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Abstract

Grassland songbird populations across North America have experienced dramatic popula-

tion declines due to habitat loss and degradation. In Canada, energy development continues

to fragment and disturb prairie habitat, but effects of oil and gas development on reproduc-

tive success of songbirds in North American mixed-grass prairies remains largely unknown.

From 2010–2012, in southeastern Alberta, Canada, we monitored 257 nests of two ground-

nesting grassland songbird species, Savannah sparrow (Passerculus sandwichensis) and

chestnut-collared longspur (Calcarius ornatus). Nest locations varied with proximity to and

density of conventional shallow gas well structures and associated roads in forty-two 258-ha

mixed-grass prairie sites. We estimated the probabilities of nest success and clutch size rel-

ative to gas well structures and roads. There was little effect of distance to or density of gas

well structure on nest success; however, Savannah sparrow experienced lower nest suc-

cess near roads. Clutch sizes were lower near gas well structures and cattle water sources.

Minimizing habitat disturbance surrounding gas well structures, and reducing abundance of

roads and trails, would help minimize impacts on reproductive success for some grassland

songbirds.

Introduction

The Great Plains region has experienced extensive habitat loss due to agricultural, urban and

industrial development [1, 2]. The expansion of oil and gas infrastructure across the Plains has

exacerbated habitat loss and degradation [3]. Currently, 81% of the over 200,000 gas wells in

Canada are situated in Alberta [4], overlapping with Canada’s most extensive remaining tract

of prairie grassland [5]. Potential effects of energy development include disturbance and

changes to landscapes, habitat, natural ecosystem processes, wildlife populations, and species

dynamics [6]. One consequence of habitat loss and land conversion has been a severe reduc-

tion in abundance of grassland songbirds [7], and there are increasing threats of further

declines due to limited habitat protection [7–10]. Most prairies are now fragmented [2],

thereby reducing the amount of available habitat for nesting birds, many of which are sensitive

to habitat fragmentation [e.g. 11, 12].

PLOS ONE | https://doi.org/10.1371/journal.pone.0174243 March 29, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Yoo J, Koper N (2017) Effects of shallow

natural gas well structures and associated roads on

grassland songbird reproductive success in

Alberta, Canada. PLoS ONE 12(3): e0174243.

https://doi.org/10.1371/journal.pone.0174243

Editor: Mathew S. Crowther, University of Sydney,

AUSTRALIA

Received: December 14, 2015

Accepted: March 6, 2017

Published: March 29, 2017

Copyright: © 2017 Yoo, Koper. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the Supporting Information Files.

Funding: The author J.Y. received two main

sources of funding (listed below). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript. 1. Natural Sciences and Engineering

Research Council of Canada (NSERC), Industrial;

http://www.nserc-crsng.gc.ca/Students-Etudiants/

PG-CS/IPS-BESII_eng.asp. 2. Cenovus Energy

Incorporated (NSERC’s sponsoring organization);

http://www.cenovus.com/.

https://doi.org/10.1371/journal.pone.0174243
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174243&domain=pdf&date_stamp=2017-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174243&domain=pdf&date_stamp=2017-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174243&domain=pdf&date_stamp=2017-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174243&domain=pdf&date_stamp=2017-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174243&domain=pdf&date_stamp=2017-03-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174243&domain=pdf&date_stamp=2017-03-29
https://doi.org/10.1371/journal.pone.0174243
http://creativecommons.org/licenses/by/4.0/
http://www.nserc-crsng.gc.ca/Students-Etudiants/PG-CS/IPS-BESII_eng.asp
http://www.nserc-crsng.gc.ca/Students-Etudiants/PG-CS/IPS-BESII_eng.asp
http://www.cenovus.com/


Studies have shown both positive and negative effects of energy development on avian

abundance or productivity, the magnitude of which may be dependent on the type of energy

infrastructure, densities of energy development, habitat, and species [13]. Some studies have

reported little evidence of negative effects of energy development on birds in boreal forests

[14], although significant effects have been detected in other studies [15–17]. Energy develop-

ment has been directly linked to population declines of greater sage-grouse (Centrocercus uro-
phasianus) [18], while lesser prairie chickens (Tympanuchus pallidicinctus) selected nest

locations farther from most energy related infrastructure [19, 20]. Surprisingly, nest success of

passerines in shrubland ecosystems may be higher near compressor stations because nest pred-

ators avoid infrastructure noise [17].

