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Causal inference is a broad field that seeks to build and apply models that learn the

effect of interventions on outcomes using many data types. While the field has existed for

decades, its potential to impact healthcare outcomes has increased dramatically recently

due to both advancements in machine learning and the unprecedented amounts of

observational data resulting from electronic capture of patient claims data by medical

insurance companies and widespread adoption of electronic health records (EHR)

worldwide. However, there are many different schools of learning causality coming from

different fields of statistics, some of them strongly conflicting. While the recent advances

in machine learning greatly enhanced causal inference from a modeling perspective,

it further exacerbated the fractured state in this field. This fractured state has limited

research at the intersection of causal inference, modern machine learning, and EHRs that

could potentially transform healthcare. In this paper we unify the classical causal inference

approaches with new machine learning developments into a straightforward framework

based on whether the researcher is most interested in finding the best intervention for

an individual, a group of similar people, or an entire population. Through this lens, we

then provide a timely review of the applications of causal inference in healthcare from the

literature. As expected, we found that applications of causal inference in medicine were

mostly limited to just a few technique types and lag behind other domains. In light of this

gap, we offer a helpful schematic to guide data scientists and healthcare stakeholders in

selecting appropriate causal methods and reviewing the findings generated by them.

Keywords: electronic health record, causal inference, machine learning, healthcare, treatment effects, review,

potential outcome framework, patient population

INTRODUCTION

In healthcare, it is important to distinguish between association and causation when we study
treatment effects on patient outcomes. Association between two variables is non-directional and
implies that the two variables are correlated. In contrast, causation is directional and indicates that
one variable causes the other. In clinical studies, we are more interested in causal analysis to reveal
whether a treatment causes a desired outcome.

Using observational data to infer causal treatment effects has become popular in the past
decade due to two pivotal advances: the increasingly available patient data captured in Electronic
Health Records (EHRs) and machine learning techniques that can efficiently and intelligently
analyze large-scale data. On the data side, health care providers worldwide have widely adopted
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EHRs (1, 2), which capture patients’ clinical and demographic
information during interactions with health systems. In addition
to EHRs, patient claims data are increasingly available to improve
models in the healthcare domain (3). On the algorithm side,
machine learning models such as artificial neural networks
are powering online search engines, shopping websites, and
recommender systems (4). These machine learning models are
increasingly used to improve causal inference algorithms.

In the past, many different schools of learning causality
coming from different fields of statistics resulted a fractured state
of causal inference, creating confusion about which algorithm
to use in a study. Recently, the intersection of causal inference,
machine learning, and patient data has formed a new front in
clinical research. Accordingly, many traditional causal inference
models have been improved and many new models have been
proposed. While this has enhanced the number of model options
to select from in causal inference studies, it has also led to even
greater confusion about which type of algorithm is appropriate
for a given application. Lack of systematic knowledge of which
approaches are promising in theory vs. the approaches that
have been validated through real world applications further
complicates the debate.

There are different stakeholders in healthcare, including
healthcare providers, administrators, clinical researchers, data
scientists, and many others. While data scientists, computer
engineers, and biomedical statisticians may be less prone to such
confusion, the fractured state in this field makes it difficult for
other participants to understand the many different types of
models and intuitively interpret the model results. We believe
it is imperative to address this confusion for all healthcare
participants to unlock the massive potential to improve patient
outcomes that could be obtained by studying the causal effects
of interventions from large-scale, representative, observational
patient data that is now available.

In this review, we start by explaining the broad and
heterogenous fields of causal inference. We then distill all of
these techniques down into a simple unified framework of three
algorithm families, based on size of the target patient population
that the causal effect estimation will be applied to. This simple
unified frame based on the size of the target patient population
is important: while statisticians in medical informatics may not
necessarily group the algorithms this way, it is beneficial for
frontline healthcare professionals such as doctors and nurses to
understand the drug effect in the context of its target population,
and the effect’s variance and bias characteristics when the drug
is applied to the treated patient. From the perspective of this
unified framework, we then review all existing applications of
causal inference in healthcare in the literature, and identify key
components of causal inference that are, as of now, lacking in
the healthcare domain. Finally, we use these insights to create an
intuitive schematic to guide researchers and stakeholders through
the process of selecting an appropriate causal inference technique
based on their study objectives.

This review is an extension of several works in previous
literature on observational causal inference. For example, the
authors in Yao et al. (5), Guo et al. (6), and Ding and Li (7)
reviewed causal inference in general but without a focus on

clinical settings. The authors in Landsittel et al. (8) offered a
narrative review of basic concepts of causal inference but did
not consider new developments in this field. Prior reviews (9–
11) have narrowly focused on the matching method of causal
inference, while in this paper we expand to include a much
broader algorithm types.

We conclude this section by providing below a summary of
all the approaches we review, with respect to their variance-bias
trade-off, advantages, disadvantages, and how widely they are
applied in clinical studies.

