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ABSTRACT
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel corona virus that causes cor-
ona virus disease 2019 (COVID-19). The COVID-19 rapidly spread across the nations with high mortality
rate even as very little is known to contain the virus at present. In the current study, we report novel
natural metabolites namely, ursolic acid, carvacrol and oleanolic acid as the potential inhibitors against
main protease (Mpro) of COVID-19 by using integrated molecular modeling approaches. From a com-
bination of molecular docking and molecular dynamic (MD) simulations, we found three ligands
bound to protease during 50ns of MD simulations. Furthermore, the molecular mechanic/generalized/
Born/Poisson-Boltzmann surface area (MM/G/P/BSA) free energy calculations showed that these chem-
ical molecules have stable and favourable energies causing strong binding with binding site of Mpro

protein. All these three molecules, namely, ursolic acid, carvacrol and oleanolic acid, have passed the
ADME (Absorption, Distribution, Metabolism, and Excretion) property as well as Lipinski’s rule of five.
The study provides a basic foundation and suggests that the three phytochemicals, viz. ursolic acid,
carvacrol and oleanolic acid could serve as potential inhibitors in regulating the Mpro protein’s function
and controlling viral replication.

Abbreviations: SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2; COVID-19: Corona virus
disease 2019; MD: Molecular dynamic; Mpro: protease; MM/G/P/BSA: Molecular mechanic/generalized/
Born/Poisson-Boltzmann surface area; CSG: Coronavirus study group; ICTV: International committee on
taxonomy of viruses; WHO: World health organization; ORFs: Open reading frames; RTC: Replicase/tran-
scriptase complex; PDB: Protein data bank; ADME: Absorption, Distribution, Metabolism, and Excretion;
RMSD: Root mean square deviation; RMSF: Root mean square fluctuation; SASA: Solvent accessible sur-
face area; LB-CADD: Ligand-based computer-aided drug discovery; Rg: Radius of gyration
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1. Introduction

Coronavirus disease (COVID-19) is a respiratory infectious dis-
ease caused by a novel virus strain, SARS-CoV-2 (Boopathi
et al., 2020; Hemida & Ba Abduallah, 2020; Salata et al., 2019;
Sarma et al., 2020; Seah & Agarwal, 2020; Su et al., 2016). In
the past two decades, two other coronavriruses have caused
global outbreaks, namely SARS-CoV (2002–2003) and Middle
East respiratory syndrome coronavirus (2012–present) (de Wit
et al., 2016; Gupta et al., 2020; Wang et al., 2020; Wu et al.,
2020; Yuan et al., 2020). The Coronavirus Study Group (CSG)
taxonomists working under the aegis of International
Committee on Taxonomy of Viruses (ICTV) coined the
nomenclature of SARS-COV-2 based on its 82% identity to
the SARS coronavirus (SARS-CoV) genome (Coronaviridae
Study Group of the International Committee on Taxonomy of

Viruses, 2020; Hasan et al., 2020). Whole genome functional
analysis revealed that both viruses phylogenetically belong
to clade b of the genus Betacoronavirus (Chan et al., 2020;
Muralidharan et al., 2020; WHO, 2020). The very first case of
the novel COVID-19 was originally reported in Wuhan, Hubei
Province, China, and has quickly spread over the 212 coun-
tries of the world (Elmezayen et al., 2020; Enayatkhani et al.,
2020; Mackenzie & Smith, 2020; Xu et al., 2020). This conta-
gious disease has led to over 4, 098, 018 confirmed cases
and 283,271fatalities as on May 12, 2020; https://covid19.
who.int/). The number of cases across the globe is increasing
abruptly, and so far, there is no standard drug has proved to
be effective for COVID-19 disease that have high mortality
rate in immunocompromised patients (Aanouz et al., 2020;
Bhatraju et al., 2020; Weiss & Murdoch, 2020). On 30 January,
this respiratory infectious disease has been declared as a
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Public Health Emergency of International Concern by the
World Health Organization (WHO) (Mackenzie & Smith, 2020;
https://www.who.int/).