The effects of shallow gas wells on grassland songbird reproductive success in Canada’s

western prairies may be relatively small, as infrastructure is smaller, and associated levels of

disturbance are lower, compared to many other types of energy infrastructure. For example,

oil wells in the western prairies require permanent access roads, are noisy (56–81 dB(C) at 10

m; n = 64), and are visited by 1–15 vehicles per week [21]. In contrast, shallow gas wells aver-

age only 1.4 m in height, are silent [22], and disturbed areas (e.g., bare ground) associated with

individual conventionally drilled shallow gas wells in this area are each only 1% of the footprint

of oil wells. Further, shallow gas wells are typically accessed by trails rather than permanent

gravel roads, and are visited once annually (usually) for maintenance [23]. Thus, it is reason-

able to conclude that ecological effects of shallow gas wells may be much less than those caused

by effects of oil wells. However, little research has been done to evaluate effects of shallow gas

wells on grassland songbird productivity independently from effects of oil wells (cf. [24]).

Although the stature and disturbed area associated with shallow gas wells are small, shallow

gas wells may still have some significant indirect effects on the surrounding ecosystem. Well

infrastructure and associated roads may create edge effects, alter vegetation structure near

wells, and contribute to the spread of exotic plant species [22, 25], which may lower nest or

reproductive success of grassland songbirds [26]. Nest and reproductive success have a signifi-

cant impact on avian population trends [27, 28], and thus one reason for declining grassland

bird populations might be effects of energy development on their reproductive success.

Our study focused on the impacts of shallow gas wells on nesting grassland songbirds. Our

objectives were to determine whether nest success or clutch size varied with shallow gas well

structure density and with distance to wells, roads, and trails. We hypothesized that infrastruc-

ture presence might benefit the predator community by increasing edge effects, and that

increased exotic plant species and altered vegetation structure near wells might limit food

resources. Therefore, we predicted that nest success and clutch sizes would show a negative

response to wells and associated roads and trails.

We also evaluated whether there were residual effects from well construction, as habitat

removal, alteration, and/or restoration methods were used during well installment [3, 22].

Because exotic vegetation was briefly used for re-vegetation in the 1980s and early 1990s [29],

and topsoil removal was common practice until the early 2000s (“full-build” construction

methods; [30]), we predicted that the greatest ecological effects might be from intermediate-

aged (15–30 years old) wells. We also predicted significant effects of new (< 15 years old)

wells, as newer wells have had less time for vegetation to recover.

Methods

Ethics statement

All required animal care ethics were obtained for the research, including those from the Uni-

versity of Manitoba, Alberta Research permit (#49894), and Canadian Wildlife Service
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Scientific Take permit (11-MB/SK/AB_SC007, 12-AB_SC016). Privately owned land and land

managed by Alberta Eastern Irrigation District were accessed, upon approval, for this research.

Study sites and selection

Research was conducted in native mixed-grass prairies in southeastern Alberta, Canada, 2010–

2012. Study sites were within a radius of 80 km of Brooks, Alberta, (approximately 50˚ 35’N,

111˚ 53’W, 760 m) and each site was 258-ha (1 sq. mile section; 2.580 km2) in area. We con-

sider sites with zero wells to be controls, and treatment sites to be those with one or more gas

wells. Potential sites were first selected using digital orthophoto satellite imagery to determine

the presence of above ground gas well structures and to ensure that sites, and their surround-

ing landscape, were grasslands. Site suitability was confirmed by in-person site visits. Sites

were at least 1 mile apart to ensure independence, surrounded by a grassland buffer at least

800 m wide.

