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o clinical formulations (P ®  
Modafinil, in its tw rovigil and Nuvigil®), is a widely prescribed

 
wake-promoting therapeutic agent. It binds competitively to the cell-membrane dopamine

 
(DA) transporter and is dependent on catecholaminergic (dopaminergic and adrenergic) sig-  
naling for its wake-promoting effects.The clinical spectrum of effects for modafinil is distinct  
from the effects seen with other catecholaminergic agents. Relative to other commonly  

used agents that act through catecholaminergic mechanisms, modafinil has a relatively  

low abuse potential, produces wakefulness with an attenuated compensatory sleep recov-  

ery thereafter, and does not ameliorate cataplexy in narcolepsy. These clinically relevant  

phenomenological differences between modafinil and agents such as amphetamines and  

cocaine do not eliminate catecholaminergic effects as a possible mediator of its wake-  

promoting action; they merely reflect its unique pharmacological profile. Modafinil is an  

exceptionally weak, but apparently very selective, DA transporter inhibitor. The pharma-  

codynamic response to modafinil, as measured by DA levels in brain microdialyzate, is  

protracted relative to other agents that act via catecholaminergic mechanisms.The confor-  

mational constraints on the interaction of modafinil with the DA transporter – and probably,  

as a consequence, its effects on trace amine receptor signaling in the catecholaminergic  

cell – are unique among catecholaminergic agents. These unique pharmacological prop-  

erties of modafinil should be considered both in seeking to thoroughly understand its  

putatively elusive mechanism of action and in the design of novel therapeutic agents.  

Keywords: modafinil, amphetamines, cocaine, dopamine transporter, monoamines, sleep homeostasis, addiction,
wake-promoting therapeutics

INTRODUCTION
Modafinil was originally introduced in the clinical literature as a
wake-promoting agent in 1988 (1). Modafinil was first approved
by the US Food and Drug Administration (FDA) in 1998 and mar-
keted as the racemic mixture of R- and S-enantiomers (2) and later
as a formulation containing only the R-enantiomer, which is phar-
macokinetically distinct from the S-enantiomer in humans (3) as
described later (4). It has been viewed throughout its history (5–
7) as a “novel” wake-promoting therapeutic, and apparently is still
viewed in the same manner to this day (8). The fact that this main-
stream therapeutic agent is still thought of as novel presumably
stems from some unique pharmacological and clinically relevant
properties of modafinil relative to other wake-promoting agents.
The purpose of this review is to summarize the known pharmaco-
logical properties of modafinil and to explain the unique clinical
responses to modafinil in the context of these properties. In so
doing, this review will expose some unanswered questions regard-
ing the mechanism of action of modafinil and will offer insights
relevant to the discovery and preclinical development of other
novel (in a stricter sense) wake-promoting agents.

MODAFINIL BINDS TO THE DOPAMINE TRANSPORTER AND
IS DEPENDENT ON CATECHOLAMINERGIC SIGNALING FOR
ITS WAKE-PROMOTING EFFECTS
Like many compounds, modafinil was found to be clinically useful
long before its pharmacological target was known. Still, as with any

new wake-promoting agent, a number of potential targets came to
mind in the search for its mechanism of action. Among the poten-
tial targets for modafinil were the cell-membrane monoamine
transporters. These monoamine-selective transporters serve, in a
non-selective fashion, to clear the monoamines dopamine (DA),
noradrenaline (NE), and serotonin (5-HT) from the extracellular
space surrounding the neurons that release them. The trans-
porters are named for the neurochemical identity of the cells that
express them at the highest levels – the dopamine transporter
(DAT), the noradrenaline transporter (NET), and the serotonin
transporter (SERT). Despite this nomenclature, they are not truly
selective for their namesake neuromodulators. For instance, the
Michaelis constant (K m) for DA uptake by the NET is lower than
the K m for NE uptake by the NET [at least in genetically engi-
neered cells expressing NET under an exogenous construct (9)],
indicating a higher affinity for DA. This fact, and the promis-
cuity among catecholaminergic (dopaminergic and adrenergic)
receptors in responding to both DA and NE, may lead to some
confusion with regard to modafinil’s mechanism of action (see
below).