The SARS-CoV-2 genome is about 30 kb in size (29, 903
nucleotides) and encodes as many as 14 open reading
frames (ORFs) (Chen et al., 2020; Elfiky & Azzam, 2020;
Gorden et al., 2020; Woo et al., 2005). At the 50 end of the
viral genome, Orf1a/Orf1ab encodes several proteins, which
are auto-proteolytically processed into 16 non-structural pro-
teins (Nsp1-16) and form the replicase/transcriptase complex
(RTC). Whereas, 30 endencode structural viral proteins; spike
(S), membrane (M), envelope (E) and nucleocapsid (N), and
nine putative accessory factors. On the other hand, protease
enzyme called the Mpro or also 3CLpro, play a crucial role in
the life cycle of COVID-19 replication and maturation (Joshi
et al., 2020; Khan et al., 2020; Pant et al., 2020; Wu et al.,
2020). It has been demonstrated that no part of COVID-19 is
more exposed than its main protease, as belongs to non-
structural class proteins of the viral genome (Enmozhi et al.,
2020; Zhang et al., 2020). Zhang et al., 2020 determined the
three-dimensional crystal structure, at 1.75 Å resolution, of
the Mpro of SARS-CoV-2 using x-ray crystallography.

Like other coronaviruses, the 3D structure of 3CLpro of
SARS-COV-2 possesses three functional domains (Jin et al.,
2020; Khan et al., 2020). The length of domain I, II, and III
ranges from 8-101, 102-184, 201-306 amino acid residues,
respectively. Among them, domain I and II are essentially
beta-barrels and similar to the chymotrypsin. While, structural
composition of domain III mainly consists of alpha-helices
(Anand et al., 2005; Jin et al., 2020; Lu et al., 2006; Yang
et al., 2006), protease has been characterized as one of the
potential drug targets among coronaviruses (Anand et al.,
2003). In this sense, many recent studies suggested that the
selection of various FDA-approved antiviral compounds may
yield promising results against COVID-19 infection (Chang
et al., 2016; Chang et al., 2020; Contini, 2020; Gonzalez-Paz
et al., 2020; Khan et al., 2020; Elfiky, 2020a, 2020b; Islam
et al., 2020; Sinha et al., 2020; Wahedi et al., 2020; Umesh
et al., 2020; Das et al., 2020; Abdelli et al., 2020). Chang
et al., 2020 reported that chloroquine, an older antimalarial
drug, has ability to inhibit the viral 3CL-protease activity. As
crystal structure of protease provides a foundation for design
of improved a-ketoamide inhibitors (Zhang et al., 2020), the
capability of chloroquine to inhibit the protease activity its
uses has been recommended in different countries including
China, USA and India for the treatment of COVID-19 (Devaux
et al., 2020; Gonzalez-Paz et al., 2020; Wang et al., 2020).
However, many studies questioned the safety and reported
the severe adverse effects of chloroquine (Kaisari & Borruat,
2020; Wang et al., 2020).

Ancient Indian scriptures including Rig-Veda, Atherveda,
and Charka Sanhita demonstrated abundant benefits of
plants for the treatment of various human aliments (Kumar
et al., 2018). Plants are a remarkable natural source of high
value alkaloids, flavonoids, phenols, chalcones, coumarines,
lignans, polyketides, alkanes, alkenes, alkynes, simple aro-
matics, peptides, terpenes, and steroids. In the current era of
drug discovery, enormous medicinal properties of plants

allows the researchers to exclusively use them for the discov-
ery of drug-like natural molecules (Jee et al., 2018; Kumar
et al., 2018; Panchangam et al., 2016).

