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ABSTRACT

Duplex sequencing is currently the most reliable
method to identify ultra-low frequency DNA variants
by grouping sequence reads derived from the same
DNA molecule into families with information on the
forward and reverse strand. However, only a small
proportion of reads are assembled into duplex con-
sensus sequences (DCS), and reads with potentially
valuable information are discarded at different steps
of the bioinformatics pipeline, especially reads with-
out a family. We developed a bioinformatics toolset
that analyses the tag and family composition with
the purpose to understand data loss and implement
modifications to maximize the data output for the
variant calling. Specifically, our tools show that tags
contain polymerase chain reaction and sequencing
errors that contribute to data loss and lower DCS
yields. Our tools also identified chimeras, which
likely reflect barcode collisions. Finally, we also de-
veloped a tool that re-examines variant calls from raw
reads and provides different summary data that cate-
gorizes the confidence level of a variant call by a tier-
based system. With this tool, we can include reads
without a family and check the reliability of the call,
that increases substantially the sequencing depth for
variant calling, a particular important advantage for
low-input samples or low-coverage regions.

INTRODUCTION

The identification of ultra-rare variants has been relevant
in a range of diverse fields, such as cancer research, tumor
development and residual disease, somatic mosaicism, evo-
lutionary biology and epidemiology (reviewed in (1)). As
such, the last decade has seen an extensive development of

technologies for the identification of variants occurring at
very low levels (10−4–10−9). Different next generation se-
quencing protocols based on short paired-end reads (150–
300 nucleotides) have been developed for this purpose. To
overcome the high error rates (0.1–2%) associated with this
sequencing platform (2), different approaches for library
preparation have been published that include the addition
of tags during library preparation either by a random se-
quence in the amplification primers (3,4) or the hybridiza-
tion of indexed molecular inversion probes (5,6). The com-
mon strategy of these approaches is that reads are grouped
into families, out of which a consensus sequence is built.
Real substitutions present in the majority of the reads of a
family can be distinguished from polymerase chain reaction
(PCR) and sequencing errors (5,3,6,4). Alternatively, fam-
ily members can be created by the circularization of small
DNA fragments followed by rolling circle amplification (7).

This grouping strategy reduces error rates to <10−5; how-
ever, amplifiable DNA lesions (such as 8-oxoguanine, or
deaminated cytosine or 5-methylcytosine) affect the detec-
tion limits because they cannot be distinguished from true
variants (8). This is resolved in duplex sequencing (DS)
(9,10,4), a strategy that tags both strands of the DNA
by the ligation of adapters with a random barcode (Fig-
ure 1). The paired-end reads are then grouped into fam-
ilies or single strand consensus sequences (SSCS) repre-
senting the forward (ab-SSCS) or reverse (ba-SSCS) strand
that are then re-united into the original duplex consensus
sequence (DCS). While a substitution is present in both
DNA strands, errors due to DNA lesions are only found
in one DNA strand and can be distinguished in DS (8),
making DS currently the method with the lowest error
rate (1,2,4).

However, DS is still quite costly and only a fraction of
the input material (1%) results in a DCS (11,2). Changes
to the library preparation, such as CRISPR/Cas targeted
digestion, reduces the number of amplification steps and
increases the number of DCS per input material (6–12%)
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Figure 1. Schematic representation of DS. An adaptor with a unique barcode is ligated to each end (a or b) of a double-stranded DNA molecule. In this
example, adaptors contain 10 random base pairs as exemplified in the red, green, blue, and yellow parts. During library preparation multiple copies are
created from the original DNA by PCR that are then sequenced. PE reads with the same tag (combination of the a and b barcodes) in either ab or ba
orientation are grouped together into a family or SSCS. Complementary SSCS (e.g. SSCS1-ab + SSCS1-ba) are united into a DCS and substitutions found
in both complementary SSCS are classified as true variants. Usually, a minimum of three reads per SSCS are required for consensus building and SSCS
with single reads are discarded (e.g. SSCS1-ba). In our analysis, we include these and validate the variant calling by a tier-based system. Chimeras form
by template switching or by incomplete extensions in PCR and are identified by sharing an identical a or b end with another SSCS family. These chimeric
SSCS will unlikely have a complementary partner and might not form a DCS.

(11). Also changes in the bioinformatic pipeline have im-
proved the data output such as using a reference-free ap-
proach, (e.g. Du Novo (12)), which avoids mapping the
reads to a reference genome, as done in other pipelines
(e.g. UMI-tools, (13)) for the consensus building step. Other
tools such as Calib (14) consider not only the barcode of
reads, but cluster the reads based also on the sequence
of the reads. Moreover, error correction in the barcode
helps to re-unite otherwise ‘lost’ reads into their respective
families (15).

Modifications in the library preparation steps, as well as
the data analysis could increase the DCS coverage, but this
requires a better understanding of the sequencing data pro-
duced in DS. Moreover, tools for building DCS require a se-
ries of decision taking steps to ensure a low number of false
positives. Quality control (QC) tools can enable informed
decisions about the parameter settings during consensus
building. These include deciding on the smallest number
of reads used to build a family or SSCS, the proportion
of reads within the family carrying the alternative base, the
number of errors allowed in the tag and thresholds used to
filter out low-quality bases. Currently, most of these steps
are performed automatically using a ‘one-fits-all’ approach
with settings that ensure that a low number of false posi-
tives or low-quality consensus reads end up in the DCS. The
downside is that with a very conservative setting, more data
are lost.

