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Abstract: Iron-doped bismuth sulphide (Bi2−xFexS3) nanocrystals have been successfully synthesized
in a glass matrix using the fusion method. Transmission electron microscopy images and energy
dispersive spectroscopy data clearly show that nanocrystals are formed with an average diameter
of 7–9 nm, depending on the thermic treatment time, and contain Fe in their chemical composition.
Magnetic force microscopy measurements show magnetic phase contrast patterns, providing
further evidence of Fe incorporation in the nanocrystal structure. The electron paramagnetic
resonance spectra displayed Fe3+ typical characteristics, with spin of 5/2 in the 3d5 electronic state,
thereby confirming the expected trivalent state of Fe ions in the Bi2S3 host structure. Results from
the spin polarized density functional theory simulations, for the bulk Fe-doped Bi2S3 counterpart,
corroborate the experimental fact that the volume of the unit cell decreases with Fe substitutionally
doping at Bi1 and Bi2 sites. The Bader charge analysis indicated a pseudo valency charge of 1.322|e|
on FeBi1 and 1.306|e| on FeBi2 ions, and a spin contribution for the magnetic moment of 5.0 µB per
unit cell containing one Fe atom. Electronic band structures showed that the (indirect) band gap
changes from 1.17 eV for Bi2S3 bulk to 0.71 eV (0.74 eV) for Bi2S3:FeBi1 (Bi2S3:FeBi2). These results are
compatible with the 3d5 high-spin state of Fe3+, and are in agreement with the experimental results,
within the density functional theory accuracy.
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1. Introduction

Semiconductor nanocrystals doped with transition metals constitute a class of new nanomaterials
that have been intensively investigated recently, mainly due to their interesting and tunable physical
properties, which are significantly different from that of the nonmagnetic host semiconductor
nanocrystal [1–4]. These materials, in which the magnetic dopant concentration is typically a few
percentage points, are known as diluted magnetic semiconductors (DMS). The main cause of the
new physical properties owned by these DMS materials is attributed to the sp- exchange interaction
between the host nonmagnetic semiconductor sp-band and the partially occupied transition metal
d-state [5–7]. Synthesis of several kinds of transition metal doped semiconductor nanocrystals are
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reported in the literature, such as Mn-doped Bi2S3 [8] and PbSe [9], Cu-doped SrF2 [10], Co-doped
PbSe [11], Cr-doped In2O3 [12], and Fe-doped ZnO [13], PbTiO3 [14], and TiO2 [15]. These DMS
nanocrystals can be applied in light-emitting diodes (LEDs) [16], solar cells [17], optical ratio-metric
temperature sensors [18], and spintronic devices [19].

One material that has potential technological applications to be explored, and which present
interesting electronic properties, is the bismuth sulphide (Bi2S3) semiconductor [20,21]. For Bi2S3 bulk,
it has been reported a direct band gap of 1.3–1.7 eV [22–24], from both experimental and theoretical
methods with the framework of the GW DFT (Green function and screened coulomb interaction),
whereas standard DFT reports indirect band gap of 1.19 eV [25]. Bi2S3 crystallizes in the orthorhombic
structure (Pnma space group), with a unit cell consisting of four Bi2S3 units, leading to a 20 atoms unit
cell [26]. Each Bi2S3 unit has two nonequivalent Bi sites, denoted as Bi1 and Bi2, which differs in their
coordination, as well as three nonequivalent S sites, denoted as S1–S3.

The electronic properties of semiconductor nanocrystals can be tunable by means of quantum
confinement effects, as well as by doping with magnetic ions [27,28]. Therefore, doping Bi2S3

nanocrystals with Fe ions could lead to physical properties tunable by size and dopant concentration
control. As Fe ions enter into the Bi2S3 structure, most probably as Fe3+ substituting Bi3+ ions,
with 3d5 valence configuration and spin of 5/2 [29], it became possible to add magnetic properties
to the nonmagnetic Bi2S3 nanocrystals. The exchange interaction between the sp-band from the
Bi2S3 semiconductor, and the d-state from the Fe3+ ion become important for their electronic and,
consequently, optical properties.