At the time when modafinil’s wake-promoting effect was dis-
covered, various agents that bind to and inhibit the activity of
monoamine transporters, such as cocaine and amphetamines,
were known to also promote wakefulness. Thus, it was reason-
able to hypothesize that modafinil might act through monoamine
transporter inhibition to produce wakefulness. The first indication
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Wisor Modafinil as a catecholaminergic agent

that modafinil binds competitively to a monoamine transporter,
specifically DAT, came in 1994 (10). In that study, modafinil
competitively displaced the binding of radiolabeled (−)-2-β-
Carbomethoxy-3-β-(4-fluorophenyl)tropane (abbreviated β-CFT,
also known as WIN 35,428), a known DAT ligand, in extracts of
a tissue enriched for DAT, the striatum, with a concentration that
inhibits 50% (IC50) value of 3.19 µM. The ability of modafinil to
displace SERT and NET ligands was investigated in the same study
and no effect was detected.

Competitive binding of modafinil to the DAT has been repli-
cated in human embryonic kidney HEK293 cells transfected
with DAT-encoding genetic constructs. In these studies, racemic
modafinil displaced WIN 35,428 with inhibition constant [K i] val-
ues of 2.1 µM (11) and in a separate study 2.3 µM (12). The latter
study additionally reported enantiomer-specific K i values, which
were threefold higher for S-modafinil (2.5 µM) than R-modafinil
(0.78 µM). These data are summarized in Table 1.

Other studies showed that high concentrations of modafinil
(relative to known DAT inhibitors) block DA uptake by cell lines
stably transfected with the DAT. IC50 values for modafinil in these
in vitro assays range from 4.0 to 13 µM (12, 14, 15). IC50 val-
ues for DA uptake inhibition are enantiomer-specific and twofold
higher for S-modafinil (8.7 µM) relative to R-modafinil [4.0 µM;
(12)]. Additionally, it has been demonstrated in positron emission
tomography (PET) studies that modafinil causes the displace-
ment of the DA-receptor ligand raclopride and the DAT ligand
cocaine in the human brain (16). Similarly, modafinil displaces
WIN 35,428 in the non-human primate brain (15). Displace-
ment of a DA-receptor PET ligand is not necessarily evidence of
direct binding of modafinil to the receptor. The displacement of a
DA-receptor ligand by modafinil is likely to be a consequence of
elevated extracellular DA concentrations, a known consequence

of modafinil administration (12, 14, 17), rather than binding of
modafinil to the DA receptor.

There is some evidence that modafinil binds to the NET in
addition to the DAT. In PET studies, modafinil displaced the
binding of radiolabeled NET ligand [11C]MeNER in the monkey
thalamus (15). In cultured HEK293 cells transfected with human
NET, modafinil inhibited NE uptake with an IC50 value of 35.6 µM
(15). However, in other studies where NET binding or effects on
NET activity were assessed in vitro (10, 12–14, 18), modafinil was
found to be devoid of interactions with NET. Furthermore, the
absence of therapeutic efficacy for modafinil in treating cataplexy
in narcoleptic humans (19) or animal models (20, 21) makes it
unlikely that modafinil is a functional NET inhibitor in vivo. NET
inhibitors are very effective as anti-cataplectic agents (22), whereas
DAT inhibitors are not (13).

If modafinil is a DAT inhibitor, and the blockade of DATs by
modafinil is central to its wake-promoting effects, several predic-
tions can be made and tested experimentally. First, one would
expect that genetic ablation of the DAT would nullify the wake-
promoting effect of modafinil if indeed this is the site of action.
In fact, the wake-promoting effect of modafinil is abolished in
mice genetically deficient for DAT (17). Second, one would expect
modafinil administration to elevate extracellular DA concentra-
tions in vivo, and it does. Modafinil administration increased
extracellular DA concentrations in the caudate nuclei of narcolep-
tic dogs by twofold relative to baseline (17) and in the nucleus
accumbens of mice (12) and rats (14, 23) by approximately two
to threefold relative to baseline. Despite enantiomeric differences
in DAT ligand displacement and DA uptake inhibition mentioned
previously, R-modafinil and S-modafinil were equally effective in
elevating microdialyzate DA concentration in the mouse nucleus
accumbens at systemic doses of 30–300 mg/kg (12).

Table 1 | Affinity of modafinil compared to other dopamine reuptake inhibitors.