In 2010, 37 sites were selected and surveyed. In 2011, we surveyed the same sites but elimi-

nated one site because high rainfall made the site inaccessible. In the same year, we added four

new sites, two of which were control sites (n = 40 sites). In 2012, 13 of the prior sampled sites

were surveyed and one new site was added (n2012 = 14 sites). We surveyed 42 sites in total

(ntotal = 42 sites); despite the elimination of one site we were able to use site data; therefore, it

was included (S1 Appendix).

Sites were dominated by native mixed-grass prairie vegetation, including blue grama (Bou-
teloua gracilis), needle-and-thread (Hesperostipa comata), western wheatgrass (Pascopyrum
smithii), northern wheatgrass (Agropyron dasystachyum), prairie junegrass (Koeleria
macrantha), and prairie sage (Artemesia ludoviciana). The most abundant exotic species,

crested wheatgrass (Agropyron cristatum), was found in only 2% of our vegetation plots. Sites

with at least an 800 m wide grassland buffer on all four sides were selected, to minimize risk of

edge effects from surrounding croplands [12]. As is typical of mixed-grass prairies in this area,

all our sites were grazed by cattle (Bos taurus). Livestock density and density of well pads were

not correlated (r = -0.19, p = 0.28; [22]). Site topography was flat to gently rolling. Shallow-gas

well densities ranged from 0–16 gas well pads / section (2.56 km2), which represented a maxi-

mum of 24 well heads / section due to commingling of wells on some well pads. Gas well densi-

ties were estimated based on GIS records and maps provided by Cenovus Energy

Incorporated. Individual gas well pad footprints averaged 23.1 m2, and were at most 42.3 m2

(Fig 1A & 1B). Wells ranged in age from 1–44 years.

Roads provided access to sites within the study region, but rarely went directly to shallow

gas wells. Roads included well-traveled gravel or dirt roads, and were on average 7 m in width.

Trails directly linked gas wells to roads. Typically, vegetation on trails was abundant between

tire tracks, or vegetation dominated the trail surface while small amounts of exposed bare

ground was present in tire tracks; trails were on average 1.15 m in width. For all sites, a road to

facilitate access bordered at least one edge of the 1x1 mile section, and multiple trails either

bordered or were found within the site. On average, roads covered slightly more area within

study sites (0.005%, SD = 0.004) than did trails (0.002%, SD = 0.0008), whereas gas well pad

footprints covered less area than roads and trails, at 0%–0.0003% of each site.

Cattle water sources (i.e. stock ponds, dugouts) were included in the analyses because they

were present in or adjacent to approximately half the study site sections, and have potential to

influence nesting birds and bird food resources [e.g. 31–33]. Cattle water sources were from

250 m2–12,560 m2 in size, and covered 0%–0.005% of each site.

Potential nest predators present in the area included the American badger (Taxidea taxus),
coyote (Canis latrans), Richardson’s ground squirrel (Urocitellus richardsonii), white-tailed
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deer (Odocoileus virginianus), mule deer (Odocoileus hemionus), pronghorn (Antilocapra amer-
icana), elk (Cervus canadensis), gulls (Family Laridae), common raven (Corvus corax), Ameri-

can crow (Corvus brachyrhynchos), western meadowlark (Sturnella magna), brown-headed

cowbird (Molothrus ater), and garter snake (Family Colubridae) [34–37].

Nest searching and monitoring

We conducted two nest searches per year at each site to find and monitor songbird nests from

mid-May—early August 2010, 2011, and 2012. Within each site, we searched for nests within

two non-overlapping 100 X 1000 m survey plots. At control sites, survey plots were located

randomly. At treatment sites, survey plots encompassed at least one well to ensure that we

sampled a range of distances to wells. Nests were located by flushing incubating females from

nests using the rope-drag method [e.g. 38]. Nests found by rope dragging and incidentally

were marked by a bamboo stake to the south and pin flag to the west, both 10 m from the nest,

and were monitored every 2–4 days until fail or fledge. Nests known or assumed to have

fledged at least one offspring were considered successful. To determine nest fate, we used signs

and cues at the nest, and behavior of adults and fledglings (e.g., excrement in the nest cup with

a crushed cup rim, auditory or visual confirmation of fledglings near the nest, adults feeding

or alarm calling near the nest).