Here, we created a series of QC tools (tag distance (TD),
chimera analysis (CA), family size distribution (FSD) and
variant analyzer (VAR-A)) that can be implemented at dif-
ferent steps of consensus building and have been tested
within Du Novo (12) and compared against the output ob-
tained with the software developed by (11). The purpose of
these tools is: (i) Allow for an informed decision as to the
best analysis parameters for a particular dataset (currently
done by trial and error). (ii) Minimize the number of false
positives and false negatives, and at the same time, max-
imize the number of consensus calling (DCS). (iii) Allow
variant calling with more relaxed parameters in the consen-
sus building steps since calls are re-evaluated by a series of
summary data validating a variant by a tier-based system
that can then be manually examined.

MATERIALS AND METHODS

Family size distribution (FSD)

Here, we define a tag as a combination of the upstream and
downstream barcodes of the DNA fragment. Each tag rep-
resents a family of paired-end sequences forming SSCS. The
FSD analyzes the family size associated with a tag, that
is the number of reads per tag, and produces several his-
tograms with the distributed family sizes. We first trimmed
the barcodes from all sequencing reads generating a list of
e.g. 10 + 10 barcode combinations that were arranged in
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lexicographic order and then counted the number of times
each combination appeared in this list (family size).

Tag distance (TD) analysis

The TD was estimated as reported in (15). We used the
same list of tags as already described in the FSD. Since
the datasets contained more than one million tags, the
comparison of all tags was computationally too demand-
ing. Thus, we parallelized the algorithm and selected 1000
random tags from the dataset and compared them to the
whole dataset (189 675, 1 341 763, 138 631 and 1 106 303
tags after barcode correction for the PF1-CRISPR, PF1-
Standard, PF2-CRISPR and PF2-Standard datasets, re-
spectively). For the DCS tags, the smaller sizes made it pos-
sible to use the complete dataset (15 855, 73 972, 22 456
and 126 714 tags after barcode correction, respectively). We
have verified that a sample of 1000 tags (0.1% of the data)
is representative for the whole dataset (see Supplementary
Figure S2). At each comparison we calculated the number
of differences (TD) and reported only the smallest number
of differences (minimum TD) observed with any other tag.
The distances between tags were calculated using equation
1, where Di,j is the number of sites where Xi and Xj do not
match, k is the index of the respective site out of the to-
tal number of sites n. A detailed guideline for using the TD
analysis is described in Supplemental Note 1.

Di, j =
n∑

k=0

(
Xik �= Xjk

)
(1)

The output of the tool is a plot of the minimum TD
(smallest number of differences) between tags as a frequency
histogram categorized after the family sizes.

Chimera analysis (CA)

We have extended the TD tool by the so-called CA which
allows the identification of chimeric families in the sequenc-
ing data. Here, the analysis is described only for one tag in
detail, but we repeat this process for 1000 tags (default sam-
ple size for TD analysis). First, we split the tag into its up-
stream and downstream barcode (named a and b) and com-
pare barcode a with all other a barcodes of the families in
the dataset (∼1 million families). We estimate the sequence
distance (TD) among the a barcodes and select those tags
that have the smallest number of differences (TDamin) and
then calculate from the subset the TD of the b barcode. The
tags with the largest number of differences are extracted
to estimate the maximum TD (TDbmax). The process is re-
peated starting with the b barcode instead and estimates
TDamax and TDbmin. Next, we calculate the absolute dif-
ference between TDamin and TDbmax equal to delta TD.

delta TD = |TDamin − TDbmax|,
|TDamax − TDbmin| (2)

If the same a barcode is observed in combination with
several different b barcodes (as would be expected in a
chimera), then delta TD will be large (low TDamin and high
TDbmax) since the TD is contributed only by one of the bar-
codes (a or b) as the other part is identical (TD = 0). In

order to normalize the values between comparisons, we use
the relative delta TD defined as the ratio of delta TD to the
sum of the TD of each barcode (TD a+ b).

relative delta TD = max
( |TDa min − TDb max|

TDa min + TDb max
,

|TDa max − TDb min|
TDa max + TDb min

)
(3)

For chimeras, the larger of the two relative delta TD val-
ues is expected to be one, since only one part contributes
to the TD. Note that barcode correction was performed be-
fore the CA to remove tags with errors from the chimera
count. For more information on this analysis see Supple-
mental Note 2. The CA can also be used considering only
tags that form DCS. A detailed guideline for using the CA is
described in Supplemental Note 1. Note, that a barcode col-
lision event would have the same relative delta TD of one. A
barcode collision event happens, when the same upstream
barcode is associated with different downstream barcodes
because more fragments of a library get sequenced than
available different barcodes. A high chimera rate thus may
indicate a high rate of barcode collisions and should lead to
a re-assessment of the amount of input DNA used.

Variant Analyzer (VAR-A)

Du Novo’s analysis was performed with the following set-
tings: barcode correction = 1 and family size = 1 and 3.
This was followed by a trimming step (16) of the 3’ and 5’
ends of the DCS with 10 nucleotides and the alignment to
the human genome assembly GRCh38/hg38 using BWA-
MEM (17) and BamLeftAlignIndels (18). Finally, we per-
formed the variant calling with the FreeBayes (19) variant
caller followed by the tool VcfAllelicPrimitives (19). Only
variants with a minimum read depth of 100 reads were kept.
A detailed workflow of the analysis can be seen in Sup-
plementary Figure S1. Each variant called by Du Novo
with its subsequent analysis steps was re-analyzed by VAR-
A. First, all tags of the DCS identified to carry a variant
were extracted from the bam file obtained in the alignment
step. Subsequently all PE reads of these tags were extracted
from the data and stored in a fastq file. Further, PE reads
were trimmed using Trimmomatic (20) with default settings
and aligned to the reference using BWA-MEM. Finally,
VAR-A outputs for each variant, tag, mate and direction
(ab/ba) several statistics: e.g. the number and fraction of
reads with reference and alternate allele, as well as the num-
ber of unaligned reads and low-quality reads (Phred-scaled
base quality score < 20). If both mates overlap a variant, the
second mate can either provide additional support for iden-
tifying a true variant or help to identify false positive calls.
Therefore, confident variant calls become possible even if
some of the families have very small sizes (1–2 reads). Fur-
thermore, the output includes the median position of the
variant within the reads and information about the number
of SSCS carrying the variant, if this variant is a chimera, as
well as, all other variants reported for the same tag (variants
that are in-phase). To help the user identify high from low
confidence calls, we developed a tier system labeling each
variant (Table 1 and Supplementary Table S1).
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Table 1. Definition of the tier system in the VAR-A tool