Agent/drug DAT-binding affinity:

competitive displacement

of 3H-WIN 35,428 (K i)

DAT functional assays:

inhibition of 3H-DA

reuptake (IC50)

(10)a (13)b (11)c (14)d,f (12)e (12)e (14)d (15)c

Modafinil (nM) 1930 3800 2143 4800 2300 13,000 4043 6390

Cocaine (nM) 46.2 – 163.6 187 450 230 487 –

Methylphenidate (nM) – – 21.2 – – – – 25.4

Bupropion (nM) 383 310 319.5 – – – – 1088

Nomifensine (nM) 36.9 44 – – – – – –

β-CFT (nM) – – 15.4 – – – – –

GBR 12909 (nM) – – 53.2 12 – – 4.3 –

Benztropine (nM) – – 75.3 – – – – 213

β-CFT, (−)-2-β-Carbomethoxy-3-β-(4-fluorophenyl)tropane (also known as WIN 35,428); DAT, dopamine transporter; IC50, concentration that inhibits 50%; Ki, inhibition

constant.
aGuinea pig striatal membranes;
bCanine DAT;
cHEK293 cells transfected with human DAT;
dRat brain synaptosomes;
eCOS7 cells transfected with human DAT;
fCompetitive displacement of 125I-RTI-55.
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Wisor Modafinil as a catecholaminergic agent

If elevation of dopaminergic tone underlies the wake-
promoting effect of modafinil, one would expect therapeutic
responses to modafinil to be dependent on the activation of
DA receptors. Either a D1 or D2 DA antagonist is sufficient
to block the wake-promoting effects of low wake-promoting
doses (≤45 mg/kg) of modafinil in wild-type mice. In D2-
deficient mice, the arousal response to high-dose (90–180 mg/kg)
modafinil is attenuated relative to the wild-type response in the
absence of pharmacological receptor blockade and is abolished by
D1-antagonist application (24). Are these DA receptor-dependent
effects of modafinil necessarily secondary to DAT blockade, or
could they be indicative of agonist activity at D1 or D2 receptors? A
single publication reported, in native rat striatal homogenates, that
R-modafinil, but not S-modafinil, displaces the D2 receptor ligand
domperidone with nanomolar potency (25). This result contrasts
the work of others showing no displacement of D2 ligands by
racemic modafinil at concentrations less than 10 mM [sulpiride
in Ref. (10); N -methylspiperone in Ref. (14)]. Further work,
including measuring the effects of R-modafinil and S-modafinil
separately in D2-deficient mice, may help to clarify whether bind-
ing to the D2 receptor contributes to the wake-promoting effects
of the R-enantiomer, specifically.

Collectively, these data make a compelling case for the concept
that the wake-promoting effects of modafinil are mediated by its
interaction with the DAT and elevation of dopaminergic tone.

PUTATIVE NON-DOPAMINERGIC EFFECTS OF MODAFINIL
IN VIVO MAY BE SECONDARY TO DAT BINDING
Neural signaling systems other than DA and its receptors have
been implicated in the brain’s response to modafinil, but the
other responses could be triggered secondary to elevated con-
centrations of brain DA. For instance, the alpha-1 adrenergic
antagonist prazosin prevented modafinil-induced, behaviorally
defined nocturnal awakenings in monkeys (26) and electroen-
cephalogram (EEG)-defined wakefulness in cats (27). Two DA-
dependent mechanisms might explain this linkage of modafinil’s
wake-promoting effect to adrenergic receptors. As a ligand for
alpha-1 adrenergic receptors, DA is very nearly equipotent with
NE (28). So the elevation of extracellular DA concentrations
by modafinil should be expected to directly activate adrenergic
receptors wherever they lie in close proximity to DAT-bearing
dopaminergic terminals in the brain.

Additionally, modafinil elevates NE concentrations in both the
prefrontal cortex and the hypothalamus (29). This response can
be explained by a D1 receptor-mediated effect, as DA infusion
into the prefrontal cortex elevates extracellular NE concentrations
in a D1 receptor-dependent manner (30). Whether the adrener-
gic component of the response to modafinil is a direct effect of
DA binding to adrenergic receptors or secondary to D1 receptor-
induced elevation of NE, the role for alpha-1 adrenergic receptors
does not violate the conceptual framework of modafinil as a DAT
blocker.

Similar logic applies to other neurotransmitter responses to
modafinil. Modafinil precipitates a decrease in concentrations of
gamma-aminobutyric acid (GABA) in microdialyzates from vari-
ous brain areas (31–33). This effect, at least in the cerebral cortex,
is dependent on catecholaminergic signaling, as it is attenuated
by the catecholaminergic toxin 6-hydroxy-DA (32). Furthermore,

D1 agonists precipitate a reduction in GABA concentrations in
cortical microdialyzates (34).