Vegetation surveys

We measured vegetation structure (density and % cover of live grass, dead grass, forbs, bare

ground, shrubs, lichen, and moss; and vegetation height, litter depth, and occurrence of crested

wheatgrass) after nests were completed. Although vegetation may have grown since nest sites

selection, we did not measure vegetation until after the nest succeeded or failed to minimize

disturbance to active nests. Our research elsewhere in Canada’s mixed-grass prairies demon-

strates that vegetation structure is highly correlated within years, when measured as much as

Fig 1. Pictures of a conventional active and non-producing gas well, both with cattle guard fencing. (A) Conventional shallow gas

well, active and producing and (B) a non-producing well, both with cattle guard fences, southern Alberta, Canada.

https://doi.org/10.1371/journal.pone.0174243.g001
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2–3 months apart during the growing season (r = 0.684–0.831) [39] and thus it is reasonable to

assume that our vegetation measurements provide a suitable index of vegetation structure dur-

ing nest construction. Nonetheless, our measures of vegetation structure are relative indices of

structure, rather than accurate measurements of nest site selection conditions. Vegetation was

measured within 1x1-m quadrats centered on each nest. To measure vegetation density, we

placed a Wien’s pole (6.3-mm diameter dowel marked in 10-cm intervals) vertically in the

middle of the quadrat and at the four cardinal points counting the number of live, dead and

invasive species stems or leaves touching the pole [40]. Vegetation height and litter depth were

measured with a meter stick, and cover was visually estimated within each quadrant of the

quadrat. Vegetation structure was also measured at two random locations within 50 m of each

nest, to represent available but unused habitat (hereafter, “available habitat”).

Preliminary analyses

Preliminary analyses were conducted to determine distributions of residuals and to determine

which random and “nuisance” fixed variables should be included in final models. To assess the

fit of residual distributions (normal, Poisson, negative binomial), we used the deviance/degrees

of freedom ratio and diagnostic plots including box plots and/or Q-Q plots. We used a bino-

mial distribution (success/fail) for nest success analyses.

To evaluate if nuisance or random variables should be included in our models, we com-

pared the fit of models with and without random or repeated measure variables (site, nest),

and the fixed-effects variables year and Julian day. For Generalized Estimating Equations

(GEE) we selected the best model using the quasi-likelihood under the independence model

information criterion (QIC) [S2 Table], and for logistic exposure models and generalized lin-

ear mixed-effects models we used Akaike’s Information Criterion modified for small sample

sizes (AICc) [S1 Table] [41]. Models with the lowest QIC or AIC units were selected as the best

model, as our objective for these analyses was simply to ensure that influential variables were

not ignored. However, the information theoretic approach was used only to ensure that we

accounted for variability resulting from nuisance or random variables; for all subsequent anal-

yses, we used a null-hypothesis significance-testing (NHST) approach, as we made specific pre-

dictions about the effects of individual variables based on our hypotheses [42]. When both

“site” and “nest” were included as random effects in preliminary GLMM models, they failed to

converge on several occasions. In these cases, the random effect “nest” parameter was esti-

mated to be at or close to zero, suggesting it explained little to no variance in the data and thus

was unnecessary. Therefore, we removed it from subsequent models. For all other analyses, a

frequentist approach [42]. SAS 9.3 (SAS Institute Inc. 2008) was used to conduct both prelimi-

nary and primary analyses.