In this work, we report the synthesis and study of iron-doped bismuth sulphide (Bi2−xFexS3)
nanocrystals embedded in a host glass matrix (referred to as SNAB) by the fusion method, with
Fe-concentration of x = 0.00, x = 0.05, and x = 0.10. The SNAB glass matrix was chosen because
it presents good chemical stability, optical transparency in the visible and near-infrared spectra
regions, and is nontoxic, which makes it an excellent template for the growth of different kinds
of nanocrystals [8,30–32]. The structural and magnetic properties of Bi2−xFexS3 nanocrystals were
investigated experimentally by the techniques of transmission electron microscopy (TEM), energy
dispersive spectroscopy (EDS), atomic and magnetic force microscopy (AFM/MFM), and electron
paramagnetic resonance (EPR). In order to gain insight into the Fe-doping effect on the structural
parameters of Bi2S3 nanocrystals, a theoretical study was performed on Fe-doped bulk Bi2S3, based on
density functional theory (DFT), using pseudopotentials and numerical atomic basis set.

2. Results and Discussion

TEM images of Bi2−xFexS3 nanocrystals growth in the SNAB glass matrix, and those thermally
treated at 500 ◦C for 10 h, are displayed in Figure 1 for (a) x = 0.00, (d) x = 0.13, and (g) x = 0.26,
as well as a correspondent nanocrystal magnified image for the samples thermally treated at 500 ◦C
for 24 h (Figure 1b,e,h) and the EDS data (Figure 1c,f,i). An average diameter of 7 nm has been
obtained. From the magnified TEM images (to samples treated for 24 h), the mean diameter of the
single nanocrystal is 9 nm, the interplanar distance of d240 = 0.225 nm (x = 0.00) and d130 = 0.356 nm
(x = 0.13 and 0.26) was estimated and attributed to the bulk Bi2S3 (240) and (130) crystalline planes,
respectively. These estimations were done with the software ImageJ [33]. EDS measurements of
the samples treated for 10 h, confirm the chemical composition of the Fe-doped Bi2S3 nanocrystals.
The presence of Fe can be seen at about 6.4 keV in the EDS spectrum.
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Figure 1. TEM images of Bi2-xFexS3 nanocrystals grown in the SNAB glass matrix with mean size of 
7.0 nm, for x values: (a) 0.00; (d) 0.13; and (g) 0.26 and from 9.0 nm to the values of x: (b) 0.00; (e) 0.13; 
and (h) 0.26. EDS measurements for samples treated at 500 °C for 10 h are given for x values: (c) 0.00; 
(f) 0.13; and (i) 0.26. The white circle in the TEM images indicates the region in which the EDS 
measurement was performed in the samples. 

Figure 2 shows the AFM/MFM images (700 × 700 nm) used for magnetic investigations of 
Bi2-xFexS3 nanocrystals, with an average size of 9.0 nm (obtained by TEM images), being: (a) x = 0.00, 
(b) x = 0.13, and (c) x = 0.26. Topographic images are shown in the left panels, and corresponding 
magnetic phase images are shown in the right panels. The bright/dark contrast in the MFM magnetic 
phase images is attributed to the magnetic response of Bi2-xFexS3 nanocrystals when induced by a 
magnetized tip. The bright/dark contrast is due to the repulsion/attraction of the magnetized tip to 
the nanocrystals, represented in the vertical bar, as with the north (N) (south (S)) poles [34]. The 
same contrast does not appear for the sample containing only non-doped Bi2S3 nanocrystals (x = 
0.00). These AFM/MFM images support TEM/EDS data and EPR measurements, providing evidence 
of the incorporation of Fe3+ magnetic ions into the crystalline structure of Bi2-xFexS3 nanocrystals. 

Figure 1. TEM images of Bi2−xFexS3 nanocrystals grown in the SNAB glass matrix with mean size
of 7.0 nm, for x values: (a) 0.00; (d) 0.13; and (g) 0.26 and from 9.0 nm to the values of x: (b) 0.00;
(e) 0.13; and (h) 0.26. EDS measurements for samples treated at 500 ◦C for 10 h are given for x values:
(c) 0.00; (f) 0.13; and (i) 0.26. The white circle in the TEM images indicates the region in which the EDS
measurement was performed in the samples.

Figure 2 shows the AFM/MFM images (700 × 700 nm) used for magnetic investigations of
Bi2−xFexS3 nanocrystals, with an average size of 9.0 nm (obtained by TEM images), being: (a) x = 0.00,
(b) x = 0.13, and (c) x = 0.26. Topographic images are shown in the left panels, and corresponding
magnetic phase images are shown in the right panels. The bright/dark contrast in the MFM magnetic
phase images is attributed to the magnetic response of Bi2−xFexS3 nanocrystals when induced by a
magnetized tip. The bright/dark contrast is due to the repulsion/attraction of the magnetized tip to
the nanocrystals, represented in the vertical bar, as with the north (N) (south (S)) poles [34]. The same
contrast does not appear for the sample containing only non-doped Bi2S3 nanocrystals (x = 0.00).
These AFM/MFM images support TEM/EDS data and EPR measurements, providing evidence of the
incorporation of Fe3+ magnetic ions into the crystalline structure of Bi2−xFexS3 nanocrystals.
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Figure 2. AFM/MFM images of 700 × 700 nm of Bi2-xFexS3 nanocrystals grown in the SNAB glass 
matrix, heat treated at 500 °C for 24 h, at concentrations: (a) x = 0.00; (b) x = 0.13; and (c) x = 0.26. 
Sample topographic (left panel) and magnetic phase (right panel) identifies the orientation of the 
total magnetic moment of the DMS NCs. 

