successfully
quantified according to the calibration curves. Until
now, only few studies have mentioned the DAG, but
they did not define the appropriate plasma level in
clinical. Based on the results of this approach, phy-
sicians could offer individual suggestions of treat-
ment to patients. Furthermore, the different DAG

levels in this study, which might result from the
variety of glucuronosyltransferase activity in the
population, could offer fresh insight for clinicians
and investigators specializing in pharmacokinetics
and gene polymorphism.

Until now, numerous approaches have been
established for the determination of D levels in
human plasma or serum. In comparison with pre-
vious researches (Table 4), although analytical time
and consumption of plasma samples in this study
were little more than some of those, this approach
still possessed the advantages, such as the similar
detection range of D in plasma without the use of
mass spectrophotometry, simple instrumental
configuration, less consumption of materials and
organic solvent, and inexpensive cost of the in-
struments. All results demonstrated that the FASI-
sweeping-AFMC approach in CE was a better tool
for the determination of D and DAG levels in
human plasma and reference in precision medicine.

4. Conclusions

In this study, a novel and convenient CE on-line
three-step stacking approach called the FASI-
sweeping-AFMC, including FASI, sweeping, and
AFMC approaches was successfully established for

Table 4. The comparison of the approaches for determination of D levels in human plasma.

Method Linear range LOD Analyte Ref.
(ng mL™Y) (ng mL™Y)
UHPLC-MS/MS 2.4—384 0.24 D [8]
SPE-UHPLC-MS/MS 0.5—900 0.18 D [39]
UHPLC-MS/MS 2.0-500 0.63 D [40]
UHPLC-UV 20.0—1000 4.00 D [41]
UHPLC-MRM-MS 0.8—800 0.21 D [9]
FASI-sweeping-AFMC” 2.5—-1000 0.25 D This research
50.0—1000 10.00 DAG

@ A three-step capillary electrophoresis of field-amplified sample injection, sweeping, and analyte focusing by micelle collapse.
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the determination of D and DAG levels in human
plasma. This is the first time that a sequential three-
step stacking approach in CE used for the deter-
mination of D and DAG levels in human plasma has
been developed and applied. After the validation of
this approach, these data demonstrated good line-
arity, precision, accuracy, stability, and selectivity of
this approach for analysis of D and DAG in plasma
matrix samples. This approach was further applied
for the determination of D and DAG levels in the
plasma samples of five patients. All results showed
that this approach is feasible for the clinical deter-
mination of D and DAG levels in human plasma.
Most importantly, it possesses superior properties
compared to previous UPLC-MS/MS works such as
the similar detection range of D and DAG, good
sensitivity, simple experimental design, less con-
sumption of materials, and inexpensiveness. In
contrast with similar research [33,35], the experi-
mental process could be simplified due to the
operation without the switch of electrodes during
the analysis. Furthermore, valuable application in
clinical use has been demonstrated according to the
results of this research. For the above-mentioned
arguments and results, this developed approach

A D

0.10

0.08

0.06

Abs

0.04 4

0.02 4 IS

0.00 _/———j.___‘_,—%}\«*_'d

0 2 4 6 8 10 12 14

Time (min)
0.10 -
0.08 4 C
0.06
=
0.04 {
0.02 4 D DAG
ISy
0.00 1
0 2 4 6 8 10 12 14
Time (min)

was feasible for the determination of D and DAG
levels in human plasma and could serve as a tool for
clinical assays.
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Appendix A. Supporting information
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Fig. S1. Effect of BGS plug concentration ((A) 50 mM; (B) 100 mM; (C) 150 mM; (D) 200 mM) on stacking and separation efficiency by the FASI-
sweeping-AFMC approach. Sample concentrations: 1 ug mL™" D; 1 ug mL™" DAG; 0.5 ug mL™" IS. CE conditions: BGS, 100 mM NaH,PO,, pH 2.5;
MS, BGS contains 50 mM SDS, pH 2.5; BGS plug, NaH,PO,, pH 2.5; Sample injection, 300 sec (10 kV); Separation voltage, 20 kV; Detection