A similar line of reasoning applies to glutamate. Modafinil
promotes an increase in extracellular glutamate concentrations
in the striatum (31) and the hippocampus (35). The DA ago-
nist apomorphine promotes an increase in extracellular glutamate
concentrations in the striatum (36, 37), although the interactions
of DA in this region are admittedly complex and not entirely
consistent across experiments (38). DA itself promotes an increase
in glutamate release in the hippocampus (39). The increase in glu-
tamate release in these areas after modafinil administration may,
thus, be secondary to elevated extracellular DA. This logic could
be applied to the other transmitter systems known to be affected
by modafinil (40).

So yes, modafinil has effects on adrenergic, GABAergic, and glu-
tamatergic transmission, but all of these effects can be explained
by its known pharmacology as a DAT blocker. Still, though it is
one thing to argue that these responses are secondary to elevated
dopaminergic tone, it is another to ascertain that they are. To do so,
one would have to show that each of these hypothesized secondary
responses is abolished in DAT-deficient animals and in wild-type
animals treated with a panel of DA-receptor antagonists. Given
the preponderance of evidence for a dopaminergic mechanism,
these experiments should be a top priority for anyone seeking to
document any putative non-dopaminergic mechanism of action.

WHY DO MODAFINIL AND OTHER COMMONLY USED (AND
ABUSED) DAT INHIBITORS HAVE DISTINCT EFFECTS ON
CLINICALLY RELEVANT MEASURES?
The effects of modafinil on sleep and sleep disorders are distinct
from those of methamphetamines. Sleep loss induced by sleep
deprivation is followed by a change in EEG parameters, including
increased time spent asleep, increased duration of individual sleep
episodes, elevated slow-wave activity in the EEG, and decreased
numbers of awakenings. This constellation of changes, some-
times referred to as hypersomnolence or sleep rebound, has been
observed in experimental rodents (41) and humans (42, 43) alike.

The occurrence of hypersomnolence after sleep loss is taken as
evidence that sleep is a homeostatic process, and that homeosta-
tic sleep need builds as a function of time spent awake (44). In
this context, the effects of modafinil on sleep homeostasis differed
from those of methamphetamine when the two were compared.
Whereas hypersomnolence occurred after methamphetamine-
induced wakefulness in rats, it was not detected after an equivalent
wake-promoting dose of modafinil (6, 45). One interpretation for
this difference is that the two compounds have distinct effects
on the biological substrates for homeostatic sleep need. Specif-
ically, modafinil might decelerate, or methamphetamine might
accelerate, the rate at which sleep need accumulates during wake-
fulness. Regarding the first of these two possibilities, a head-to-
head comparison of the severity of hypersomnolence subsequent
to modafinil-induced wakefulness and sleep deprivation-induced
wakefulness in mice found no difference between conditions (46).
Similarly, in human subjects, administration of modafinil during
enforced wakefulness did not, relative to placebo, attenuate the
increase in slow-wave activity that occurred in subsequent sleep
(47, 48). Therefore, modafinil does not decelerate the rate at which
sleep need accumulates during wakefulness.
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Wisor Modafinil as a catecholaminergic agent

It is possible that methamphetamine accelerates the accumu-
lation of sleep need; this effect may be due to its activity as a
disruptor of NET and SERT. One might hypothesize that the
direct action of methamphetamine on serotonergic and noradren-
ergic terminals (49) contributes to methamphetamine-induced
hypersomnolence. While the activity of 5-HT-producing cells
of the raphe- and NE-producing cells of the locus ceruleus is
greatest in wakefulness and strongly reduced during sleep, both
NE (50) and 5-HT (51–53) promote homeostatic sleep drive. The
direct perturbation of noradrenergic and serotonergic terminals
by amphetamines may contribute to the hypersomnolence that
they cause. Assessment of the effects of amphetamines on sleep in
NET- and SERT-null mutants might address this possibility. Atten-
uation of amphetamine-induced hypersomnolence by knockout
of either NET or SERT would confirm that they contribute to
amphetamine-induced hypersomnolence.