CAUSAL INFERENCE ASSUMPTIONS,
FRAMEWORKS, AND
TARGET-POPULATION INTERVENTION
SIZES

Confounding Variables
Causal inference differs from associative studies due to the
modeling of confounding variables (covariates), defined as
variables that affect both the treatment and the outcome. In
associative studies which focus on patient outcome estimates,
confounding variables are modeled in an inclusive manner
because the inclusion of these variables in the model improves
estimate accuracy. In contrast, causal inference which reveals
the causal relationship between treatments and patient outcomes
models the confounding variables in an exclusive manner in that
their effects are removed through various approaches we review
in this paper.

Assumptions
In the literature, several assumptions are widely adopted in causal
inference (12). The unconfoundedness assumption, also known
as ignorability, states that all confounding variables are observed
in the data. In practice, domain experts often examine as many
patient variables as possible, including their demographic and
clinical characteristics, so that this assumption can be met.
The common support or positivity assumption states that any
patient has a non-zero probability of being present in any of the
treatment groups. The validity of this assumption can be checked
by calculating the patients’ propensity scores (12). The Stable
Unit Treatment Value assumption (SUTVA) states that a patient’s
outcome only depends on the treatment this patient receives, and
not affected by the outcome or treatment of any other patients.
The consistency assumption links the potential outcomes to the
observed data and implies that the potential outcome under an
observed exposure is precisely the outcome that is observed (13).

Bias-Variance Tradeoffs Based on
Target-Population Intervention Sizes
Researchers, clinicians, and other healthcare stakeholders may
wish to know the treatment effects at different population
levels for different purposes. For example, they may want
to evaluate the overall effectiveness of the treatment on the
whole population. They may want to understand treatment
effect differences in different subpopulations to identify the
subpopulation where the treatment is the most effective or least
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effective. When they treat an individual patient, they may want
to know the individual-level treatment effects considering the
patient’s unique medical benefits and risks.

Driven by such needs, researchers conduct causal inference at
different target-population intervention sizes: at one end of the
spectrum is the Average Treatment Effect (ATE) that captures
the treatment effect for a population at large; at the other
end is the Individual Treatment Effect (ITE) that captures the
treatment effect heterogeneity across individuals; in between is
the conditional average treatment effect (CATE) that captures the
treatment effect for subpopulations.

In clinical practices, at the receiving end of any treatment are
individual patients. Correspondingly, different treatment effects
(ATE, CATE, and ITE) are eventually applied to individual
patients. Therefore, it is important to understand the variance-
bias tradeoff of the estimate at different target-population
intervention sizes: if we use ATE as the treatment effect for an
individual patient, the bias will be high due to effect heterogeneity
across patients in the population, but the variance will be low due
tomore data being used in the inference; in contrast, if we use ITE
for a patient, the bias will be low, but the variance will be high.

As the rest of the paper shows, ATE provides the best
option and fosters estimate efficiency for the whole population,
but may not provide the most accurate estimate for any
individual patient. ITE maximally leverages the data, but risks
being uninterpretable to clinical practitioners. CATE represents
a balance between bias and variance and tracks the clinical
definition of patient subgroups.

Two Frameworks
There are two widely accepted frameworks in the literature
for causal inference: the structural causal model (SCM) (14–
16) and the potential outcome framework (POF) (12, 17, 18).
SCM consists of two components, the causal graph and the
structural equations. A causal graph is a directed acyclic graph
(DAG) where the edges represent causal relationships, and the
nodes represent variables including treatments, outcomes, and
covariates that may or may not be observed. Causal effects can
be quantitatively specified through a set of structural equations.

The DAG and structural equations together provide a
comprehensive theory of causality and seamlessly tie essential
concepts and methodologies in causal inference (14, 19, 20).
In addition, it can possibly deal with cases where confounders
cannot be measured. For example, in Barter (21), the author
used the blood type as an instrument variable—defined as a
variable that affects the outcome only through the treatment
variable—to estimate the average survival benefit from receiving
a liver transplant.

The other framework, called the potential outcome
framework, centers on the concept of potential outcomes.
In the simplest term, potential outcomes are all the possible
outcomes for a patient under all possible treatments, with each
outcome corresponding to a treatment. Note that only one
potential outcome can be observed for a given patient at a
given time. We call the potential outcome that would have been
observed had the treatment been different the counterfactual
or the missing outcome. In the simplest case, there is only

one treatment to consider. A patient can be either given the
treatment, i.e., assigned to the treated group, or given no
treatment, i.e., assigned to the control group. Under the potential
outcome framework, the treatment effect is the difference
between the potential outcome if the patient is treated and that if
the patient is not treated.