Primary statistical analyses

We had sufficient data to evaluate effects of infrastructure on chestnut-collared longspur (Cal-
carius ornatus, n = 137) and Savannah sparrow (Passerculus sandwichensis, n = 120) nests in

both preliminary and primary analyses. All chestnut-collared longspur and Savannah sparrow

nests were included in our analyses, except for five weather-related failures (flooded nests), three

abandonments caused by the research team, and ten nests visited infrequently due to access

issues or undiscoverable after initial visit. When determining clutch size, parasitized nests were

excluded from nest success analyses since parasitism may decrease clutch sizes. We were unable

to evaluate effects of wells on parasitism since only two nests were parasitized during the three-

year study. An alpha value of 0.1 was used to evaluate statistical significance to reduce the likeli-

hood of making Type II errors (concluding there is no effect when there is an effect) [43].
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Nest site selection and nest success. General Linear Mixed Models (GLMMs; PROC

GLIMMIX) were used to determine whether vegetation density or structure differed at nests

compared to available habitat (independent variable was nest/available habitat), as vegetation

structure may influence nest site selection and nest success of grassland songbirds [25, 44, 45].

Analyses were conducted separately for chestnut-collared longspur and Savannah sparrow

nests. Response variables included vegetation density (live, dead, or crested wheatgrass) and

structure (live grass cover, dead grass cover, forb cover, occurrence of bare ground cover,

shrub cover, lichen cover, moss cover, shrub cover, height, litter depth, or crested wheatgrass

cover) variables. Cover of crested wheatgrass was low (0.38%) [46], but was included in analy-

ses as it was once used as a restoration method after well construction [30] and is known to

reduce reproductive success for chestnut-collared longspurs [26]. Site was included as a ran-

dom variable in all models as our preliminary analyses indicated that it improved model fit (S1

Table).

The logistic exposure method [47] (NLMIXED) was used to determine whether vegetation

structure influenced nest success. Analyses were conducted separately for each species. Site

was included as a random variable because preliminary analyses indicated that it improved fit

(S1 Table). Additionally, in all cases, models for Savannah sparrow included the fixed effects of

year and Julian day, because they improved fit for this species, while models for chestnut-col-

lared longspurs did not (S1 Table). For these analyses, the response variable was success/fail,

while the independent vegetation structure variables differed slightly between species. Inde-

pendent variables for chestnut-collared longspur models included live and dead grass density,

live and dead grass cover, forb, lichen/moss, bare ground cover, litter depth, and vegetation

height. Independent variables for Savannah sparrow models included year, Julian day, live and

dead grass density and cover, litter depth, vegetation height, forb and bare ground cover.

Effects on nest success and clutch size. Using the logistic exposure method [47], three

separate models were developed to determine effects on nest success. In all cases, analyses

were conducted separately by species, site was included as a random variable, and the response

variable was success (1) or fail (0) of each nest. The models were structured as follows. (i) To

evaluate overall effects of infrastructure and associated linear features, we modeled effects of

gas well density, and distances to wells, roads, trails, and dugouts on nest success. (ii) To deter-

mine whether the effects of gas well density varied with well age, we modelled effects of well

density, age of well, and their interaction on nest success. (iii) To determine whether the effects

of distance of nests to gas wells varied with well age, we modelled effects of distance to nearest

gas well, age of well, and their interaction on nest success.

Generalized Estimating Equations (GEE) were used to determine effects on clutch size; site

was included as the repeated measure in both chestnut-collared longspur and Savannah spar-

row models (S2 Table). In addition, Julian day was included as a fixed-effect for chestnut-col-

lared longspur models (S2 Table). We used the same models as those used for nest success (i, ii

and iii, above), but with clutch size as the response variable. The clutch size distribution was

normal for all models, as confirmed with diagnostic graphs. We also added a non-linear model

which, additionally, included a polynomial term (well age � well age) to determine if there was

a non-linear relationship between clutch size and independent variables.