Measures of gross locomotor behavior have long been applied
to measure the psychostimulant effects of cocaine, amphetamines,
and other DAT-binding agents. Locomotor effects of modafinil
have been compared and contrasted to those of cocaine and
amphetamines and the data are not consistent across studies.
Acute administration of modafinil increases locomotor activity in
rodents (23, 54, 55), much like cocaine and amphetamines. How-
ever, electroencephalographic studies in rats demonstrated that
the intensity of locomotor activity (amount of locomotor activity
per hour of wakefulness) in a home cage environment was not
increased by modafinil relative to vehicle controls, in contrast to
d-methamphetamine which elevated the amount of locomotor
activity per hour of wakefulness (6). Similarly, video monitoring
of Syrian hamsters revealed that modafinil increased time spent
in quiet wakefulness (“arousal without ambulation, head up, eyes
open”), but not wake with ambulation, relative to a vehicle injec-
tion (56). Cocaine and methamphetamine effects on behavior were
not measured in the latter study. Hence, the results cannot be
taken as evidence for a unique effect of modafinil; there may be
a species-specific response to DAT inhibitors, for instance. One
study reported a “non-amphetaminic mechanism” for modafinil
based on the absence of stereotyped climbing (“repetitive locomo-
tor activity”) in modafinil-treated rodents (57). However, at least
two other studies did report stereotypy after modafinil adminis-
tration [“repetitive movements” in Ref. (14) and “repetitive oral
movements, such as gnawing, biting, and sniffing” in Ref. (58)].
Inconsistency across studies aside, none of these behavioral stud-
ies demonstrated a pharmacological mechanism of action for
modafinil.

Both amphetamines and cocaine produce locomotor sensi-
tization, in which the amount of induced locomotor activity
increases with repeated daily administration over time. Rats
exhibit locomotor sensitization to repeated daily modafinil admin-
istration at 64 mg/kg (23, 58). Mice subjected to modafinil at
75 mg/kg do not undergo locomotor sensitization with repeated
doses (55), whereas mice subjected to modafinil at 150 mg/kg
do. Cross-sensitization (wherein repeated administration of one
agent potentiates the locomotor response to acute administra-
tion of another), is taken as indirect evidence that two agents
act on a similar neurobiological substrate. Mice subjected to
repeated administration of modafinil exhibit potentiated loco-
motor responses to acutely administered methamphetamine (59).

Likewise, mice subjected to repeated administration of metham-
phetamine exhibit potentiated locomotor responses to acutely
administered modafinil (59). While not mechanistic, these cross-
sensitization studies suggest that modafinil and amphetamines
share a common, or at least overlapping, neurobiological sub-
strate. Repeated administration of the D1/D2 receptor agonist
apomorphine cross-sensitizes rats to modafinil (58); this fact pro-
vides further support for the notion that the relevant substrate is
dopaminergic transmission.

The concept that modafinil acts via DAT inhibition might be
regarded as controversial because of inconsistencies in the preclin-
ical and clinical literature on the potential for abuse and addiction.
The purpose of this article is not to review exhaustively the addic-
tive potential of modafinil; this topic is covered elsewhere from a
clinical perspective (60, 61). Rather, a brief survey of the pertinent
literature serves to illustrate why differences between modafinil
and other DAT-binding agents in putative measures of abuse
potential does not nullify DAT binding as the mechanism of action
for modafinil.

There is some evidence, from preclinical models purported to
measure the potential for abuse and addiction, that modafinil has
rewarding properties. For example, modafinil has discriminative
stimulus effects in animals trained to engage in operant behavior
when exposed to cocaine. This effect of modafinil has been doc-
umented in rodents (12, 54, 62), rhesus monkeys (63, 64), and
humans (60). In mice, R-modafinil and S-modafinil were equipo-
tent in discriminative stimulus assays (12), which, like microdial-
ysis data mentioned above, leaves in question the significance
of the enantiomeric differences in DAT-binding pharmacology.
Modafinil also has a modest (relative to methylphenidate) discrim-
inative stimulus effect in rats trained to engage in operant behavior
when exposed to d-amphetamine (65). Drug-naïve mice exposed
to modafinil at 75 (55) or 125 mg/kg (66) exhibited conditioned-
place preference (CPP), a behavioral gage of reward that also has
been found to be induced by cocaine [for instance, (55)]. How-
ever, this finding was not replicated in rats. Rats exhibited either
no place preference [64 mg/kg; (67)] or a significant aversion to
the environment in which they had previously been exposed to
modafinil [32 or 64 mg/kg; (23)]. Furthermore, modafinil does
not promote the reinstatement of cocaine self-administration (68)
or methamphetamine-seeking (69–71) in rats.