CSM and POF are not competing frameworks but can
be unified (22). Despite this fact, the two frameworks have
differences in what causal questions they are best suited to handle.
Given its strong theoretical grounding, CSM is ideally suited to
identifying unknown causal and confounding variables, as well
as facilitating explanation. While it is useful to identify all the
variables in the causal graph and their causal connections, the
primary objective in healthcare is often to estimate the actual
effect of a given treatment. POF is best suited for generating
these estimates, because comparing potential outcomes eases the
removal of confounding effects and enables a natural connection
to traditional statistical analyses. For this reason, POF is more
widely adopted for healthcare research and will be the focus of
this review.

CAUSAL INFERENCE METHODS BY
TARGET-POPULATION INTERVENTION
SIZES

In this section we review causal inference approaches in the
literature under the potential outcome framework and the
assumptions stated in Section Causal Inference Assumptions,
Frameworks, and Target-Population Intervention Sizes. We
organize our review by the approaches’ target-population
intervention size: from ATE for the whole population to CATE
for subpopulations and ITE for individual patients.

We first explain some key notations. Suppose we are interested
in the causal effect of a treatment A on outcome Y . The potential
outcome denoted by Ya is the outcome that we would observe
under a possible treatment A = a. In a binary treatment case, a
can possibly take on two values a ∈ {0, 1}, where 0 indicates the
patient is not treated and 1 indicates the patient is treated. We
denote the confounding variables by X. For simplicity, we only
focus on the binary treatment case in this paper.

Estimate ATE for the Whole Population
In the binary treatment case, the ATE estimate for the population
can be calculated as

τ = E
(

Y1 − Y0) = E
(

Y1) − E
(

Y0) (1)

It is the difference between the expected potential outcomes of the
population if everyone is treated (A = 1) and if no one is treated
(A = 0).

Note that ATE cannot be directly calculated from equation (1)
because only one of the potential outcomes, either Y1

i or Y
0
i , can

be directly observed for patient i, nor can it be directly calculated
from the expected outcomes of the treated and control groups,

E
(

Y1 − Y0) 6= E (Y|A = 1) − E (Y|A = 0) (2)

Frontiers in Medicine | www.frontiersin.org 3 July 2022 | Volume 9 | Article 864882

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Shi and Norgeot Learning Causal Effects: A Review

due to the existence of confounding variables X. In general,
the distribution of confounding variables is different in the
treated and control group. If their expected outcomes are directly
compared to calculate treatment effects without adjusting for
confounding variables, the calculated treatment effects would
be biased.

Propensity Score-Based Approaches
Propensity score of a patient is the conditional probability that
this patient with X = x is assigned to the treated group. It is
expressed as

π (x) = Pr (A = 1 |X = x) ,

and can be estimated using models such as logistic regression
(12). We can use the propensity score in three different ways
to balance the covariate distribution between the treated and
control group and thus make the two groups comparable.

The first way is to create new control and treated groups using
propensity score matching (12, 23). The most straightforward
approach is greedy one-to-one matching: one patient from
the control group is matched to one patient from the treated
group based on their propensity scores. Data of unmatched
patients gets thrown away. The covariate distribution of the
matched control and treated group is balanced. Then we can
calculate the difference of the expected outcomes of the two
new groups as the average treatment effect (ATE). In contrast to
equation (2), the equation below is now correct due to balanced
covariate distributions,

E
(

Y1 − Y0)

balanced
= E (Y|A = 1)balanced − E (Y|A = 0)balanced

In addition to one-to-one matching, propensity score is used
in other similar algorithms to create matched groups. These
algorithms differ from each other in whether patients are chosen
with or without replacement (24), whether matching is optimal,
greedy (24), one-to-one, or one-to-many (25), and what metric is
used to measure similarity between two patients (11, 23, 26, 27).

The second way of using propensity scores, known as Inverse
Probability of Treatment Weighting (IPTW) (28), is to assign
different patients with different weights in the calculation of ATE.
For patient i, the weight is calculated as

wi =
Ai

P(Ai = 1|Xi)
+

1− Ai

1− P(Ai = 1|Xi)
.

From this equation, we can see that if patient i is in the treated
group (Ai = 1), the weight assigned to this patient is wi =

1
P(Ai=1|Xi)

= 1
π(xi)

. If the patient i is in the control group (Ai = 0),

the weight then becomes wi = 1
1−P(Ai=1|Xi)

= 1
1−π(xi)

. The

weight of a patient in a group is just the inverse probability of this
patient being assigned to this group. The ATE of the population
can then be calculated as

τ̂ =
1

n1

∑

iwiy
1
i −

1

n0

∑

iwiy
0
i

where y1i (y0i ) is the observed outcome for patient i if this
patient is treated (untreated), n1 and n0 are the number

of patients in the treated and control group, respectively.
Intuitively, the IPTW approach balances covariate distributions
between the two groups by giving the patients underrepresented
(overrepresented) in a group higher weight (lower weight).

The third way of using propensity score in ATE estimate
is to stratify the population into subpopulations based on the
propensity scores of the patients (29). The treatment effect from
each subpopulation is then calculated and combined to estimate
the ATE of the whole population.