Ursolic acid (3-b-3-hydroxy-urs-12-ene-28-oic-acid) and
oleanolic acid (3b-hydroxyolean-12-en-28-oic acid) are penta-
cyclic triterpenoid compounds with a widespread occurrence
throughout the plant kingdom (Pollier & Goossens, 2012;
Wo�zniak et al., 2015). Both molecules enrich various thera-
peutic properties such as antibacterial, antiviral, anticancer,
antioxidant and tantimycotic activity (Jesus et al., 2015).
Previous in vitro studies reported that these molecules
exhibit antiviral activity against rotavirus, HIV, the influenza
virus, hepatitis B and C viruses (Jesus et al., 2015; Khwaza
et al., 2018; Tohm�e et al., 2019).

Carvacrol (2-Methyl-5-(propan-2-yl)phenol) is a monoter-
penoid phenol, possesses a wide range of strong antimicro-
bial and antiviral activity (Gilling et al., 2014; Kamalabadi
et al., 2018; Marinelli et al., 2019). It is a major constituent of
essential oil of plants of Labiatate family including oregano
and thyme, and has been emerged as active molecule for
therapeutic purpose (Hyldgaard et al., 2012). Using in-vitro
methods, antiviral effects of carvacrol has been tested and
validated on herpes simplex virus type 1, retrovirus and
human respiratory syncytial virus (Kamalabadi et al., 2018).

Besides the uses of various FDA-approved antiviral com-
pounds as mentioned above, there are many in-silico studies
have been performed to screen the novel phytochemical
molecules as a potential inhibitors of main protease of SARS-
CoV-2 or develop new drugs against COVID-19 (Adem et al.,
2020; Chandel et al., 2020; Gentile et al., 2020; Gonzalez-Paz
et al., 2020; Khaerunnisa et al., 2020; Khan et al., 2020;
Qamar et al., 2020; Sharma & Kaur, 2020; Sun et al., 2020).
But there is not a single report available for the function of
phytochemicals namely, ursolic acid, carvacrol and oleanolic
acid derived from the antiviral herbs for the treatment of
COVID-19. With the advent of molecular modeling
approaches, targeted drug design may be possible and func-
tional proteins of SARS-CoV-2 could be targeted with natural
compounds to develop an effective treatment for COVID-19.

In the present study, we have targeted the protease of
SARS-CoV-2 virus using available molecular modelling based
methods and studied the interactions with selected natural
compounds (ursolic acid, carvacrol and oleanolic acid) by
molecular docking and molecular dynamics simulations fol-
lowed by molecular mechanic/generalized Born/Poisson-
Boltzmann surface area (MM/G/P/BSA) validation.

2. Material and methods

A flow chart of pipeline used in present study is summarized
in Figure 1.

2.1. Preparation of protease

The crystal structure of COVID-19 virus main protease (Mpro)
in complex with Z45617795 (PDB ID: 5R7Y) was solved by
PanDDA analysis group (https://www.rcsb.org/structure/
5R7Y). This solved protein structure (PDB ID: 5R7Y) was
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extracted from the RCSB-Protein Data Bank (Berman et al.,
2000; Burley et al., 2019). Crystal structure of Mpro have
dimer in form with fragment of N-(2-phenylethyl) methane-
sulfonamide (Z45617795) compound provides a model for
identifying potent inhibitors to target COVID-19 virus Mpro

through in-silico study. The protein structure was prepared
by removing water atoms, hetero atoms and adding polar
hydrogen atom and kollman charges on it.

2.2. Ligand selection

Chemical structure of carvacrol (CID_10364), oleanolic acid
(CID_10494) and ursolic acid (CID_64945) were extracted
from PubChem database (Kim et al., 2019).

2.3. Molecular docking

In order to find out the potential drug targets, ligand based
molecular docking between phytochemical compounds i.e.
(carvacrol, oleanolic acid and ursolic acid) and Mpro protein
were performed using AutoDock v4.2 (Morris et al., 2009).
For docking experiments, the amino acid residues including
Thr24, Thr26, Asn119, Phe140, Gly143, Cys145, His163,
His164, Glu166, Gln189, and Thr190 were used as the active

sites. Default mode parameters were selected in AutoDock
during docking analysis.