EPR measurements were carried out at 300 K and at X-band frequencies on Bi2-xFexS3 
nanocrystals grown in the SNAB matrix. Fe3+ ions (3d5, S = 5/2) have typical absorptions at g-factor 
equal to 4.30 and 2.00. In general, the spin Hamiltonian for Fe3+ ions is represented by [29] ܪ = .ܪߤ݃ ܵ + ܦ ቊܵ௭ଶ + ቆܵሺܵ + 1ሻ3 ቇቋ + ൫ܵ௫ଶܧ − ܵ௬ଶ൯  

Here, g is gyromagnetic factor, ߤ is the Bohr magneton, H is the applied magnetic field, S the 
effective spin of the Fe3+ ion, Si(i = x, y, z) are the spin angular momentum operators in the coordinate 

Figure 2. AFM/MFM images of 700 × 700 nm of Bi2−xFexS3 nanocrystals grown in the SNAB glass
matrix, heat treated at 500 ◦C for 24 h, at concentrations: (a) x = 0.00; (b) x = 0.13; and (c) x = 0.26.
Sample topographic (left panel) and magnetic phase (right panel) identifies the orientation of the total
magnetic moment of the DMS NCs.

EPR measurements were carried out at 300 K and at X-band frequencies on Bi2−xFexS3

nanocrystals grown in the SNAB matrix. Fe3+ ions (3d5, S = 5/2) have typical absorptions at g-factor
equal to 4.30 and 2.00. In general, the spin Hamiltonian for Fe3+ ions is represented by [29]
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{
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Here, g is gyromagnetic factor, µB is the Bohr magneton, H is the applied magnetic field, S the
effective spin of the Fe3+ ion, Si(i = x, y, z) are the spin angular momentum operators in the coordinate
system. The terms D and E are the second order terms of the crystalline field, with axial and rhombic
symmetry, respectively, and represent the interaction with the zero magnetic field. The Hamiltonian
spin of the Fe3+ ion is strongly dependent on the D value, providing a value of the g-factor close to
2.0023 when D smaller than µB H, independent of E. However, when the term D is greater than gµBH,
the g-factor has values around g = 4.3 (E 6= 0) and g = 6.0 (E = 0). In literature, the absorptions at
g = 4.3 and g = 6.0 are attributed to the location of the Fe3+ ions in tetrahedral or octahedral sites [35,36].
In Figure 3, the EPR spectra are presented for the untreated samples and for samples treated at 500◦C
for 10 and 24 h. These spectra are for sample with (a) x = 0.13 and (b) x = 0.26. The annealing treatment
increases the size of the Bi2−xFexS3 nanocrystals and, consequently, increases the intensity which
is attributed to a greater incorporation of the Fe3+ ions, as substitution for the ions of Bi3+, in the
crystalline structure of the Bi2S3 semiconductor. In the particular case of x = 0.00, the EPR signal of
Fe3+ ions are not observed. This increase in the peak-to-peak intensity of the Fe3+ ion EPR signal is
attributed to the influence of the crystalline field of the Bi2S3 nanocrystals and is analyzed in Figure 3c
for the concentrations of x = 0.05 and 0.10. The EPR spectra amplitude was normalized by the mass of
the samples. The EPR data is in agreement with the results obtained by TEM/EDS and AFM/MFM.
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Figure 3. Bi2−xFexS3 nanocrystal EPR spectra grown in the SNAB glass matrix for: (a) x = 0.13 and
(b) x = 0.26. SNAB: Bi2S3 is correspondent to the case where x = 0.00. In (c), the intensity variation of
the EPR signal is shown for the samples without treatment and with treatment times of 10 and 24 h at
500 ◦C.