Propensity score-based approaches are intuitive, easy to
understand, and capable of producing an unbiased ATE estimates
if the propensity score is correctly estimated. If the propensity
models are misspecified (for example, the function form in the
logistic regression is wrong), the propensity score estimates and
subsequent ATE estimates would be biased.

Outcome Regression-Based Approaches
One fundamental challenge in causal inference is themissing data
problem: only one of the potential outcomes is observable for
a given treatment and patient. Regression models can be used
to estimate the missing outcomes, thus solve the missing data
problem (17, 30).

Here we outline how outcome regression models are used
in ATE estimates but leave the detailed review of these models
to Section Estimate ITE for Individual Patients. Suppose the
outcome regression function for the control and treated group is
m0(X) andm1(X), respectively. Once the two functions are fitted,

the missing potential outcomes can be predicted as Ŷ0 = m0(X)

and Ŷ1 = m1 (X). The average treatment effect for the population
can be estimated as,

τ̂ = E
(

Y1 − Y0) =
1

n0 + n1

n0+n1−1
∑

k=0

(Ŷ1
k
− Ŷ0

k
) (3)

which first calculates the difference between the two predicted
outcomes of each patient, then averages these differences over
all the patients in both groups. Note that m0(X) and m1(X)
can either take on the same function form, in which case the
treatment assignment variable A must be explicitly included
in the model as one of the independent variables, or take
on different function forms, in which case A is excluded in
the model.

Outcome regression models do not require an estimate of
propensity scores. However, misspecification of the regression
model (for example, the regression function form is wrong) can
lead to biased treatment effect estimates.

Doubly Robust Estimator
Both the outcome regression and the propensity model can be
misspecified. A combination of the two models, known as a
Doubly Robust Estimator (DRE), is proposed in Robins et al. (31)
and Funk et al. (32). It calculates the expected outcome for the
treated and control group as

E
(

Y1) =
1

n0 + n1

n0+n1−1
∑

i=0

{

AiYi

πi (Xi)
−

Ai − πi (Xi)

πi (Xi)
m1 (Xi)

}

(4)
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and

E
(

Y0
)

=
1

n0 + n1

n0+n1−1
∑

i=0

{

(1− Ai)Yi
1− π i (Xi)

−
Ai − πi (Xi)

1− π i (Xi)
m0 (Xi)

}

(5)

respectively. Then the ATE can be estimated as E
(

Y1
)

−

E
(

Y0
)

. Essentially, this DRE is an IPTW estimator augmented by

term Ai−πi(Xi)
πi(Xi)

m1 (Xi) in Equation (4) and term Ai−πi(Xi)
1−π i(Xi)

m0 (Xi)

in equation (5). For this reason, it is also called an augmented
IPTW estimator.

Another type of DRE is the Targeted Maximum Likelihood
Estimator (TMLE), initially proposed in Laan and Rubin (33)
and further studied in Schuler and Rose (34). In this approach,
an outcome regression model is first used to estimate E(Y|A,X),
which is then updated using estimated propensity score π(X)
in the so called “targeting” step, yielding a better estimate
E∗(Y|A,X). Average treatment effect can be calculated as
E∗

(

Y1
)

− E∗
(

Y0
)

.
As implied in the name, DREs have a nice doubly robust

property that ensures the ATE estimate is unbiased if only
the outcome regression model or only the propensity model is
correct. These models also tend to be more efficient than just the
IPTW estimators.

Estimate CATE for Subpopulations
In some cases, researchers may be interested in treatment effects
for subpopulations, which can be calculated through CATE
estimates. These subpopulations can be learned directly from the
data or defined by several criteria, ranging from demographic
strata or existing clinical heuristics with the goal of creating
groups for which the treatment effect and goals are expected to
be similar.

Direct and Indirect Stratification
CATE can be calculated via population stratification. The idea
is to first stratify the population on f (X), i.e., a function of
patient covariates X, into subpopulations. Then CATE for each
subpopulation is calculated as the difference between the two
expected potential outcomes within that subpopulation. As in
Morgan and Winship (35), it is mathematically expressed as

τCATE = E
(

Y
∣

∣A = 1, f (X)
)

− E
(

Y
∣

∣A = 0, f (X)
)

Function f (X) can take on different forms. In the basic form
f (X) = X, the population is stratified directly on covariate
X as described in Imbens and Rubin (36), which we call
direct stratification. With this approach, the covariates within
each stratum (subpopulation) are similar in values across
different patients. Suited for scenarios where subpopulations
are predefined, this approach provides simple and transparent
interpretation of the subpopulation but may lead to data sparsity
in some stratum or violation of the positivity assumption.
Function f (X) can take on a more complex function form, which
we call indirect stratification. If f (X) = π(X), the population
is stratified on propensity scores (12, 29). This approach
alleviates the data sparsity problem, but the interpretation of
subpopulations is less intuitive.