wavelength, 214 nm.
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Fig. S2. Effect of injection time ((A) 240 sec; (B) 300 sec; (C) 360 sec; (D) 420 sec) of analytes on stacking and separation efficiency by the FASI-
sweeping-AFMC approach. Sample concentrations: 1 ug mL™" D; 1 ug mL™" DAG; 0.5 ug mL™" IS. CE conditions: BGS, 100 mM NaH,PO,, pH 2.5;
MS, BGS contains 50 mM SDS, pH 2.5; BGS plug, 100 mM NaH,PO,, pH 2.5; Sample injection, 10 kV; Separation voltage, 20 kV; Detection
wavelength, 214 nm.
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Fig. S3. Summary of stability and selectivity of the FASI-sweeping-AFMC approach in human plasma. (A) Results of RSD for the stability of the
developed approach over 24 hours at room temperature. (B) Electropherogram of the plasma sample spiked with 1 ug mL™" D, DAG, 0.5 ug mL ™IS,
and 1 ug mL™" four antiarrhythmic drugs (V: Verapamil, A: Amiodarone, P: Propranolol, Di: Digoxin).
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Fig. 54. Electropherograms of the (A) FASI-sweeping-AFMC; (B) FASI-sweeping; (C) FASI and (D) typical injection CZE for the analysis of D and
DAG. (A) FASI-sweeping-AFMC conditions could be referred in section 2.4; (B) FASI-sweeping conditions were as following: BGS, 100 mM
NaH,PO, (pH 2.5); water plug, 0.5 psi for 5 sec; Sample injection, —10 kV for 300 sec; sweeping buffer, 50 mM SDS in BGS; Separation, —20 kV; (C)
FASI conditions were as following: BGS, 100 mM NaH,PO, (pH 2.5); water plug, 0.5 psi for 5 sec; Sample injection, 10 kV for 300 sec; Separation, 20
kV; (D) typical injection CZE conditions were as following: BGS, 100 mM NaH,PO, (pH 2.5); Sample injection, 0.5 psi for 5 sec; Separation, 20 kV.
All of the detection was accomplished at 214 nm. All of the analytes were the standard solution.

[\jldan[[[
f'l?l SudanIII
A x‘\u /A‘\ A
f_‘,i—='—~'—_‘==—-—.-.—_f“=‘”‘=:) S e % S E

SudanllII (peak area: 11608)

SudanIlI (peak area: 11789)

2 3 4 5
Time (min)

Fig. S5. The electropherograms of Sudan III in the FASI-sweeping-AFMC mode by using the (A) 50 mM SDS without Sudan III (blank); (B) 0 mM
SDS; (C) 25 mM SDS; (D) 50 mM SDS; (E) 75 mM SDS and (F) 100 mM SDS. Sample: Sudan III, 300 ug mL™" (about 0.85 mM << SDS
concentration used in this study). Other conditions are the same as those shown in Fig. 4.
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Table S1. The sensitivity enhancement factors (SEFs) of the FASI-
sweeping-AFMC compared to the typical injection CZE

Method

FASI-sweeping- Typical injec-

AFMC® tion CZE"
(n=23) D DAG D DAG
Concentration (ug mL™Y) 1 1 10 10
Migration time (min) 6.7 9.5 6.5 9.4
Corrected peak area 98725 33450 628 528
SEFs® 1572 634

2 FASI-sweeping-AFMC: 1 ug mL™" standard solution of each
analyte in acidic water of pH 3.0; injection at 10 kV for 300 sec.

® Typical injection CZE: 10.0 pg mL " standard solution of each
analyte in acidic water of pH 3.0; injection at 0.5 psi for 5 sec.

¢ SEFs = [corrected peak area in the FASI-sweeping-AFMC/
corrected peak area in the typical injection CZE] x [concentration
in the typical injection CZE/concentration in the FASI-sweeping-
AFMC].
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