Results

Nest site selection

Savannah sparrows selected nest sites with 30–40% denser grass, 5–20% more grass cover, and

9–35% taller grass than available habitat (Fig 2). Similarly, chestnut-collared longspurs selected

6% denser grass and 8% more cover than available habitat; however, their nests had less dense
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Fig 2. Vegetation structure at nests compared to available habitat. Vegetation structure at nests compared to

available habitat for Savannah sparrow and chestnut-collard longspur nests in southern Alberta, Canada, 2010–

2012. Only significant results (p < 0.1) are shown.

https://doi.org/10.1371/journal.pone.0174243.g002
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grass and cover compared to Savannah sparrow nests (Fig 2). Savannah sparrow nests had less

bare ground (β = -0.830, SE = 0.305, p = 0.010) and greater litter depth than available habitat

(β = 0.209, SE = 0.081, p< 0.0001). Both chestnut-collared longspur (β = -4.507, SE = 1.712,

p = 0.013) and Savannah sparrow (β = -1.313, SE = 0.252, p< 0.0001) nests had less lichen or

moss than available habitat. The presence of crested wheatgrass (p> 0.308) and shrub cover

(p> 0.130) did not vary between nests and available habitat, although occurrence of these ele-

ments was rare and thus our power to detect variability in these variables was low.

Effects on nest success

Savannah sparrow nest success was higher at nests with greater live grass cover (β = 0.0639,

SE = 0.0314, p = 0.050) and more bare ground (β = 0.3519, SE = 0.1840, p = 0.064 (Fig 3).

There was no influence of nest vegetation structure on success of chestnut-collared longspur

(p> 0.202) nests.

There was no effect of distance to gas well structure on nest success of either species (p>
0.140) and this effect did not vary with well age (p> 0.134). Nest success was also independent

of well density for both species (p> 0.886).

Savannah sparrow nest success increased further from roads (β = 1.016, SE = 0.548,

p = 0.067) and trails (β = 1.673, SE = 0.864, p = 0.056) (Fig 4). Nest success was independent of

distance to cattle water source (p> 0.249). There was no effect of roads and trails on nest suc-

cess of chestnut-collared longspurs (p> 0.200).

Effects on clutch size

On average, Savannah sparrow and chestnut-collared longspur clutch sizes increased as dis-

tance to gas wells increased, and there was a slight non-linear effect of well age for both species

Fig 3. Effects of vegetation structure on nest success of Savannah sparrows. Effects of vegetation structure on nest success of

Savannah sparrow in southern Alberta, Canada, 2010–2012. Only significant results (p < 0.1) are shown.

https://doi.org/10.1371/journal.pone.0174243.g003
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(Table 1, Fig 5). Savannah sparrow clutch sizes were greater by one egg near new wells (<15

years old) compared to wells of intermediate ages (15–30 years old) (Fig 5). Savannah sparrow

clutch sizes were independent of gas well density, but there was a slight non-linear effect of

well age (Table 1, Fig 5). Chestnut-collared longspur clutch sizes declined by two eggs in sites

Fig 4. Effects of shallow natural gas wells, roads, and trails on nest success of Savannah sparrows. Effects of shallow natural gas

wells, roads, and trials on nest success of Savannah sparrow in southern Alberta, Canada, 2010–2012. Only significant results (p < 0.1) are

shown.

https://doi.org/10.1371/journal.pone.0174243.g004

Table 1. The effects of shallow gas well density, distance to wells, and well age on clutch sizes of Chestnut-Collared Longspurs (CCLO) and

Savannah Sparrows (SAVS) in southern Alberta, 2010–2012.