2.4. Drug likeness

Absorption, distribution, metabolism, and excertion (ADME)
calculations are important aspects of drug designing. All
three ligand molecules were analysed based on the Lipinski’s
rule of five using (Lipinski et al., 2001), Veber’s rule (Veber
et al., 2002), Egan’s rule (Veber et al., 2002) and polar surface
area (TPSA), and number of rotatable bonds (Daina et al.,
2017), were calculated using SWISSADME tool (Daina
et al., 2017).

2.5. Molecular dynamics (MD) simulations

The structural and dynamics transition at atomistic level in
the Mpro of COVID-19 upon binding of small molecules were
investigated by using MD simulations. MD simulations were
performed using GROMOS96 43a1 force field embedded in
GROMACS 5.1.1 suite on LINUX based platform (Berendsen
et al., 1995). For the MD simulation, we followed the proto-
col described by Gajula, 2008; Gajula et al., 2016; Kumar
et al., 2018. PRODRG server (Sch€uttelkopf & van Aalten, 2004)
was used to generate the topology files of small molecules.

Figure 1. Flowchart of pipeline used in present study to identify the phytochemical based inhibitors of Mpro.
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The protein complexes were solvated in the dodecahedron
box with simple point charge (SPC) waters, and 4Naþ were
added for the overall electrostatic neutrality of the system.
Energy minimization of the system was performed by using
the steepest descent algorithm for 50,000 iteration steps and
cut-off up to 1000 kJmol�1 to reduce the steric clashes. The
minimization of the system was performed at two phases for
50,000 steps, where the first phase equilibrated in two differ-
ent phases for 50,000 steps. The first phase of equilibration
was performed with a constant number of particles, volume,
and temperature (NVT), each step 2 fs, the fallowed second
phase of equilibration was performed with a constant num-
ber of particles, pressure, and temperature (NPT), the ensem-
ble at 300 K. LINCS algorithm was utilized for covalent bond
constraints in the equilibration steps. For the calculation of
Lennard-Jones and Coulomb interactions, a 1.4 nm radius
cut-off was used. Long-range electrostatics was calculated by
using the Particle Mesh Ewald (PME) method with a Fourier
grid spacing of 1.6 Å. The temperature inside the box was
regulated by using V-rescale, a modified Berendsen tempera-
ture coupling method. Parrinello-Rahman pressure coupling
method was utilized in NPT equilibration. The final produc-
tion step of molecular dynamics simulation was carried out
for 50 ns, each step of 2 fs. Trajectories were saved, and
results were analyzed using XMGRACE. Root mean square
deviation (RMSD) variation in protein backbone was calcu-
lated by using g RMS tool, which utilizes the least-square fit-
ting method. Overall root mean square fluctuation (RMSF) in
the atomic positions of protein C backbone was calculated
by using the g rmsf tool. A rough measure of the compact-
ness factor of protein during the course of the simulation
was estimated by using the g gyrate tool of GROMACS.
Gmxsasa was used for computation of the total solvent
accessible surface area (SASA). Hydrogen bonds were calcu-
lated with 3.5 Å distance cut-off by using g h bond, and the
distribution of intermolecular hydrogen bond lengths
throughout the simulation was also analyzed.

2.6. MM/G/P/BSA binding free energy calculations

Molecular Mechanic/Poisson-Boltzmann Surface Area
(MMPBSA) method was used to obtain the binding free
energy of the interaction between ligand-protein complexes
(Aldeghi et al., 2017). This employs ensembles derived from
MD simulation. The g mmpbsa application of GROMACS
module was used for the calculation of different components
of the binding free energy of the Mpro and ligand complexes.
Here, the binding energy is an average of three energetic
terms, i.e. potential energy in the vacuum, polar-solvation
energy, and non-polar solvation energy, respectively. The
snapshots at every 100ps between 40 and 50 ns were col-
lected, and MMPBSA was performed to predict the bind-
ing energy.