Data from human subjects discriminate modafinil from
cocaine in terms of abuse potential. Cocaine users do not report
a high when exposed to modafinil (72, 73); rather, they report
that modafinil blunts the subjective effect of cocaine when the two
drugs are administered simultaneously (74, 75). One clinical trial
reported that modafinil increased the maximum number of con-
secutive days of cocaine abstinence across a 12-week clinical trial.
However, at the end of that 12-week trial there was no evidence of
a decrease in total days of abstinence (76). And other clinical trials
in humans, in which modafinil has failed to significantly improve
abstinence rates during methamphetamine withdrawal (77, 78)
or cocaine withdrawal (79), are revealing from both a conceptual
standpoint and a practical one. If modafinil were a pharmaco-
logical mimetic of either of these agents, presumably it would
substitute more effectively and promote sustained abstinence from
the original agent. Therefore, although there are conflicting data
in the literature, the majority of both preclinical and clinical data
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Wisor Modafinil as a catecholaminergic agent

suggest that modafinil is pharmacologically distinct from both
cocaine and amphetamines in the context of abuse and addiction.

Thus, ambiguities in the literature on drug abuse and sleep
contribute to the concept that modafinil is somehow novel and dis-
tinct from amphetamines and cocaine. Notwithstanding the fact
that modafinil, cocaine, and amphetamines all interact with DAT,
the pharmacology of modafinil is distinct from that of cocaine
and amphetamines. Whereas cocaine (80) and amphetamines (49)
bind to the DA transporter with nanomolar affinity, modafinil
acts as a DAT ligand at micromolar concentrations (10, 14). This
low affinity may contribute to the slow kinetics of its effect on
extracellular DA concentration (discussed below). Considering
the monoamine transporters DAT, NET, and SERT, modafinil is
highly selective as a DAT ligand (10, 12, 13, 18), albeit at micromo-
lar concentrations. Cocaine (80) and amphetamines (49) disrupt
the function of all three of the cell-membrane monoamine trans-
porters. Additionally, both cocaine and amphetamines disrupt the
vesicular monoamine transporter that packages monoamines into
vesicles within the cell (81). Whether modafinil does so remains
an open question.

The physiological relevance of the multi-transporter mecha-
nism in responses to cocaine is illustrated by the failure of genetic
inactivation of any one transporter to nullify the behavioral effects
of cocaine. Neither DAT knockout (82) nor dual NET/SERT
knockout (83) eliminated cocaine-induced CPP. A 90% reduc-
tion of DAT expression, induced by modifications of promoter
sequences in the gene, was also not sufficient to disrupt cocaine-
induced locomotion or CPP (84). These observation were taken
as support for the concept that the rewarding effects of cocaine are
mediated by multiple transporters. However, subsequent analyses
with more sophisticated models led to a more complicated story.
DAT knockout mice exhibited self-administration of cocaine only
transiently and at reduced frequency relative to wild-type con-
trols (85). A mouse genetic model was engineered in which DAT
is expressed at normal levels but is modified in sequence such that
it 89-fold less sensitive to inhibition by cocaine (86). These mice
failed to exhibit cocaine-induced operant behavior (conditioned-
place preference) and exhibited a decrease in locomotor activity
in response to cocaine. These data indicate that (a) DAT mediates
rewarding effects of cocaine and (b) while cocaine has pharma-
cological effects on other monoamine transporters, it does not
promote reward or locomotor activity through those transporters
unless DAT is genetically inactivated. The effects of cocaine on
multiple transporters are in direct contrast to modafinil, the wake-
promoting effect of which is abolished in DAT-deficient mice (17).
The selectivity of modafinil as a DAT inhibitor is pertinent to the
treatment of narcolepsy. Modafinil is distinguished from amphet-
amines by its lack of efficacy in treating cataplexy in narcolepsy
(19). Amphetamines and other agents that block uptake by NET
are effective anti-cataplectic agents (21).