Tier 1.1 both ab and ba SSCS present (>75% of the sites with alternative base) and minimal FS ≥ 3 for both SSCS in at least
one mate

Tier 1.2 both ab and ba SSCS present (>75% of the sites with alt. base) and mate pair validation (min FS = 1) and minimal
FS ≥ 3 for at least one of the SSCS

Tier 2.1 both ab and ba SSCS present (>75% of the sites with alt. base) and minimal FS ≥ 3 for at least one of the SSCS in at
least one mate

Tier 2.2 both ab and ba SSCS present (>75% of the sites with alt. base) and mate pair validation (min FS = 1)
Tier 2.3 both ab and ba SSCS present (>75% of the sites with alt. base) and minimal FS = 1 for both SSCS in one mate and

minimal FS ≥ 3 for at least one of the SSCS in the other mate
Tier 2.4 both ab and ba SSCS present (>75% of the sites with alt. base) and minimal FS = 1 for both SSCS in at least one

mate
Tier 3.1 both ab and ba SSCS present (>50% of the sites with alt. base) and recurring mutation on this position
Tier 3.2 both ab and ba SSCS present (>50% of the sites with alt. base) and minimal FS ≥ 1 for both SSCS in at least one mate
Tier 4.1 variants at the start or end of the DCS (median position of the variant within the PE reads forming the DCS)
Tier 4.2 variants where the mates contain contradictory information (one mate carries the reference allele whereas the other

mate the alternative allele)
Tier 5 other

Tiers 1.2–2.4 include SSCS with small family sizes (<3) and would be discarded by the regular pipeline, yet variants are likely real and are confirmed by
both forward (ab) and reverse (ba) SSCS.

RESULTS AND DISCUSSION

Datasets

In order to test our tools, we used a previously pub-
lished dataset produced by (11), who sequenced the TP53
exonic regions with DS using the standard protocol (2)
and a targeted genome fragmentation approach based
on CRISPR/Cas9 digestion. In particular, we focused on
the following four libraries: PF1-CRISPR, PF1-Standard,
PF2-CRISPR and PF2-Standard. The main difference be-
tween PF1-Standard and PF2-Standard is the starting
amount of genomic DNA with ∼10 or 3 �g and the al-
lele frequency of variant chr17:7674230C>T (∼68% ver-
sus ∼1% in PF1 and PF2, respectively). Note that the
amount of starting material used in the PF1-CRISPR
and PF2-CRISPR libraries was 100 ng of DNA. In ad-
dition, we produced libraries spiked with known amounts
of DNA with the alternative sequence added to wild type
at different frequencies to validate the accuracy of our
analysis.

Quality control tools

Our QC-tools comprise the following analysis: (i) TD, (ii)
TD with the CA, (iii) FSD and (iv) VAR-A. The TD, CA
and FSD tools analyze the tag composition extracted from
the paired-end reads (PE reads) and are useful for decid-
ing on parameter settings in the bioinformatics pipeline.
The tag composition also provides important insights on
how different library preparation protocols affect the yields
of duplex consensus data. VAR-A provides a comprehen-
sive summary of the called variants by re-analyzing the PE
reads, such that the calling of rare variants is verified and
borderline cases can be manually inspected. Here we present
the results of the tools implemented in the user-friendly
Galaxy environment following a general pipeline (Supple-
mentary Figure S1) that can be implemented as part of the
DS analysis (see Supplementary Note 1). The workflow pre-
sented here uses the Du Novo framework for consensus
building, however, our tools are very generic and can also
be used with other duplex analysis outputs.

Tag distance (TD)

In DS, each paired-end sequencing read (PE read) is tagged
by an upstream (a) and downstream (b) random barcode
resulting in a tag that labels either the forward (ab) or the
reverse strand (ba) of the input DNA (see Figure 1). All the
reads containing the same tag (either in the ab or ba orienta-
tion) are grouped into a family or SSCS for the forward (ab)
or the reverse strand (ba). Note, that we refer to tag as the
sum of the upstream and downstream barcodes. The DCS is
then formed by uniting complementary ab+ba SSCS. In the
library preparation, a large number of unique tag combina-
tions (410+10 or 1.1 × 1012) is used to label the DNA tem-
plates (e.g. 106 templates). Thus, the probability that two
different sequence templates will have the same pair of bar-
codes is very small; although, as more templates are labeled
(e.g. random fragmentation of larger input genomes) this
probability will increase (barcode collisions).

The TD tool analyzes the number of nucleotide differ-
ences among tags, also known as Hamming distance (21).
The tool compares the number of sequence differences of a
subset of 1000 tags with the rest of the tags in the dataset
and plots the smallest number of differences with another
tag (minimum TD) as a histogram stratified by family size
(Figure 2). Note that a sample subset of 1000 tags comprise
∼0.1% of the sample size; however, this sample size is rep-
resentative given that more data (e.g. 1% or 10%) rendered
very similar results (see Supplementary Figure S2), but was
computationally more time-intensive. For example, for the
PF2-CRISPR dataset, the analysis of a subset of 1000 tags
took <2.5 min; whereas, the full dataset with 188 354 tags
took ∼8 h (see Supplementary Table S2).