Data Driven Determination of Subpopulations
A subpopulation can be viewed as a subspace in the multi-
dimensional covariate space. A data driven approach
to calculate CATE partitions the covariate space into
subspaces in a way that the treatment effect heterogeneity
across subspaces is maximized. The resulting subspaces (or
subpopulations) reflect the heterogeneity of the underlying
data. Some subspaces may be wider or narrower in certain
dimensions than others depending on how quickly the
treatment effect changes along these dimensions, which is a
desired property.

Machine learning models, due to their flexibility, are well-
suited for this approach. One of such estimators is proposed
in Athey and Imbens (37) based on the classification and
regression tree (CART) (38). While a CART model minimizes
a predefined loss function in associative studies, it maximizes
heterogeneous treatment effect across leaves when used in causal
inference. Different sets of samples are used for constructing
the tree and for estimating the treatment effect for each
subpopulation. Because of this, the approach is called an
honest estimation.

In contrast to the approach in Athey and Imbens (37) where
only one decision tree is used, the approach proposed by Breiman
(39) estimates treatment effects based on the random forest
model consisting of multiple decision trees (40).

These machine learning-based models are non-parametric
and thus robust to model misspecification. They can capture
the heterogeneity structure in the underlying data and
reduce the variance of effect estimates in a subpopulation.
However, the complexity of such models makes the results
less explainable compared to simpler ones, creating obstacles
for the medical community to widely adopt these models in
clinical applications.

Estimate ITE for Individual Patients
Treatment effects can be different not only across
subpopulations, but across different patients as well. Due
to the existence of such heterogeneity at individual patient level,
ITE estimates are important for personalized medicine and
have been increasingly gaining attention in healthcare (41).
In the strictest sense, the ITE estimate is conditioning on an
individual’s characteristics so can be regarded as CATE. However,
in this work, we review ITE as a distinct algorithm category
separated from CATE. This decision emphasizes the fact that
ITE targets individual patients, while CATE targets subgroups
of patients.

Intuitively, ITE can be calculated as the difference between
the two potential outcomes for a patient. One of the potential
outcomes is missing but can be estimated with an outcome
regression model, where the potential outcome is the dependent
variable and the covariates are the independent variables. In
essence, such an outcome regression model fits a function to
estimate the regression surface (or outcome surface) in the
covariate space using observed patient outcome samples. Note
that the function used in outcome regression can be linear, non-
linear, or even non-parametric, depending on the underlying
data structure. There are two approaches to fit the model, based
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on whether the samples from the treated and control group are
pooled together in the training step.

One Regression Function
To estimate ITE, we can fit one regression function using pooled
samples from both the treated and the control group and regard
the treatment assignment A as one of the independent variables,
as shown in the equation below,

E (Y|X,A) = m (X,A) (6)

where m (X,A) estimates the potential outcome conditioned on
X and A. Then the ITE estimate for patient i is calculated
as m (Xi, 1)− m(Xi, 0). One example of such a model is the
Bayesian Additive Regression Trees (BART) introduced in Hill
(42), Chipman et al. (43), and Chipman et al. (44), where the
authors constructed a set of trees using ensemble learning, and
imposed a prior regularization to constrain each tree to be a
weak learner. Another example is proposed in Foster et al. (45),
where the authors used a random forest to fitm (X,A) to estimate
ITE. The approach proposed in Nie and Wager (46) fits a single
outcome surface first to isolate the impact of the treatment on the
outcome, then fits a regression model where the ITE is the only
independent variable.

The models fitting one outcome surface are well-suited for
scenarios where the treatment effect is small. The analysis in
Wendling et al. (47) validates the performance of the BART
model using synthetic data based on two major healthcare
databases in the United States and concludes that the smaller the
ITE is (i.e., the closer the outcome surfaces are between the two
treatment groups), the better suchmodels perform. Thesemodels
perform poorly if there are complex interactions between the
treatment assignment and covariates, which makes the outcome
surface f (·) very different for the treated and control groups. Such
model drawbacks are studied in detail in Alaa and Schaar (48)
and Hahn et al. (49).

Two Regression Functions
Instead of fitting one regression function, one can fit two separate
functions for the treated and control groups to calculate ITE. In
this case, the treatment variable does not need to be included
as one of the independent variables in the model because the
outcome difference between the two groups is captured with
different model parameters. The two regression functions can be
expressed as

E
(

Y1|X
)

= m1 (X) (7)

and

E
(

Y0|X
)

= m0 (X) (8)

for the treated (A = 1) and control (A = 0) group, respectively.
The ITE estimate for patient i is then calculated as m1 (Xi) −

m0 (Xi). Different base learners can be used form0(X) andm1(X),
as proposed in Athey and Imbens (37), Lu et al. (50), Powers et
al. (51), and Künzel et al. (52).