Modafinil is further distinguished from amphetamines and
cocaine by virtue of the physical nature of its interactions with
DAT. As a neurotransmitter sodium symporter, DAT undergoes
a sequence of conformational changes in the process of trans-
porting its ligand into the cell (87). The sequence begins when
extracellular sodium promotes the assumption of an open-to-out
(also known as outward-facing) conformation, which primes the
transporter for ligand binding. Ligand binding causes a shift to

the closed-to-out (also known as occluded) conformation. The
presence of additional ligand molecules in the extracellular milieu
promotes a shift from the closed-to-out conformation to the open-
to-in (also known as inward-facing) conformation, which releases
the bound ligand into the cytoplasm and frees the transporter to
repeat this sequence of changes.

In the context of this sequence of conformational changes, DAT
inhibitors can behave very differently. Those that exhibit abuse
potential, such as cocaine, facilitate the open-to-out conforma-
tion. By contrast, those that do not exhibit abuse potential, such as
GBR12909, facilitate the closed-to-out or open-to-in conforma-
tion. The classification of compounds into these two categories
(“cocaine-like” vs. “atypical” inhibitors) can be ascertained in
site-directed mutagenesis studies: point mutations that cause the
transporter to preferentially adopt an open-to-out conformation
increase the IC50 value of cocaine at DAT, but not that of atyp-
ical inhibitors, by 200-fold. According to this type of analysis,
modafinil is an atypical DAT-binding agent (11), and this dis-
tinction from cocaine is true for both R- and S-modafinil assayed
independently (12). Therefore, the relatively low abuse potential
attributed to modafinil may reflect the nature of its interaction
with DAT, not the absence of an interaction with DAT. The rela-
tionship between DAT conformation and abuse potential is admit-
tedly a relatively new concept. Why the physicochemical nature of
binding influences abuse potential is uncertain, but this emerging
line of work offers a potential explanation for the relatively low
abuse potential associated with modafinil without requiring some
putative unknown mechanism.

Amphetamines are rather complex modulators of monoamin-
ergic function. Consideration of their effects on dopaminergic
cells distinguishes them from modafinil. Amphetamines are a
substrate for monoamine transporters (88) and are imported
into the cell (14). In so doing, they promote the reverse trans-
port of other DAT substrates [3H]1-methyl-4-phenylpyridinium
(14) and DA itself (89) out of the cell via the DAT. The dis-
tinct mechanisms of modafinil and amphetamines in the cell are
illustrated by their pharmacological interactions: amphetamine-
induced [3H]1-methyl-4-phenylpyridinium efflux is abolished
by co-administration of modafinil with amphetamines (14).
Amphetamines are further distinguished from modafinil by the
fact that they act as agonists for the trace amine-associated
receptor 1 (TAAR1) (89). Modafinil exhibits no activity as a
TAAR1 agonist at physiologically relevant concentrations [below
100 micromolar; (15)]. TAAR1 activation promotes wakeful-
ness (90) and simultaneously increases protein kinase C (PKC)
activity in vitro (91). One effect of amphetamine exposure
in vivo is the phosphorylation of known PKC targets (92),
although this effect has yet to be linked to TAAR1 activa-
tion, specifically. PKC activation via direct TAAR1 stimula-
tion may therefore contribute to methamphetamine-induced
hypersomnolence. It is possible that this unique property of
amphetamines relative to modafinil underlies, at least in part,
their distinct effects on sleep-wake cycles. In this context, it
would be informative to measure the impact of wakefulness
induced by selective TAAR1 receptor ligands on subsequent sleep
and to determine whether TAAR1 knockout alters the course
of sleep-wake cycles subsequent to methamphetamine-induced
wakefulness.
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Finally, there are pharmacokinetic differences between
modafinil and other DAT-binding agents. The timing of peak
plasma levels and the plasma half-life of orally administered
racemic modafinil in humans are twice those of methylphenidate
(93). Half-life is enantiomer-specific: the half-life of R-modafinil
[15 h at an oral dose of 50–400 mg; (94)] is threefold greater than
that of S-modafinil (3). Peak plasma levels are achieved much more
rapidly with nasally administered cocaine (95), smoked cocaine
(96), or orally administered methylphenidate (93). These agents
yield peak plasma concentrations within an hour of adminis-
tration. The pharmacokinetic difference between modafinil and
cocaine is accompanied by a difference in the temporal pro-
file of the effects of these compounds in vivo on extracellu-
lar DA in the nucleus accumbens in mice. Whereas cocaine
caused extracellular DA concentrations to increase to peak lev-
els by 30 min and decrease to less than half of peak values
within an hour, modafinil-induced elevation of extracellular DA
did not peak until approximately 1 h after administration and
remained at peak values until the experiment was terminated
at 6 h (12). Table 2 summarizes the similarities and differ-
ences between modafinil and classical stimulants discussed in the
preceding section.