Our TD tool is an informative tool to evaluate the op-
timal tag size for a particular library. This aspect is rather
important, since libraries with a very large number of frag-
ments should use longer tags to ensure that the same bar-
code is not used with more than one fragment; whereas, in
smaller libraries longer tags waste sequencing data. This can
be nicely illustrated with our tool when comparing the PF2-
CRISPR and PF2- and PF1-Standard datasets since the
different TD distribution is particularly notorious between
these two libraries. These two libraries used slightly different
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Figure 2. (A) TD distribution in the PF2-CRISPR library. The TD was estimated for a subset of 1000 tags, each tag representing a family or SSCS. The
legend denotes the family size (FS) e.g. the number of reads with the same tag grouped into a family (B) TD distribution using tags that can form a DCS
(complementary ab+ba tags). Note that in this case all tags in the DCS dataset were used for the estimation of the TD. (C) TD distribution after barcode
correction allowing one mismatch in the tag. TDs smaller or equal to the implemented barcode correction parameter are now reduced to zero. (D) TD
distribution after barcode correction using tags that form DCS.

library preparation protocols rendering dissimilar numbers
of sequenced tags: the PF1-Standard library was prepared
using 10 �g of randomly fragmented human genomic DNA
and a large sequencing depth (35.7M PE reads); whereas,
PF2-Standard started with a third of the fragments (3 �g)
and a lower sequencing depth (11.7 M PE reads). Both li-
braries used the same random barcode of 10 nucleotides on
each side of the PE read (10 + 10). Thus, a larger subset
of tags was sequenced in the PF1-Standard library. This is
also reflected in the TD: in the PF1-Standard library tags
differed by less nucleotides (3–5) compared to the other li-
braries with a TD = 5–7 (compare Supplementary Figures
S3A with S4A).

Interestingly, with our TD tool we also observed in all
libraries an unexpected number of tags (30–48%) that dif-
fered only by one nucleotide (TD = 1). In general, for a
bi-modal tag distribution like this, a TD = 1 could be in-
dicative of sequencing or PCR errors in the tags; although,
in very large libraries these could be also the result of col-
lision events. In fact, by closer examination of the tag data
with our TD tool, we can see that the TD distributions of
PF2-Standard had less families with a TD = 1 (34%) com-
pared to PF1-Standard with 48% (Figure 2A and Supple-
mentary Figure S4A, respectively). This difference could be
explained by more barcode collisions in PF1-Standard, for
which more tags were sequenced. The TD analysis using
only tags forming DCS, which should be error-free, pro-
vided further information on this aspect and helped distin-
guish PCR/sequencing mistakes, which are filtered out in
DCS from collision events that are still present in the DCS.
Figure 2B, Supplementary Figures S3B and S4B show that
DCS had almost no tags with a TD = 1 (∼1–2%) in the
PF2-CRISPR and PF2-Standard library; whereas, this fre-
quency is increased to 3% in the PF1-Standard library (Sup-
plementary Figure S4B) and are likely collision events.

The shorter the tag or the larger the number of start-
ing fragments, the higher the frequency of tags with one

or two differences that are likely barcode collisions that
cannot be distinguished from sequencing or PCR mistakes.
This is illustrated in Figure 3, in which we computationally
shortened the tag from 10 + 10, to 8 + 8 and 6 + 6 nu-
cleotides. As tags get shorter, the proportion of tags with
a TD = 4–7 decreases and the proportion of tags with small
distances increases (also see Table 2). In short tags (e.g.
6 + 6), errors cannot not be distinguished anymore from
real differences between uniquely labeled molecules. Note
that a single peak with a very low TD (1–2) observed in
a dataset, might not only be the result of too many input
fragments to possible barcode combinations (barcode col-
lisions), but could also be the outcome of the sequencing
depth being too high leading to errors in every tag. Regard-
less, an outcome with the majority of the data having a low
TD (1–2) means that variant frequencies are unreliable, be-
cause there is not a ‘one to one’ mapping between tags and
molecules.

Knowing the TD distribution is also quite useful in case a
barcode correction is implemented. In barcode correction,
tags with sequencing or PCR errors with 1–2 nt differences
are re-united to the original family (15). However, before us-
ing this tool it is important to know if a low TD is due to er-
rors or mismatches that can be corrected or to barcode colli-
sions, for which this correction would wrongly merge fami-
lies from different molecules. Here, we showcase how the in-
formation of the TD tool helps implementing the barcode
correction tool coming back in particular to our example
of the PF2-CRISPR and PF2- and PF1-Standard datasets.
Given that more than half of the tags have a TD of 5–7 in
PF2-Standard, it is appropriate to implement the barcode
correction tool (15) allowing for 1–2 mismatches in the tags
(one per barcode). In the larger library (PF1-Standard) with
3–5 differences, a barcode correction of one mismatch could
already be problematic, since a barcode with one mismatch
could translate into two mismatches per tag (Supplemen-
tary Figure S4C and D).
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Figure 3. Effect of computationally shortening the length of the original tag in PF2-CRISPR. The original tag (10 + 10) is shortened to 8 + 8 and 6 + 6
nucleotides after splitting the full tag (20 nucleotides) in half and removing 1 and 2 nucleotides at both ends of the half.

Table 2. Proportion of tags with the given TD when computationally
shortening the length of the original tag (10 + 10 nt) obtained in the PF2-
CRISPR library

tag length (nt) TD = 1 TD = 2–3 TD = 4–7 Total tags

20 (10 + 10) 45% 6.9% 48.1%
16 (8 + 8) 43.3% 31.6% 25.1% 188 354
12 (6 + 6) 57.7% 42.3% 0%

The number of total tags represents all the different families/tags in the
dataset.