In the MMPBSA calculation, the binding free energy
between a receptor and a ligand was calculated using fol-
lowing equations:

DGMMPBSA ¼ hGcomplex–Gprotein�Gligandicomplex (1)

Gx ¼ EMM�ThSMMi þ DGsolv (2)

EMM ¼ Ebonded þ Ecoul þ ELJ (3)

DGsolv ¼ Gpolar þ Gnonpolar (4)

2.7. Computational facility details

The MD simulations and corresponding energy calculations
were carried out on HP Gen7 server with 48 Core AMD pro-
cessors and 32GB of RAM.

3. Results and discussion

3.1. Molecular docking

The molecular docking approach to identify the drug targets
has become one of the most popular methods for ligand-
based computer-aided drug discovery (LB-CADD). In current
era, with this approach, big data of drug libraries can be ana-
lyzed and annotated quickly and immense amount of
energy, time, and costs related to CADD can be saved
(Wadood et al., 2013; Yu & MacKerell, 2017). Currently, there
are no effective treatments available to cure COVID-19 virus,
and hence, identification of potential drug targets is
urgently needed.

We used molecular modeling approach with molecular
docking and MD simulation to identify potential phytochem-
cials active against the Mpro protein of COVID-19. These
screened natural compounds may pave way for the develop-
ment of drugs against COVID-19. On the basis of AutoDock
binding affinity, phytochemicals namely, carvacrol, oleanolic
acid and ursolic acid have shown satisfactory interactions
with active site residues. These compounds have been found
to have binding energy of �4.0 kcal/mol, �6.0 kcal/mol,
�5.9 kcal/mol, respectively. The docked ligand molecules
with protease are shown in Figure 2. Table 1 represented the
2D and 3D structures of docked ligand molecules along with
AutoDock score. Hydrogen bonds play an important role in
determining its specificity and affinity within protein-ligand
complexes (Sakkiah et al., 2012).

In order to evaluate the affinity of the ligand molecules
with the Mpro protein, we also studied the residues of prote-
ase involved in forming hydrogen bonds with the phyto-
chemicals and the strength of these bonds. Amino acids
residues participated in hydrophobic interactions between
protease and ligand molecules were also investigated.
Molecular interactions (hydrogen bonds and hydrophobic
interactions) play a key role in giving shape and stabilizing
the docking complexes (Wade & Goodford, 1989).

With AutoDock binding energy �4.0 kcal/mol, Gly143
amino acid was found to be involved in forming hydrogen
bond with carvacrol (Figure 2). In addition to this, six other
residues (Leu27, His41, Met49, Asn142, Cys145, Met165) are
involved in forming hydrophobic interactions. Oleanolic acid
compound make complex using AutoDock with binding
energy �6.0 kcal/mol. The Gln189 amino acid formed the
hydrogen bond, and two amino acids (Cys145, His163) were
involved in hydrophobic interactions. Autodock binding
energy of ursolic acid compound was �5.9 kcal/mol. The
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Ser46 amino acid at the active site of protease formed
hydrogen bond. Nine amino acids (Thr24, Thr25, Thr26,
Cys44, Thr45, Asn142, Gly143, Cys145, Glu166) participated in
the formation of van der Waals interactions (Figure 2).
Carvacrol having less binding energy as compared to olea-
nolic acid and ursolic acid molecules, the binding mode of

interaction was found to be reasonably good. Previous stud-
ies reported a similar trend of the presence of binding pock-
ets in main Mpro of SARS-CoV, which confirms our study
(Aanouz et al., 2020; Khan et al., 2020; Li et al., 2020;
Muralidharan et al., 2020). Aanouz et al. (2020) reported the
b–Eudesmol molecule as a potential inhibitor of Mpro of

Figure 2. Schematic representation of molecular docking between Mpro and phytochemicals; (a) 3D structure of coronavirus derived from the RCSB-Protein Data
Bank (PDB); (b) crystal structure of main protease of COVID-19 obtained from the PDB with PDB ID:5R7Y (c)interaction between Mpro and oleanolic acid with
�6.0 kcal/mol docking energy; (d) interaction between Mpro and carvacrol with docking energy �4.0 kcal/mol; (e) interaction between Mpro and ursolic acid with
�5.9 kcal/mol docking energy. Interactions were visualized using maestro and discovery studio programs.