The orthorhombic unit cell used in the DFT simulation of bulk Bi2S3 is illustrated in Figure 4.
It consists of 8 Bi and 12 S atoms, adding up to 20 atoms per unit cell. The optimized lattice parameters
and unit cell volume of bulk Bi2S3 crystal structure at zero pressure are collected in Table 1, and are
compared with the correspondent experimental values from Lundegaard et al. [26]. The calculated
lattice parameters and unit cell volume for bulk Bi2S3 crystal structure are in excellent agreement with
the experimental ones, within the DFT-GGA accuracy.
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Figure 4. Crystal structure of bulk Bi2S3, at zero pressure, showing the unit cell.

Table 1. Calculated zero pressure lattice parameters and unit cell volumes for bulk Bi2S3, Fe-doped
Bi2S3 at Bi1 and at Bi2 sites. Experimental data for bulk Bi2S3 at zero pressure was taken from Ref. [26].
For all the structures, α = β = γ = 90◦.

Structural Parameters Bi2S3 Exp.[26] Bi2S3 Bi2S3:FeBi1 Bi2S3:FeBi2

a (Å) 11.282 11.249 dev. −0.29% 11.419 11.229
b (Å) 3.9728 4.0296 dev. 1.43% 3.9540 3.9318
c (Å) 11.131 11.004 dev. −1.14% 10.652 11.077

Vuc (Å3) 498.4 498.8 dev. 0.08% 480.9 489.1

Data for crystal structures of Fe-doped Bi2S3 are also collected in Table 1 for Fe occupying Bi1 or
Bi2 sites. The results show that when bulk Bi2S3 is doped with Fe, the unit cell decreases in volume by
a factor of 3.6% for FeBi1 and of 1.9% for FeBi2. Total energy calculations show that FeBi1 structure is
energetically favorable relative to FeBi2 by only 289 meV, which means that both Bi sites are almost
just as likely to be occupied by Fe atoms. Results from Bader charge analysis [42,43] are displayed
in Table 2, showing a pseudo valency charge of 1.322|e| on FeBi1 and 1.306|e| on FeBi2 ions, which
compares well with the pseudo valency charge of 1.454|e| and 1.600|e| on Bi1 and Bi2 sites at Bi2S3

undoped structure, with small charge transfer among atoms. For Fe-doped Bi2S3 bulk, Bader charges
and pseudo valency charges on different Bi and S sites change very little and are not shown in Table 2.
For both Fe-doped structures, a spin contribution for the magnetic moment of 5.0 µB per unit cell
containing one Fe atom was obtained.

Table 2. Bader charge calculated from pseudo valency electron density for Bi2S3 bulk, Fe-doped Bi2S3

bulk at Bi1 and at Bi2 sites. Pseudo valency charge is the difference between the free atom valency
charge and the Bader charge. All charges in units of |e|, where e is the elementary charge.

Structure Atom Bader Charge Pseudo Valency Charge

Bi2S3

Bi1 3.546 1.454
Bi2 3.400 1.600
S1 7.108 −1.108
S2 6.986 −0.986
S3 6.960 −0.960

Bi2S3:FeBi1 Fe1 6.678 1.322

Bi2S3:FeBi2 Fe2 6.694 1.306
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The energy band structure of Bi2S3 bulk and Fe-doped Bi2S3, along the high symmetry directions
in the Brillouin zone, are shown in Figure 5. For Bi2S3, the band structure (Figure 5a) indicate an indirect
band gap of 1.17 eV, with valence band maximum (VBM) within the X–Γ line and conduction band
minimum (CBM) at the Γ point, which is in good agreement with other theoretical calculations [25]. Iron
doping results in a reduction of the band gap to 0.71 eV for Fe atoms occupying Bi1 sites (Figure 5b) and
to 0.74 eV for Fe atoms occupying Bi2 sites (Figure 5c), due to energy levels introduced by Fe orbitals.
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2 ), U = ( 1

2 ,0, 1
2 ), R = ( 1

2 , 1
2 , 1

2 ), and T = (0, 1
2 , 1

2 ).