Allowing mismatches in the barcodes/tags has the advan-
tage that the proportion of families that are partnered into
a DCS increases (e.g. for the PF2-CRISPR library the per-
centage of DCS rises from 23 to 32%) considering a family
size of FS ≥ 1 (Supplementary Table S3). Note that single-
ton reads (with no family) are mainly reallocated to larger
family sizes (mainly FS = 5–10 and FS > 10). In addition,
when using a family size of FS ≥ 3, the barcode correc-
tion does not influence the proportion of DCS to SSCS as
strongly. An extensive description of the error barcode cor-
rection tool can be found in (15) and will not be addressed
here further.

Chimera analysis (CA)

Chimeric reads are a known problem in PCR-based meth-
ods when a primer is not completely extended during PCR
and this partial extension acts as a primer on similar tem-
plates, or by template switching in which an extended strand
jumps from the original template to another one (22,23).
During PCR, chimeras form at a frequency of 0.2 or 20%
(if the plateau phase is reached in PCR), regardless of
the proofreading activity or processivity of the PCR poly-
merase (24). The formation of chimeras could be a serious
problem in DS, because it confounds copies derived from

the same template as two independent copies, and poten-
tially leads to a false estimate of variant frequencies.

Our CA helps to address this issue. This analysis is based
on the examination of differences between the barcodes at
both ends of a read (a/b). Chimeras can be identified by
carrying the same barcode at one end combined with mul-
tiple different barcodes at the other end of a read (Figure
1). Ideally, given a large excess of random barcodes to input
templates, barcode collisions, which occur when two iden-
tical barcodes label more than one template, are very un-
likely; although, this might quickly change once more tem-
plates are tagged and sequenced in the library (see example
of PF1-Standard library in the previous section).

Specifically, CA compares tags that are identical at one
end and different at the other end of the read. This is done
by splitting the tag into the individual barcodes (a and b)
in a subset of 1000 tags (each barcode representing the
upstream/downstream end). Tags with the smallest distance
in the a barcode (TDamin) and the largest distance in b
(TDbmax) in the dataset (and vice versa: smallest distance
in b and largest distance in a) are extracted. The tool then
analyzes the contribution of each part (a + b) to the overall
TD. In a chimera, it is expected that only one barcode of the
tag contributes to the TD of the whole tag. In other words, if
the same a barcode is observed in combination with several
different b barcodes (as would be expected in a chimera),
then one barcode will have a TD = 0. Thus, the TD dif-
ference between the two barcodes (TDamin- TDbmax) is the
same as the sum of the parts (TDamin+ TDbmax) or the ratio
of the difference to the sum (relative delta TD = TDamin-
TDbmax/TDamin+ TDbmax) will equal to one in chimeric
families. Note, that a barcode collision event would have the
same relative delta TD of one. A high chimera rate thus may
indicate a high rate of barcode collisions and should lead to
a re-assessment of the amount of input DNA used in the
library or the use of longer barcodes. For experiments, that
use random fragmentation, looking at the whole read in-
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stead of only the tag for chimera detection would better dis-
tinguish chimeras from collision events. However, this ap-
proach would not help when using targeted fragmentation
(such as CRISPR) since all the targets have the same ends
and would increase the computational burden significantly.

In the PF2-CRISPR, PF2-Standard, and PF1-CRISPR
libraries ∼44–51% of the tags after barcode correction
are formed by chimeric families with a relative delta TD
value of one (Figure 4A and Supplementary Figure S5A),
respectively. Interestingly, the majority (80–86%) of these
chimeras just form SSCS, but not DCS (Figure 4B and
Supplementary Figure S5B). When analyzing the tags of
DCS, the percentage drops to 8% or 4% chimeric DCS, re-
spectively (Figure 4C, Supplementary Figure S5C and Ta-
ble S4). Note that the DCS chimeras are mainly coming
from very large families with more than 10 members (Fig-
ure 4D and Supplementary Figure S5D). Interestingly, for
the PF1-Standard library (the library with the largest num-
ber of sequenced tags), we observed a much larger percent-
age of chimeric families (97% of all families) and 29% of
chimeric DCS (Supplementary Table S4). In the case of the
PF1-Standard library, the large number of sequenced tags
increased the probability of using the same barcodes result-
ing in more collision events. This illustrates, how our CA
tool helps to assess library preparation quality and differ-
ences.

Why is this CA also important? First, it could be an in-
dication of barcode collisions as just discussed. Second, it
could be an indicator of data loss with chimeric SSCS that
cannot be grouped into DCS given that most chimeric reads
form only SSCS and do not have a duplex partner (Supple-
mentary Table S4). However, alternatives are also possible,
such as unpaired SSCS being the result of an amplification
bias, in which only the forward or the reverse strand gets
amplified, as is the case in ∼20–50% of the templates in PCR
(see this phenomenon in (8)). Eliminating chimeras could be
an important modification in the library preparation pro-
tocols to improve DCS coverage and rare variant accuracy.
This could be achieved by avoiding amplifying mixtures of
very similar DNA, but instead using a single molecule for-
mat using for example a water/oil emulsion as described
previously (25).

Third, and more importantly, chimeras could influence
the accuracy of the variant frequency, in case the same
molecule is counted more than once. In order to assess this
potential overestimation, we added a ‘chimera count’ to
the VAR-A tool (column E and K in sheet ‘Allele frequen-
cies’, Supplementary Tables S5–S8). To distinguish between
a variant being a chimera or a collision event, we searched
for chimeric tags within the families that share the same
variant, since it is very unlikely to see a collision in reads that
also carry the same rare variant. In both PF2-CRISPR and
PF2-Standard libraries, we detected 37 and 5 chimeras out
of 6834 and 7643 variant calls, respectively, for alleles with
high absolute counts such as heterozygote variants (e.g. in
PF2-CRISPR we observed 14 chimeras for chr17:7674089-
A-C; 14 chimeras in chr17:7674109-G-A and 9 chimeras
in chr17:7674797-T-C). These chimeras hardly had an ef-
fect on the overall variant frequency. We did not detect
chimeras in any of the low frequency variants. However, if
the chimeric frequency is overall high, the chance of a rare

allele being a chimera increases introducing an inflated es-
timate of the variant frequency.