Table 1. Molecular docking results of carvacrol, oleanolic acid and ursolic acid.

Chemical Structure

Compound Name PubChem ID 2D 3D Docking Energy (AutoDock)

Carvacrol CID_10364 �4.0 kcal/mol

Oleanolic acid CID_10494 �6.0 kcal/mol

Ursolic acid CID_64945 �5.9 kcal/mol
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COVID-19 based on its significant antibacterial and antiviral
power well documented in literatures. However, this com-
pound showed the low affinity interaction with Mpro and
formed the hydrogen only with Thr111.

In our earlier study we have reported the ursolic acid car-
vacrol molecules as potential inhibitors of Small heat shock
protein16.3 (sHSP16.3) of Mycobacterium tuberculosis (MTB)
(Jee et al., 2018). Docking study of ursolic acid with sHSP16.3
formed two strong hydrogen bonds with Glu56 and Pro58,
while carvacrol was found to be bound with only one hydro-
gen bond Glu92. Binding affinity of both compounds with
sHSP16.3 confirms the present study results. From a bio-
logical point of view, reported phytochemicals, carvacrol, ole-
anolic acid and ursolic acid which are proposed as potential
inhibitors of the Mpro having a significant antiviral activity
with evident to bibliographical research and performed in-
vitro studies (Gilling et al., 2014; Jesus et al., 2015;
Kamalabadi et al., 2018; Khwaza et al., 2018; Marinelli et al.,
2019; Tohm�e et al., 2019).

3.2. Evaluation of drug likeness

Carvacrol, oleanolic acid and ursolic acid have respectively
the following molecular weights (150.22, 456.70, 456.70) g/
mol, all three molecules have molecular weight � 500 g,/mol
which follows the Lipinski’s rule. The carvacrol molecule has
been found to have topological polar surface (TPSA) as 20.23
Å2, while oleanolic acid and ursolic acid molecules were
found to have 57.53 Å2. According to the rule lowest TPSA
values always produce good results; therefore, we noted that
selected molecules are better behaved than the co-crystal-
lized ligand (Daina et al., 2017; Lipinski et al., 2001). The
(LogP) values of carvacrol, oleanolic acid and ursolic acid
were found with the range of 2.82, 6.06, 5.94, respectively.
Predicted LogP values depict that these molecules can be
absorbed in the body. All three molecules present number of
hydrogen bond donors: �5, a number of hydrogen bond
acceptors �10 and also molar refractivity values between
48.01, 136.65, 136.91, respectively. The hydrogen bonding
and molar refractivity calculations showed that these mole-
cules validate the five Lipinski’s rule. These molecules also
follow the Veber’s rule which denotes the oral bioavailability
of drug molecules. Since in some CAD molecules cannot be
synthesized, synthetic accessibility (SA) is a key aspect of
drug designing. The carvacrol, oleanolic acid and ursolic acid

molecules were found to have SA score 1, 6.08, 6.21, respect-
ively. According to SA method molecules having score 1 is
easy to synthesize it, on the other hand, score 10 represent
difficulties to synthesize the molecules. All three molecules
having less than 10 score, so they can be easily synthesized.
The results of the ADME calculations are listed in the
Table 2.

3.3. MD Simulations

MD simulations are one of proven in-silico methods for
obtaining dynamic data at atomic spatial resolution and
picoseconds or finer temporal resolution (Benson & Daggett,
2012; Gajula et al., 2016). The main protease docked com-
plexes with phytochemical compounds; carvacrol, ursolic acid
and oleanolic acid simulation study done for 50 ns simulation
period to analyze the stability of these docked phytochem-
ical compounds in binding region of Mpro.