3. Materials and Methods

Bi2−xFexS3 nanocrystal samples were synthesized by the fusion method in a
borosilicate glass matrix, referred to as SNAB, with the following nominal composition:
45SiO2·30Na2CO3·5Al2O3·20B2O3 (mol %), and adding 2% of Bi2O3 and S (wt), and nominal
x content of Fe (x = 0.00, 0.13, and 0.26) as a function of bismuth concentration. The powder mixture
of the glass and the nanocrystal precursors were combined and melted in an alumina crucible,
at 1200 ◦C for 30 min, and then rapidly cooled at room temperature. The resulting samples were then
thermally treated in ambient air at 500 ◦C for 10 and 24 h to provide the energy and time needed
for the diffusion of the Bi3+, S2−, and Fe3+ ions throughout the host matrix. This annealing process
produces Fe-doped Bi2S3 nanocrystals with small size distribution. TEM micrographs and EDS were
taken using a JEM-2100 (JEOL, 200 kV) to investigate the formation, size, shape, and growth of the
Bi2−xFexS3 nanocrystals. Since TEM images of dielectric materials (glass template) are difficult to
obtain, the samples were turned into a finer powder, and placed on a plate made of copper in order of
take the TEM measurements. AFM/MFM images were recorded in a Shimadzu (SPM-9600) scanning
probe microscope, with nominal resolution in the vertical direction for topographic mode of 0.01 nm
and horizontally of 0.2 nm. Iron magnetic impurity electronic states, in the structure of the doped
nanocrystals, were studied via EPR, using a ST ER4102 spectrometer (Bruker EMX spectrometer)
with a rectangular cavity, microwave frequency of 9.75 GHz (X-band), microwave power of 20 mW,
and 100 kHz field modulation. All measurements were taken at room temperature.

In order to obtain the structural effect, the Bader charge analysis, and the spin contribution
to the magnetic moment of Fe-doped Bi2S3 nanostructure, first principle simulations based on
density functional theory [37,38] were carried out. All the simulations were performed using
norm-conserving pseudopotentials [39] and the PBE generalized gradient approximation [40] for
the electronic exchange-correlation functional, as implemented in the Siesta [41] code. Relativistic
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pseudopotentials, chosen to enable spin polarized simulations (without taking into account the
spin-orbit interaction), were generated with the following valence configurations: 6s2 6p3 6d0 5f0 for
Bi, 3s2 3p4 3d0 4f0 for S, and 3d6 4s2 4p0 4f0 for Fe.

One conventional unit cell of Bi2S3, containing 20 atoms (four stoichiometric Bi2S3 formulas) was
used as a supercell. The experimental data for bulk Bi2S3 [26] was taken as the starting geometry.
Then, full relaxation of lattice parameters and atomic coordinates were performed. For Fe-doped
Bi2S3 simulations, starting from the full relaxed Bi2S3 bulk structure, one Bi atom (at Bi1 or Bi2 site)
was substituted by one Fe atom per unit cell and fully relaxed again, getting an Fe atomic doping
concentration of 12.5%. Indeed, this is a higher concentration, but it is near to the experimental
concentration of the sample synthesized with 13.0% of Fe (nominal) concentration.

The following parameters were used for all the calculations: a DZP basis set with an energy shift
of 100 meV, a mesh cutoff of 250 Ry (~3400 eV), a maximum difference tolerance in the density matrix
of 1 × 10−5, a tolerance in the total free energy of 1 × 10−4 eV, 0.01 eV/Å for the force relaxation
criterion, 0.05 GPa as the maximum difference in the stress tensor components, and 36 k-points in the
unit cell for k-sampling in the Brillouin zone. Only for Bader charge analysis, a mesh cutoff of 300 Ry
was set.

4. Conclusions

Diluted magnetic semiconductor nanocrystals of Bi2−xFexS3 have been successfully synthesized
in a glass matrix by the fusion method. TEM measurements confirm the formation of nanocrystals with
average diameter of 7 nm and 9 nm for samples thermally treated at 500 ◦C for 10 and 24 h, respectively.
EDS measurement suggested that the Fe ions were incorporated in the nanocrystal structure, which is
confirmed from the observed magnetic phase contrast in the AFM/MFM measurements, which is
attributed to the magnetic response of Fe3+ ions in the nanocrystal structure. EPR spectra confirm the
Fe3+ valence state with a spin of 5/2, and the crystalline field influence on the Bi2S3 nanocrystals. DFT
simulations showed that when bulk Bi2S3 is doped with Fe, the unit cell decreases in volume by a factor
of 3.6% for FeBi1 and of 1.9% for FeBi2, and that the FeBi1 structure is energetically favorable to FeBi2 by
289 meV. Bader charge analysis indicated a pseudo valency charge of 1.322|e| on FeBi1 and 1.306|e|
on FeBi2 ions, and a spin contribution for the magnetic moment of 5.0 µB per unit cell containing one Fe
atom, for both FeBi1 and FeBi2 doped structures. Calculated electronic band structures showed that the
indirect band gap changes from 1.17 eV for Bi2S3 bulk to 0.71 eV (0.74 eV) for Bi2S3:FeBi1 (Bi2S3:FeBi2).
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