Density Distance

Species Julian

Day

Gas well

density

Well

Age

Gas well

density *Well

Age

Well Age *
Well Age

Julian

Day

Gas well

distance

Well

Age

Gas well

distance *Well

Age

Well Age *
Well Age

CCLO β -0.0052 -0.0648 0.0146 0.0057 -0.0013 -0.0052 0.7725 0.079 -0.0319 -0.0014

(ninterval =

171)

SE 0.0030 0.0290 0.0269 0.0016 0.0008 0.0030 0.2863 0.0295 0.0321 0.0007

LCL -0.0101 -0.1126 -0.0296 0.0031 -0.0026 -0.0101 0.3016 0.0304 -0.0847 -0.0025

UCL -0.0002 -0.0171 0.0587 0.0083 -0.0001 -0.0003 1.2434 0.1276 0.0208 -0.0003

p-

value

0.0861 0.0256 0.5876 0.0003 0.0797 0.0809 0.007 0.0075 0.3194 0.0314

SAVS β n/a 0.0006 -0.0928 0.0007 0.0021 n/a 0.4761 -0.0968 -0.0275 0.0027

(ninterval =

132)

SE n/a 0.0231 0.0387 0.001 0.001 n/a 0.2413 0.0371 0.0194 0.0008

LCL n/a -0.0374 -0.1565 -0.0009 0.0005 n/a 0.0792 -0.1578 -0.0595 0.0013

UCL n/a 0.0386 -0.0292 0.0024 0.0038 n/a 0.8729 -0.0357 0.0044 0.004

p-

value

n/a 0.9794 0.0164 0.4642 0.029 n/a 0.0485 0.0091 0.1566 0.0011

* Interaction

https://doi.org/10.1371/journal.pone.0174243.t001
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with high densities of new wells(< 15 years), but conversely, clutch sizes were predicted to

increase by one to two eggs in sites with high densities of older wells (>30 years) (Fig 5).

There was no effect of road (p> 0.159) or trail (p> 0.162) on Savannah sparrow or chest-

nut-collared longspur clutch size. Clutch sizes were higher further from water sources for

Savannah sparrows (β = 0.046, SE = 0.024, p = 0.052) and chestnut-collared longspurs (β =

0.191, SE = 0.111, p = 0.087).

Fig 5. Effects of shallow natural gas wells, roads, and trails on clutch size. Effects of shallow natural gas wells, roads, and trials

on clutch size of Savannah sparrow and chestnut-collared longspurs in southern Alberta, Canada, 2010–2012. Only significant

results (p < 0.1) are shown.

https://doi.org/10.1371/journal.pone.0174243.g005
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Discussion

Overall, there were few effects of conventional shallow gas wells on productivity of grassland

songbirds. We found some evidence that the presence of newer well structures within the last

15 years resulted in smaller clutch sizes. This suggests that wells may influence songbird

resources or time/energy budgets, demographic structure, or food availability. Given that nei-

ther distance to well nor well density influenced the nest success of either focal species, our

results suggest that nest failure caused by the presence of shallow gas wells is small, nonexis-

tent, or compensatory [48]. As we found no effect of distance to shallow gas wells on relative

abundance of Savannah sparrows or chestnut-collared longspurs in point-counts conducted in

the same study sites [39], it is unlikely these patterns resulted from individuals selecting nest

sites far from infrastructure.

One indirect effect of wells on Savannah sparrow nest success may be caused by trails. This

is surprising, given that trails were partially or completely vegetated, rarely visited [23], and are

apparently unobtrusive. However, roads and trails covered more area at our sites than gas

wells, and thus their impact might be greater. Further, their linear nature may lead to their use

as travel corridors by some predators such as foxes or coyotes, or they may host predator spe-

cies that prefer edges [49]. Because Savannah sparrow nest success was lower closer to trails

and roads but we found no corresponding effect on clutch size, this suggests that effects of

roads and trails may have been mediated either by altered predator communities, or by altered

availability of nests for depredation (e.g., higher visibility or detectability near roads). Habitat

edges created by roads can alter plant and animal communities [50, 51], which can lead to

numerous ecological effects [51] including either higher [52] or lower [53] rates of nest depre-

dations. The variable outcomes among species may be due to species-specific habitat selection

[44, 45, 54–56], nest concealment, behavior [24, 57–59], or predation risk [60].