Family size distribution (FSD)

One of the first steps in the consensus building in DS is
grouping together PE reads representing copies of an ini-
tial molecule into a family or consensus (in this case SSCS).
The more reads within a family carrying the substitution,
the more likely the substitution is real and not an artefact.
There is a delicate balance around the optimal family size:
small families make variant calling less reliable, while larger
families reduce the DCS coverage and total yields. Our FSD
tool analyzes the family size associated with each tag and
renders a graphical and tabular output of the absolute and
relative family sizes compared to the total amount of fam-
ilies and total amount of PE reads. This tool can be used
to compare the FSD among different libraries or different
steps of the bioinformatic pipeline (e.g. barcode correction
or sequence trimming).

This tool also analyzes the ratio of SSCS/DCS for each
family size. This latter analysis (Figure 5) is particularly use-
ful to decide on the minimal number of PE reads to build
a consensus sequence (SSCS). In the early days of DS, an
average family size of six to seven members was considered
appropriate for reliable variant calling (4), but with time this
number has been reduced to three members to increase the
data yields and DCS coverage (11). The decision as to the
minimal number of PE reads to form a consensus depends
on each library, thus having a tool to visualize the FSD
is quite useful. In the PF2-CRISPR and PF2-Standard li-
braries, 32 or 23% of the families are united into DCS (68 or
33% of the total PE reads), respectively, and more than half
of the DCS are formed by family sizes between 3 and 20
members (Table 3 and Figure 5). Thus, for these libraries
using a family size with a minimal number of three reads is
recommended (11); although, with this setting 5–12% of the
DCS, formed by smaller family sizes of 1–2 reads, get lost.

Knowing the ratio of SSCS/DCS for each family size also
helps to understand the data allocation and DCS yields:
for example, Nachmanson and colleagues reported that
CRISPR-DS is superior over standard-DS, given the 10-
fold higher recovery rate of specific target regions (average
DCS coverage per input templates) of the former (11). Our
FSD-tool provides a different light on the performance of
these two DS protocols: in terms of DCS recovery and al-
location of DCS within optimal family sizes (3–20 reads),
only one of the four libraries (PF1-Standard) performed
suboptimal (Figure 5 and Table 3). In this library, ∼83%
of the families (or ∼94% of the total PE reads) had more
than 20 reads, which explains the lower DCS coverage of
this library. However, the other standard DS library (PF2-
Standard), which used a third less of DNA, performed
equally well compared to the two CRISPR libraries: all
three libraries had 56–62% DCS formed by optimally sized
families (3–20). With our tool, it can also be observed that
PF1-CRISPR and PF2-Standard formed DCS with small
family sizes (FS = 1–2), which would get lost if at least three
reads are required in a family. Understanding what factors
influence the formation of sub-optimal family sizes for DCS
(very small or very large families) during library prepara-
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Figure 4. (A) CA of a subset of tags (n = 1000) derived from the SSCS of the PF2-CRISPR library after barcode correction (allowing one mismatch).
Chimeras have a relative delta TD = 1. (B) Distribution of TD in chimeric tags (with a relative delta TD = 1) stratified into DCS or SSCS. Out of 435
chimeric reads, 181 (42%) belong to SSCS ab; 166 (38%) to SSCS ba and 88 (20%) to DCS. (C) CA using the tags of DCS and (D) TD of the chimeric
DCS. Note that most of the chimeric DCS come from large family sizes (>10). The absolute numbers presented in Figure 4B and Supplementary S5B are
listed in Supplementary Table S4. We also added a column in the VAR-A listing the chimeric tag, in case the variant is a chimera (Supplementary Table
S5, column AG).

tion is an intensive research focus and our FSD-tool sup-
ports a detailed evaluation.

Variant analyzer (VAR-A)

Currently in DS, a family or consensus (SSCS) is built with
a minimum of three or more reads (FS≥3). Yet, 5–12% of
the DCS in the four tested libraries were formed by families
with 1–2 reads. These DCS are discarded; although, they
might contain important variant information and their in-
clusion would increase the coverage, but small families bear
a higher risk of false positive calls. We developed the VAR-
A to assess the evidence supporting a variant call based on
a series of different summary data extracted from the raw
PE reads that classifies the confidence level of a variant call
by a tier-based system. This allows using more relaxed anal-
ysis parameters during consensus building, e.g. small fam-
ilies (including families with only one or two reads) or ad
hoc stringent trimming parameters.

Only DCS with a variant in the original consensus build-
ing output are re-analyzed in VAR-A. The evidence of a
variant is then compiled from the raw PE reads, and in-
cludes information on the mate (if both mates overlap the
position of the variant), the number of high quality PE
reads in both forward (ab) or reverse (ba) SSCS, the pro-
portion of alternate versus reference calls within the family
and the median position of the variant within the consen-
sus sequence. The quality of the variant call is re-analyzed,
PE reads are trimmed automatically, and positions with low
quality (by default PHRED < 20) are removed. Given these
additional analysis layers, more data can be used for con-
sensus calling without compromising the reliability of the
analysis and false negatives can get potentially recovered.
The tabular output of VAR-A also includes relevant infor-
mation such as the sequence of the tag, if more than one
variant is present in a family (multiple consecutive variants
in one molecule––in phase), and if the variant is part of a
chimeric family.