The Mpro with compound carvacrol (black) showed stable
and constant range of RMSD between 0.23 nm to 0.30 nm
and similar results showed by ursolic acid (blue), only slight
changes showed in starting of the simulation. The oleanolic
acid (red) showed stable RMSD between 4 ns to 20 ns at
RMSD range between 0.21 nm to 0.38 nm, after 20 ns RMSD
increases and constant at 0.41 nm (Figure 3). The differences
of backbone RMSD with carvacrol, ursolic acid and oleanolic
acid complex in protein backbone RMSD suggest that Mpro

have conformational changes in oleanolic acid while no sig-
nificant change shown in carvacrol and ursolic acid during
50 ns simulation.

The compound carvacrol (red) has shown fluctuations at
two different intervals on 50 ns time scale as it may has
changed a conformation in binding region of Mpro. The
first stable conformation between 6 ns to 29 ns and second
stable conformation is between 34 ns to 50 ns. The RMSD
remain constant at 0.3 nm and large fluctuation observed
between 28 ns to 33 ns RMSD > 0.4 nm. As large fluctu-
ation in compound, no effect on protein structure was
found. Similar changes also seen in ursolic acid (magenta)
RMSD fluctuations, it shown stable RMSD after 18 ns
between 0.58 nm to 0.66 nm while in starting period

Table 2. Results of the phytochemical molecules druglikeness properties.

Drug Likeness Properties Carvacrol Oleanolic acid Ursolic acid

Molecular weight g/mol 150.22 456.70 456.70
Concensus Log Po/w 2.82 6.06 5.94
Num. H-bond acceptors 1 3 3
Num. H-bond donors 1 2 2
Molar Refractivity 48.01 136.65 136.91
Lipinski Yes Yes Yes
Veber Yes Yes Yes
Bioavailability score 0.55 0.56 0.56
Synthetic accessibility (SA) 1.00 6.08 6.21
TPSA (Å2) 20.23 57.53 57.53
No of rotatable bonds 1 1 1
Solubility 1.46e-01 3.45e-04 9.72e-04

Figure 3 RMSD analysis of protein backbone during MD simulation.
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between 4 ns to 17 ns, RMSD consistently fluctuated (Figure
4). It also not affects the fluctuation of protein backbone
which depicts that binding region of protein has some
fluctuation that causes the compound fluctuations during
simulation. It may cause by large binding region and pres-
ence of loop at binding region.

The oleanolic acid (blue) showed higher but stable
RMSD between 0.44 nm to 0.61 nm throughout simulation.
Oleanolic acid binding affects the RMSD of protein back-
bone but it has stable till end of the simulation. Two simi-
lar conformations of ursolic and oleanolic acid showed
different behaviour with protein binding region during
simulation analysis. This observation we also confirm by
their local changes in residues level by RMSF plot. Protein
backbone with carvacrol (black) and ursolic acid (blue ) not
affect the behaviour of protein or structure of protein dur-
ing simulation while oleanolic acid (red) affects the struc-
ture of protein during simulation. RMSF confirms the
changes in structure with binding of these phytochemical
compounds (Figure 5).

3.4. Hydrogen bond analysis

Hydrogen bonding plays a crucial role in determining the
binding strength in between ligands and protein. The carva-
crol (red) and ursolic acid (black) have constant range of
hydrogen bond between 2 to 4 in whole simulation while
oleanolic acid showed changes in bonding. More hydrogen
(>5) bonds between 0 to 12 ns, after 12 ns the hydrogen
bond are <4 and last 10 ns, the hydrogen bond between 2
to 3. This may suggests that there is a conformational
change around oleanolic acid in the binding site during
simulation (Figure 6). Over all observation suggested that all
three protein-ligand complexes are stable during simulation.