While studies have found that grassland songbirds tend to select tall, dense vegetation for

nests, this does not always lead to higher nest success [45, 53, 61]. Our study had similar find-

ings; while both species selected greater cover than available, this only led to greater nest suc-

cess for Savannah sparrow. Dense vegetation preferred by Savannah sparrows may protect

some nests from visual predators, but because most depredations of songbird nests is opportu-

nistic [62] and the predator community is diverse [63], vegetation cover most likely plays a

small part in overall protection to many grassland songbird nests.

Despite shorter and exotic vegetation near gas wells [22, 39], these changes did not affect

nest success. This suggests that sufficient vegetation remains on the landscape to allow individ-

uals to select sites with suitable cover and protection from predators [64, 65]. Other research

has demonstrated that impacts of shallow gas wells on vegetation structure are driven by both

residual effects of well construction activities and by cattle grazing near wells [22]. Because cat-

tle grazed all our sites, inference to other sites should be restricted to those grazed by livestock;

however, as this characterizes the majority of the Northern Great Plains [66], its implications

are still extensive.

While clutch sizes were independent of distance to roads and trails, chestnut-collared long-

spur clutches which range from 3–5 eggs per nest [67], tended to be smaller near wells, particu-

larly when close to newer wells. Further, clutch sizes decreased as density of new wells

increased, but surprisingly, clutch sizes increased as density of old wells increased. One possi-

ble explanation for this trend is that food availability may be lower near newer wells. Elsewhere

we have shown that litter depth is shorter near newer shallow gas wells, but this effect decreases

as wells age, presumably because vegetation destroyed during well construction gradually

regenerates over time [22]. Short vegetation and higher abundances of exotic grasses near

wells [22, 39] may lead to lower availability of invertebrates and seeds [68–70], which are
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primary food sources for chestnut-collared longspurs during the breeding season [71–73].

Therefore, food availability may increase as residual effects of well construction decline over

time. Other possible explanations for lower clutch sizes near newer wells include higher stress

levels in disturbed sites [74, 75], or older or higher-quality birds selecting territories farther

from wells and displacing subdominant individuals to territories closer to newer wells [76].

Further research is required to test these hypotheses.

Clutch sizes of Savannah sparrows can range from 2–6 eggs [67] and were found lowest

near wells of intermediate ages, perhaps because the use of exotic vegetation to restore well

sites following drilling activities during the late 1980s and early 1990s reduced habitat quality

around wells [3, 28]. Newer methods of well construction, which involve drilling directly

through topsoil and the vegetation layer rather than removing topsoil prior to drilling, disturb

significantly less vegetation than traditional “full-build” drilling methods [3]. Savannah spar-

rows and chestnut-collared longspurs demonstrate diet niche separation in grasslands [77],

perhaps explaining why their responses to well age differ. As clutch sizes may influence popu-

lation trends [78, 79], understanding these mechanisms may help mitigate short-term negative

effects of well construction and may contribute to the conservation of these declining species.

Our results suggest that negative effects of wells may decline over time, as wells age.

While we detected relatively few effects of shallow gas wells on productivity of grassland

songbirds, cumulative effects of wells on clutch sizes might contribute to negative trends of

these declining populations [79, 80]. Effects of wells on songbird productivity may be mediated

by predators, vegetation structure, energy budgets, prey availability, competition, or combina-

tions of all of these, and may be caused by residual effects from well construction or ongoing

effects of the permanent infrastructure associated with wells [21]. As we observed effects of

both newer and older wells, it suggests effects of wells may change as they remain on the land-

scape and presumably, some can be long-term. Effects of wells on different species also vary.

Further research is required to identify which causal mechanisms explain effects of shallow gas

wells on productivity of grassland songbirds, and whether wells influence other reproductive

parameters, such as fledgling survival. Nonetheless, negative effects of shallow gas wells on

clutch size, and of roads and trails on Savannah sparrow nest success, could both be mitigated

by using commingled wells and directional drilling. This approach would minimize require-

ments for new well pads, roads, or access trails on the landscape thereby reducing effects of

edge habitat fragmentation.
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