VAR-A also categorizes variants with a tier-based sys-
tem (see Table 1 and Supplementary Table S1) that helps
the user to distinguish high quality calls from those with
lower support. Tier 1 variants have the strongest support
with information from multiple reads and mates. However,
the inclusion of second-order tiers (1.2–2.4) increases the
coverage without seriously compromising the accuracy or
reliability of the call that can be removed, if necessary, af-
ter manual inspection. These second-order tiers are partic-
ularly interesting, because they include small families (1–
2 reads) for either the forward or the reverse SSCS, which
would be discarded by the regular pipeline. Yet, these vari-
ants are likely real since they are present in both forward
and reverse SSCS, albeit in one of them at a low num-
ber. Table 4 compares the variants identified using differ-
ent settings for the minimum family size (FS ≥ 3 or FS
≥ 1). When reducing the minimum family size from three
to one read, we rescued ∼2200 or ∼25 500 DCS result-
ing in an ∼10% or 25% increase of DCS coverage in the
PF2-CRISPR or PF2-Standard library, respectively (see
Table 4).

Since small families make variant calling less reliable, we
analyzed the variants with VAR-A using standard (FS ≥ 3)
or small minimal family sizes (FS ≥ 1) and compared them
with variants identified with the bioinformatics pipeline
from University of Washington (11). The full output of the
VAR-A analysis for the PF2-CRISPR, PF2-Standard, PF1-
CRISPR and PF1-Standard dataset is included as Supple-
mentary Tables S5–S8, respectively.

As expected, heterozygous positions (50%) shown in Ta-
ble 5 (PF2-CRISPR) or Supplementary Table S9 (PF2-
Standard) are detected by all three analyses at very similar
frequencies while the coverage in the VAR-A analysis with
FS ≥ 1 is higher, demonstrating that reducing FS ≥ 1 ren-
ders the same reliable calls as the other two more conserva-
tive pipelines, but at a higher coverage. While the increase
in coverage might not seem extremely important in this ex-
ample, it is especially an advantage in low-input samples,
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Figure 5. Family Size (FS) distribution in the different libraries. Frequency of reads per family observed in the four analyzed libraries (PF1-CRISPR, PF1-
Standard, PF2-CRISPR and PF2-Standard after barcode correction with one mismatch relative to the total number of families or to the total number of
PE reads. FS is stratified into SSCS (ab or ba) or DCS (duplex).
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Table 3. Fraction of data forming DCS from the total number of families or PE reads obtained in each library (column 1 and 2, respectively) after barcode
correction with one mismatch

DCS
families

DCS PE
reads

DCS
FS1–2

DCS
FS3–20

DCS
FS>20

mean
FS

total families
(DCS+SSCS) Total PE reads

PF1-CRISPR 17% 53% 11% 62% 27% 5 189 675 1 004 941
31 710 538 889 3480 19 787 8443

PF1-Standard 11% 24% 5% 12% 83% 27 1 341 763 35 748 407
147 944 8 521 521 7281 18 010 122 653

PF2-CRISPR 32% 68% 5% 56% 39% 9 138 631 1 284 504
44 912 867 430 2312 25 160 17 440

PF2-Standard 23% 33% 12% 64% 23% 11 1 106 303 11 717 544
253 428 3 874 141 31 187 162 893 59 348

We counted 31 710, 147 944, 44 912 and 253 428 families that can form a DCS for PF1-CRISPR, PF1-Standard, PF2-CRISPR and PF2-Standard,
respectively. Column three–five represent the proportion of DCS with a family size (FS) of 1–2 reads, 3–20 reads or more than 20 reads, respectively.
Column six reports the average family size (FS) and column seven shows the total number of families counted including SSCS and DCS.

Table 4. shows the coverage of the Du Novo analysis from the PF2-CRISPR and PF2-Standard library (after barcode correction with one mismatch)
using different parameters for consensus building for the minimum family size (FS)

PF2-CRISPR FS ≥ 3 FS ≥ 1 PF2-Standard FS ≥ 3 FS ≥ 1

Total reads 1 284 504 Total reads 11 717 544
Total SSCS 138 631 Total SSCS 1 106 303
SSCS FS 1–2 116 175 SSCS FS 1–2 979 589
DCS 20 218 22 456 DCS 101 145 126 714
On target 20 217 22 426 On target 101 095 125 826

Reducing the FS settings to FS ≥ 1 increased the number of DCS.

where an increase in sequencing depth for variant calling is
crucial.

With VAR-A, we also identified important biases or false
positives in the DCS of a library. For example, note that
in the Standard library (Supplementary Tables S6 and S9)
some variants occur with a low tier (mainly 4.1–5). Some
of these variants are of high sequence quality and form
large family sizes, but co-occur at the end or beginning of
the DCS, either as single independent events or as multi-
ple variants within the same family (e.g. chr17:7676340-G-
C and chr17:7676341-T-C). This strong positional bias of
variants (mainly at the beginning of the DCS, represent-
ing the 5′ or 3′ end of the original DNA molecule) makes it
highly likely that these are the result of end-polishing dur-
ing A-tailing before adapter ligation. Variants at the begin-
ning or the end of DCS are labeled by VAR-A as tier 4.1
and can be manually discarded. Another example is vari-
ant chr17:7675393-C-T that occurs close to a poly-T ho-
mopolymer (chr17:7675394-7675411) reported to be asso-
ciated with noisy reads (11) and that was tagged by VAR-A
as a low tier that can be manually inspected and discarded.