The approach fitting two outcome surfaces separately is suited
for the scenarios where the outcome surface is very different for
different treatment groups. The downside of this approach is that
some common patterns between the two groups get lost during
model fitting. A multitask-learning estimator introduced in Alaa
and Schaar (48) and Alaa and Schaar (53) fits two outcome
surfaces separately but attempts to recover common underlying
patterns between the treated and control group through a joint
optimization for the two groups.

Estimate Error Bound
Several theories proposed in the literature study the error of
the ITE estimate. The authors in Shalit et al. (54) derived a
theoretical upper bound for the error, which is a sum of the
standard generalization-error in the representation space and
the error resulted from the distance between the two treatment
group covariate distributions induced by the representation.
An extension of this work (named context-aware importance
sampling re-weighing) is proposed in Hassanpour and Greiner
(55) to theoretically address the selection bias in observational
datasets, leading to a solution that weights the samples in such a
way that the covariate distribution imbalance between the treated
and control group is reduced. Related to the theoretical works
above, practical solutions based on deep learning were proposed
to incorporate in the loss function the dissimilarity of the learned
representations for the treated and control groups so that the
error induced by such dissimilarity can be reduced (56–58).

CLINICAL APPLICATIONS OF CAUSAL
INFERENCE

Although there are a large number of causal inference techniques
in the literature as we reviewed above, these techniques are
not applied equally to solve real-world clinical problems. In
this section, we review the patterns of how the various causal
inference approaches are used in published clinical studies.

Reporting Methods
In searching for published application papers of causal inference
models, we follow the applicable guidelines in accordance with
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) (59). The modified PRISMA flow
charts for each category of causal inference models are in
the Supplementary Material. Note that although we follow the
PRISMA guidelines whenever deemed applicable to make our
search systematic, the review in this section is not a systematic
review in the strictest sense, as our goal is not to answer
a well-defined and narrowly focused clinical question, but to
gain general understanding of the application landscape of
causal inference.

Results
Below we list the most relevant published clinical applications
for each of the causal models we have identified. If the
application list is too long (more than 15 publications), we
just list below the top 15 most cited ones according to Google
Scholar due to space limitations. The total number of applications
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identified with the inclusion and exclusion criteria is given in the
Supplementary Material.

Applications of ATE Estimators for the Whole

Population
Propensity score-based models have been applied to study the
effect of interruption of sedation on the death of the patient
in Requena et al. (60), the effect of corticosteroids on mortality
for patients with influenza A (H1N1pdm09) in Delaney et al.
(61), the cardiovascular, bleeding, and mortality risks in elderly
Medicare patients treated with certain drugs in Graham et al.
(62), the association of animal and plant protein intake with all-
cause and cause-specific mortality in Song et al. (63), the effect
of nasal cannula therapy failure on mortality in Kang et al. (64),
the prevalence of sarcopenia in COPD and its impact on health in
Jones et al. (65), the safety and efficacy of digoxin in Ziff et al. (66),
clinical outcomes after transapical or transfemoral transcatheter
aortic valve replacement in Blackstone et al. (67) and many other
health related issues in Chang et al. (68), Bangalore et al. (69),
Kost and Lindberg (70), Grool et al. (71), Snowden et al. (72),
Han et al. (73), and Prati et al. (74).

Applications of outcome regression-based models in clinical
studies have been rare. In fact, we did not find any applications of
this approach that meet our search criteria.

Doubly robust estimators have been widely applied in real-
world clinical studies to determine the effect of sepsis on late
mortality in Prescott et al. (75), the effect of proton pump
inhibitors use on risk of death in Xie et al. (76), cardiovascular
risks of testosterone replacement therapy in men with androgen
deficiency in Cheetham et al. (77), the effectiveness of influenza
vaccines among elderly people in Izurieta et al. (78), whether
antifungal de-escalation leads to adverse outcome in Bailly et al.
(79), the association of the use of transthoracic echocardiography
with 28-day mortality in Feng et al. (80), the effect of
risk assessment on clinical outcomes in Chaffee et al. (81),
comparison of children currently and previously diagnosed with
autism in Blumberg et al. (82), whether there is a causal link
between the Magnet status of a hospital and the central-line-
associated bloodstream infections in Barnes et al. (83), as well as
a range of health-related issues from association of aspirin with
hepatocellular carcinoma and liver-related mortality to effect of
angiotensin on hemoglobin levels in Breslau et al. (84), Simon et
al. (85), Ajmal et al. (86), Millett et al. (87), Reed et al. (88), and
Kawasaki et al. (89).

Application of CATE Estimators
CATE estimators using stratification have been widely applied in
clinical studies, for example, to analyze the adverse outcomes of
underuse of β-Blockers in elderly patients in Soumerai et al. (90),
the rate of mortality in patients receiving drug-eluting stents and
undergoing coronary-artery bypass grafting in Hannan et al. (91),
the effect of Hydroxychloroquine and tocilizumab therapy on
mortality in COVID-19 patients in Ip et al. (92), medical therapy
on long-term outcome in patients with myocardial infarction
(93), the impact of female sex on clinical outcomes for Atrial
Fibrillation in Kuck et al. (94), and a range of other clinical issues
(95–104).