The relative reinforcing efficacy of DAT-binding agents is
inversely proportional to their pharmacokinetic profiles: those
compounds that are rapidly absorbed into and rapidly cleared
from the system exhibit more addictive potential than those with
slower kinetics (97–99). Therefore, putative differences in addic-
tive potential and perceived rewarding effects between modafinil
and DAT-binding agents such as cocaine, methamphetamine, and
methylphenidate do not require the invocation of distinct sites of
action.

CONCLUSION
Parsimony dictates that distinct effects on clinically relevant mea-
sures be attributed to the known pharmacological differences
between modafinil and other DAT-binding compounds, rather
than to occult, unknown effects of modafinil at sites other than
DAT. Modafinil elevates extracellular DA concentrations by bind-
ing to and disrupting the activity of the cell-membrane DAT.
The resulting elevation of extracellular DA, through increased
stimulation of dopaminergic and adrenergic receptors, results in
wakefulness. Other signaling mechanisms that have been impli-
cated in the response to modafinil are likely to be secondary to its
catecholaminergic effects. While modafinil can be distinguished

Table 2 | Effects of modafinil compared to classical stimulants.

Modafinil profile similar

to classical stimulants

Modafinil profile different

from classical stimulants

Comment

Preclinical models of

abuse potential

X X Conflicting data in preclinical literature (14, 54, 55, 57,

62–64, 66, 69–71)

Human studies on abuse

potential/addiction

X Modafinil does not appear to have reinforcing effects in

humans, blunts the subjective effects of cocaine when

co-administered, does not improve abstinence rates during

cocaine or methamphetamine withdrawal (72–75, 77–79)

Effects on sleep

characteristics

X Modafinil-induced wakefulness does not cause acute

rebound hypersomnolence (6, 45)

Treatment of cataplexy

(human and animal

models)

X Modafinil is ineffective in treating cataplexy in preclinical

models and in patients with narcolepsy, whereas

amphetamines are effective anti-cataplectic agents (19–22)

Physical interaction with

the DAT

X Modafinil facilitates a different conformation compared to

cocaine; in contrast to amphetamine, modafinil does not

reverse the transporter (11, 14)

Human pharmacokinetics

after administration

X Modafinil reaches peak plasma levels in 2–4 h compared to

1 h for classical stimulants (93, 95)

Effects on DA

concentration in vivo

X Modafinil takes longer to achieve peak extracellular

concentrations of DA and elevations in extracellular DA

levels are maintained longer (12)

Affinity for other

monoamine transporters

X Modafinil has very low affinity for NET and no affinity for

SERT; classical stimulants have nanomolar affinity for all

three monoamine transporters (10, 12, 18, 13, 49, 80)

Affinity for TAAR1 X Modafinil shows no activity at TAAR1, whereas

amphetamine acts as an agonist (15, 89)

DA, dopamine; DAT, dopamine transporter; NET, noradrenaline transporter; SERT, serotonin transporter; TAAR1, trace amine-associated receptor 1.
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from other catecholaminergic agents in terms of clinical end-
points such as post-treatment hypersomnolence and its potential
for addiction and abuse, these differences may be due to differ-
ences in selectivity for DAT, pharmacokinetics, or distinctions in
the physicochemical nature of their interactions with the DAT.
Additional work might clarify the exact basis for these subtle dis-
tinctions among wake-promoting agents. Still, the preponderance
of information on the mechanism of action of modafinil points
us in the direction of the DAT.

Future efforts to understand and therapeutically exploit wake-
promoting mechanisms might better be directed toward more
innovative strategies. The use of ligands for histamine H3 recep-
tors (100), hypocretin receptors (101), or TAAR1 receptors (90)
for instance, to ameliorate potential cognitive deficits secondary
to sleep loss, is a relatively novel and potentially impactful

strategy. The application of non-pharmacological approaches to
treat performance deficits secondary to sleep insufficiency also
has potential. In the context of narcolepsy, regenerative thera-
pies for the hypocretin system, which undergoes degeneration
in narcolepsy, are worthy of attention and effort (102, 103). In
addition, transcranial manipulation of the electrical activity of the
cerebral cortex (ultimately the seat of fatigue-related deficits) for
therapeutic intervention is fast becoming a reality (104, 105).
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