When building consensus sequences with a FS ≥ 1, VAR-
A identified two potentially new variants that were missed
by the analysis using a FS ≥ 3 (shown in blue in Table 5 and
Supplementary Table S9). These occur at an ultra-low fre-
quency (∼10−4), which underlines the power of VAR-A in
terms of detecting very rare variants. The identified variant
(chr17:7669456-C-A) in the PF2-CRISPR library classified
as tier 3.1 is formed by SSCS with 3 and 2 members; in one
SSCS, two out of three reads carried the alternative allele
and in the other SSCS both reads carried the variant. This
call could be considered a borderline case and would re-
quire further validation in subsequent libraries with higher

coverage. We did not identify this variant in PF2-Standard
(DS of the same biological sample) likely because of insuf-
ficient coverage in this library at this position. Similarly, in
the PF2-Standard library, variant chr17:7675381-T-C was
counted twice (with tier 2.1 and 2.4) totaling to an AF of
0.02%. Further inspection of this variant showed that it is
formed by high quality PE reads including tier 2.1, 2.4, 4.1
and 5 (the latter two representing the end of a DCS and re-
maining low quality variants) shown in Supplementary Ta-
ble S6. This variant also could be a borderline case since it
occurs close to the poly-T homopolymer (chr17:7675394–
7675411). Note that most of the variants in these positions
were filtered out during the different QC steps of VAR-
A (tier 5), as were those calls close to another poly-T ho-
mopolymer (chr17:7674361–7674376).

We also obtained the same variant allele frequency
(1.0 or 1.2% for the PF2-CRISPR or PF2-Std, respectively)
for variant chr17:7674230-C-T with the relaxed pipeline
as reported by Nachmanson and colleagues (labeled as
chr17:7577548-C-T with GRCh37/hg19 as a reference)
(11). More interestingly, performing the analysis with FS ≥
1 increased the coverage of this low frequency variant from
4829 to 5202 DCS or 2003 to 3463 DCS in the PF2-CRISPR
or PF2-Standard library, respectively. This example high-
lights the value of VAR-A to accurately call low variant fre-
quencies at a quite improved coverage.

Moreover, we categorized the variants of two more li-
braries with the VAR-A: PF1-CRISPR and PF1-Standard
(Supplementary Tables S10 and S11). Here again, we ob-
tained very similar variant frequencies with all analyses in-
cluding the pipeline of the University of Washington (11).
Interestingly, for all pipelines we observed in PF1 unusually
high allele frequencies (84% for two alleles (chr17:7674089-
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A-C and chr17:7674109-G-A). Given the highly similar
variant frequency of these two sites, it is likely that these
are linked. With our VAR-A tool we could further inves-
tigate this, since the VAR-A also provides information if a
variant co-occurs with another variant and in what phase
in the same DCS. We observed that in the majority of the
DCS, the same alleles co-occurred within the same molecule
(e.g. 7674089-A and 7674109-G), explaining the highly sim-
ilar variant frequency of ∼84%. VAR-A further lists the co-
occurring variants in column AF and could be used to get a
‘haplotype count’. The phase information of different vari-
ants is a powerful tool to interrogate if variants could be
evolving by clonal expansion within a tumor.

In addition to our analysis of published libraries, we also
performed as a proof of principle an orthogonal assay ex-
periment. In this assay, we mixed genomic DNA carry-
ing variants c.742C>T (NA00711), c.746C>G (NA08909),
c.749C>G (CD00002) and c.1620C>A (p.540N>K) with
wild type DNA at ratios from 1/10 to 1/10,000 in steps
of one order of magnitude followed by library preparation
as described in (Salazar et al., in preparation). Our anal-
ysis shows that our VAR-A is highly reliable and the mea-
sured variant fraction correlates with the expected dilutions
by a factor R2 of 0.96 (Supplementary Table S12). Devia-
tions from the expected initial input amounts were due to
experimental errors. Also, at the low end we identified two
out of four ultra-rare variants diluted to one in 10 000, but
given the Poisson distribution of single events it is expected
to have missed these rare variants given our achieved cover-
age. More importantly, with this dataset we clearly illustrate
that by relaxing the initial Du Novo analysis parameters fol-
lowed by our VAR-A, we rescued a higher number of counts
with the alternate allele without compromising the accuracy
or validity of the call. For the detection of rare-allele this
is quite advantageous, since more single counts within one
experiment improves the confidence that these variants are
real.

We conclude that VAR-A is a powerful tool to increase
the coverage without compromising the reliability of the
variant calling, which is especially advantageous in low-
input samples or low-coverage regions, where an increase
in sequencing depth for variant calling is of particular im-
portance.

CONCLUSION

Our QC tools are important analysis tools for investigating
DS data and can be implemented to identify problems at
the experimental level or during the bioinformatic assem-
bly. With our tools we show the number of reads that are
part of very large families or are singleton reads (without a
family) and contribute to data loss and lower DCS coverage
and yields. We also show that chimeras are mainly formed
by unpaired SSCS and likely represent collision events. Fi-
nally, we demonstrate that reads with small families can be
included in the consensus calling since the quality and reli-
ability is validated with our VAR-A tool. The resulting in-
crease in coverage is an advantage especially in low-input
samples, where an increase in sequencing depth for variant
calling is crucial and allows for an identification of ultra-
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low frequency variants without blindly increasing the risk
of false positive calls.

DATA AVAILABILITY

The tools are written in Python, are open source and
readily available through the user-friendly Galaxy platform
that can be easily run without any programming expe-
rience https://usegalaxy.org/, and GitHub: https://github.
com/Single-Molecule-Genetics. All software is freely avail-
able under non-restrictive AFL 2.0 license.

The data for the PF1-CRISPR, PF1-Standard, PF2-
CRISPR and PF2-Standard library was downloaded
from https://www.ncbi.nlm.nih.gov/bioproject/?term =
PRJNA412416 on January 23, 2019. The data for the li-
braries spiked with known mutations can be found in
the NCBI Sequence Read Archive (BioProject ID: PR-
JNA684907).
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Supplementary Data are available at NARGAB Online.
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