There are very few applications of the data driven approach in
clinical studies. The recursive partitioning approach (37) is used
to study the effect of fluoxetine in patients with a recent stroke in
Graham et al. (105), the effect modification in a study of surgical
mortality in Lee et al. (106).

Application of ITE Estimators
The applications of ITE estimators are very rare in the literature.
The BART model is used to predict the papillary thyroid
carcinoma in Guo et al. (107) and to study the consequences of
contact with the criminal justice system for health in Esposito et
al. (108).

Methods
Search Strategy
Here we describe the search strategy we use to find the published
clinical applications of a causal approach. First, we identify
the paper in which the model is proposed. If multiple models
hence multiple papers exist—there might be model variations,
extensions, or improvements—we pick a paper that generated
the most citations in Google scholar. We then search in Google
Scholar for all the publications citing the identified paper,
which we call the anchoring paper, and apply the inclusion
and exclusion criteria described below to determine what papers
should be included in the application list of the causal approach.

Note that this search strategy is not exhaustive and is not
intended to be a scoping review. Using the anchoring paper, we
can only identify a subset of the application papers in a causal
inference category. Our goal is not to precisely count the number
of all applications, but to understand the extent to which different
causal models are applied clinically. Accordingly, our strategy is
to sample a limited number of publications, but in a systematic
way, so that our search is manageable but still reflective of the
application landscape in this field.

Inclusion and Exclusion Criteria
For each category of the causal inference approach, we search
for publications that cite the anchoring paper in Google Scholar.
In the returned result, we exclude any records not in the
healthcare domain, which are those that do not contain any of
these keywords: medicine, hospital, patient, clinics, healthcare,
physician, and disease. We then screen the titles and abstracts
of the remaining papers and exclude those not pertaining to
applications. Most of the papers eliminated in this step are about
models and algorithms related to the causal inference model
described in the anchoring paper. The papers remaining after
this step are clinical applications that cite the anchoring paper.
However, the anchoring paper can be cited in many ways: it
can be mentioned in the related work section; it can be cited in
the discussion section; or it can be used to derive findings and
insights. We proceed to read the papers that are cited more than
10 times, focusing on the section where the anchoring paper is
cited. We include the paper in the final application list if the
model in the anchoring paper is used as the method (or one of the
methods) to draw conclusions, derive findings, or gain insights.
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TABLE 1 | Summary of causal inference approaches in healthcare.

Target-

Population

intervention

sizes

Estimator

types

Models and algorithms Advantages Disadvantages Variance Bias Clinical

application

patterns and

references

Propensity scores-based,

propensity score matching

and IPTW

Simple, transparent,

mimic clinical trials

Model can be

misspecified

Widely used

(60, 68)

Whole population ATE Outcome regression,

variations of G-computation

No need to estimate

propensity score

Model can be

misspecified

Low High Few

applications

Doubly robust estimator,

targeted maximum

likelihood estimator

Efficient, doubly robust

property

Yield biased estimate if

both models are

misspecified

Widely used

(75, 84)

Direct stratification Easy to interpret Data sparsity proble Widely used

(90, 95)

Sub population CATE Indirect stratification,

propensity score-based

approach

Robust, easy to satisfy

positivity assumption

Subpopulation hard to

interpret

Medium Medium

Data driven, tree based

algorithms

Low variance within

subpopulation

Subpopulation hard to

interpret

Medium Medium Few

applications

(105, 106)

Fit one outcome surface,

BART model etc

Capture common

underlying data

structure

Not flexible, especially

when the outcome

surfaces are very

Few

applications

(107, 108)

Individuals ITE different in distinct

groups

High Low

Fit two outcome surfaces Flexible, allow for

different data structure

in groups

Does not capture

common data pattern

in two groups

Observations
Apattern emerged from surveying and analyzing the applications
of causal models in healthcare: although state-of-the-art
machine learning-based approaches have been consistently used
to improve causal inference techniques algorithmically and
generated excitement in the medical research community, these
approaches have not been widely adopted in clinical studies.
In contrast, simpler approaches based on propensity scores
have been widely applied to solve real-world clinical problems.
This conclusion is evident from the citation numbers in the
Supplementary Material: while the number of machine learning
applications, such as those based on models in Rubin (30)
and Athey and Imbens (37), is in single digit at most, the
number of applications based on propensity scores (12) is
in hundreds.