3.5. Free binding energy analysis/Poisson2Boltzmann
surface area (MM-PBSA)

The pre docking suggest the binding energy of complex
while binding free energy (DG bind) analysis after simulation
suggest the consistency of non-bonding interactions energy
of binding region with compound also called post docking.
In previous reports, it has been shown that 100–200 snap-
shots are enough to calculate the binding free energies
(Khan et al., 2020; Sarma et al., 2020). The van der waal
energy component compared with each complex, the carva-
crol (�93.913 þ/�9.776) has less effect on binding affinity
while ursolic (�189.889 þ/�12.027) and oleanolic acid
(�197.509 þ/�11.086) has strong binding affinity. Similar
results are shown in binding energy, ursolic (�168.918
þ/�13.703) and oleanolic acid (�158.999 þ/�15.306)
showed similar effect of binding energy while moderate in
carvacrol (�82.781 þ/�9.401). The electrostatic energy
doesn’t show significant in ursolic and oleanolic acid while
moderate in carvacrol. The polar solvation and SASA energy
are shown moderate effects on binding energy component
in each compound (Table 3).

Figure 4. Analysis of RMSD of ligands and Mpro complexes; Mpro-carvacrol com-
plex (Black), Mpro-oleanolic acid complex (Red), Mpro-ursolic acid com-
plex (Blue).

Figure 5. Analysis of RMSF of Ca during MD simulation; Mpro-carvacrol complex
(Black), Mpro-oleanolic acid complex (Red), Mpro-ursolic acid complex (Blue).

Figure 6. Intermolecular hydrogen bonds between the ligands and Mpro pro-
tein; Mpro-carvacrol complex (Black), Mpro-oleanolic acid complex (Red), Mpro-
ursolic acid complex (Blue).
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3.6. Radius of gyration analysis

In order to determine the compactness of the system with
the time, Rg was calculated, in which higher Rg values depict
less compactness (more unfolded) with conformational
entropy, while low Rg values explain high compactness with
more stability in the structure (more folded). As evident from
Figure 7(a), the simulation Rg values of all three cases
reported as 2.05–2.15 nm. The fewer changes in the Rg value
exhibited the stability of the protein in the complex, which
showed less difference. Rg results revealed that the binding
of these three molecules does not induce structural changes.
The Rg values of all three protein-ligand complexes (Figure
7(a)) support their condensed architecture as well as size. In
a recent study, Khan et al. (2020) calculated the Rg values
for Remdesivir Saquinavir and Darunavir drugs (reported as
inhibiting drugs against chymotrypsin-like protease of SARS-
CoV-2). The average gyration score of Remdesivir was found
to be 22.25 ± 0.1 Å, while Saquinavir and Darunavir durgs
prompted to have average Rg scores of 22.32 ± 0.4 Å and
22.29 ± 0.6 Å, respectively.

3.7. SASA analysis

Additionally, we also conducted the solvent accessible sur-
face area (SASA) analysis of all of the three protein-ligand
complexes. SASA is important to measure of the receptor
exposed to the solvents during the simulation. The expo-
sures of the hydrophobic residues by the binding of the lig-
and molecules contribute to the values of the SASA. The
SASA value exhibited between 155–165 nm2 (Figure 7(b))
showed that the binding of ligands does not affect the fold-
ing of the protein. Khan et al. (2020) have performed the

SASA analysis for 3CLpro and its protein-drug complexes.
They reported that SASA values for the 3CLpro, 3CLpro-
Paritaprevir complex and 3CLpro-Raltegravir complex were
133.89 nm2, 131.79 nm2 and 131.26 nm2, respectively. The
results reported in the present study suggest that all three of
the complexes were impressively stable after the binding of
ligands to active sites of Mpro protein.

4. Conclusion

The Mpro protein has shown to be crucial and highly potent
target for the inhibition of novel COVID-19. This study con-
cludes three natural compounds (ursolic acid, carvacrol and
oleanolic acid) as potential inhibitors against Mpro. Molecular
docking analysis revealed that Carvacrol molecule having
less binding energy as compared to other two molecules,
oleanolic acid and ursolic acid. The binding mode of inter-
action was found to be reasonably good. MD simulations
revealed that all three docking complexes showed stability at
50 ns. These inhibitors also fulfil the ADME parameters as
well as Lipinski’s rule of five. All these reported compounds
are natural and also commercially available for further
in vivo/in vitro validations. The information generated from
this present study may be utilized in future for the develop-
ment of more phytochemical based therapeutics against
COVID-19.
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