We suggest several potential explanations for the wider
adoption of propensity score-based approaches. First, the gold
standard for causal inference in healthcare has long been the
Randomized Controlled Trial (RCT). Propensity score-based
approaches provide methods that mimic RCTs while using large-
scale, observational data. Secondly, as we mapped out in Table 1,
propensity score-based approaches offer relatively low variance
at the risk of higher bias, which is consistent with medical
applications where the goal to minimize patient harm outweighs
the potential to increase benefits for a few. Third, there is an
issue of timing, newer methods have simply been in existence
for a shorter period of time and therefore have had less chance
for adoption. However, this answer is least satisfying because
many of the newer machine learning approaches have been

successfully applied in many other fields such as gaming, online
shopping, and advertising (4). Additionally, many machine
learning-based causal models have been around for a long time.
For example, as of the time this paper is written, the BARTmodel
(44) has existed for over a decade, and yet we have not seen
many clinical applications of it. A fourth potential reason for
lower adoption of purely machine learning based approaches is
method explainability. In healthcare, where lives are frequently
at stake, the requirement for methods that are explainable to a
wide audience are significantly higher than other fields, where
effectiveness alone may be sufficient.

We believe that lower historical adoption of more modern
observational causal inference approaches is sensible, but that
it also represents a gap in the field, especially given the
potential promise of more personalized medicine using ITE-type
estimators. This gap could potentially be closed in the near future
by collaborative pairing of biostatisticians and machine learning
scientists with clinicians.

FLOWCHART FOR ALGORITHM
SELECTION

In this section we provide a guide in Figure 1 to help
the healthcare community choose which algorithm to use in
estimating treatment effects based on the target-population
intervention sizes, domain knowledge about the treatment, and
track record of healthcare applications of the algorithm. While
every problem is unique, and individual judgement must always
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FIGURE 1 | Treatment effect estimator selection guide based on target-population intervention size and prior knowledge. Colors in the figure indicate bias-variance

tradeoff. Light blue: high bias and low variance; blue: medium bias and variance; dark blue: low bias and high variance. Person icons under each estimator illustrate

the composition of the targeted population.

be exercised, this flowchart can act as a starting point to
determine which algorithmic approachmay be most appropriate.

DISCUSSION

In this paper we reviewed the literature on causal inference
with a focus on clinical settings, in light of recent advances

in machine learning and large scale EHR adoption.
With this review, the algorithm selection guide, and
the summary table, we hope to help researchers and
healthcare stakeholders gain better understanding of causal
inference and make informed decisions on what estimator
to use in their daily practices when many choices are on
the table.
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We have observed that sophisticated causal models based on
state-of-the-art machine learning have not been widely applied in
clinical studies for amyriad of reasons such as lack of similarity to
RCTs and explainability (Section Clinical Applications of Causal
Inference), computational intractability of these models, and the
healthcare participants being highly conservative when adopting
new models. To address the same issue and improve model
transparency, a MI-CLAIM check list in Norgeot et al. (109) was
proposed regarding the study design of projects, preparation and
usage of data, model selection, performance evaluation, model
validation, and data pipelines. Our review stresses the importance
to follow these guidelines to promote trust on sophisticated
models among clinical practitioners.

There are some limitations of the review. First, it may not be
exhaustive and include every approach. Causal inference is a very
broad topic.While we can limit our review to a specific topic to be
exhaustive, it is also important to survey the entire field of causal
inference, thus sacrificing the completeness to some degree.
Second, causal inference approaches are grouped into ATE,
CATE, and ITE categories in this review. These categories might
not be mutually exclusive. Such classification, however, does
provide an intuitive way for medical professionals to understand
causal inference from patient perspectives. Third, there are
certain limitations of using citations to rank the applications. For
instance, an algorithm applied in clinics might not have been
published. Additionally, for a recent work, the citation number
might be low, and might not accurately reflect the application
potential of the work. Fourth, Table 1 and Figure 1 do not cover
all the details of choosing an algorithm, nor do they lead a
user to a specific algorithm. They were designed to provide all
healthcare participants with an initial but intuitive guide on what
family of algorithms to choose for their studies. Finally, our
search to find published applications of causal models may not be
exhaustive. The search results show that the application disparity
of different models is so huge that a different (and potentially
more comprehensive) search strategy will unlikely change our
conclusions and insights in any significant way.

There is a view in the literature that causal inference
is just plain statistical inference, especially after the causal
assumptions and parameters are identified (110). The role of
causal inference with respect to statistical analysis remains a
debate. This debate is out of scope for this paper. We refer

to the reviewed models as causal inference models without
endorsing any particular view on this matter, but simply use
this name to refer to the statistical inference models that reveal
causal relationships.

In summary, we reviewed a diverse and complex field
of causal inference applied in health care. We distilled the
many approaches into three algorithmic families based on the
target-population intervention size. We explained the approach
type, population size, and bias-variance tradeoff. We then
investigated the clinical application of each of the approaches.
We finally consolidate all the information into an algorithm
selection guide for both researchers and other healthcare
stakeholders to decide on which algorithm is applicable to
their studies.
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