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Within the last decade, numerous studies have demonstrated changes in the gut
microbiome associated with specific autoimmune diseases. Due to differences in
study design, data quality control, analysis and statistical methods, many results
of these studies are inconsistent and incomparable. To better understand the
relationship between the intestinal microbiome and autoimmunity, we have completed
a comprehensive re-analysis of 42 studies focusing on the gut microbiome in
12 autoimmune diseases to identify a microbial signature predictive of multiple
sclerosis (MS), inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and
general autoimmune disease using both 16S rRNA sequencing data and shotgun
metagenomics data. To do this, we used four machine learning algorithms, random
forest, eXtreme Gradient Boosting (XGBoost), ridge regression, and support vector
machine with radial kernel and recursive feature elimination to rank disease predictive
taxa comparing disease vs. healthy participants and pairwise comparisons of each
disease. Comparing the performance of these models, we found the two tree-
based methods, XGBoost and random forest, most capable of handling sparse
multidimensional data, to consistently produce the best results. Through this
modeling, we identified a number of taxa consistently identified as dysregulated
in a general autoimmune disease model including Odoribacter, Lachnospiraceae
Clostridium, and Mogibacteriaceae implicating all as potential factors connecting
the gut microbiome to autoimmune response. Further, we computed pairwise
comparison models to identify disease specific taxa signatures highlighting a role for
Peptostreptococcaceae and Ruminococcaceae Gemmiger in IBD and Akkermansia,
Butyricicoccus, and Mogibacteriaceae in MS. We then connected a subset of these taxa
with potential metabolic alterations based on metagenomic/metabolomic correlation
analysis, identifying 215 metabolites associated with autoimmunity-predictive taxa.
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INTRODUCTION

The human intestine is colonized by millions of microbes, which
have been shown to be involved in metabolism (Nicholson et al.,
2012), immunity (Belkaid and Hand, 2014), and host physiology
(Dominguez-Bello et al., 2019). This complex ecosystem has been
extensively studied in the context of disease (Gilbert et al., 2016;
Duvallet et al., 2017), diet (Carmody et al., 2015; Singh et al., 2017;
Ruggles et al., 2018), and age (O’Toole and Jeffery, 2015) with
the goal of determining how specific taxa and, more recently, the
gene expression patterns of these taxa, impact human health. The
relationship between the microbiome and the immune system has
been of particular interest and specific bacteria have been shown
to affect the function of both innate and adaptive immunity
(Honda and Littman, 2016). Further, an increasing number of
inflammatory and autoimmune disorders have been associated
with microbial dysbiosis (Levy et al., 2017), though the precise
mechanism for this relationship remains unclear.

Autoimmune diseases are multifactorial and chronic and the
term covers nearly 100 distinct disorders (Wang et al., 2015).
Although there appears to be some genetic component, studies in
disease-discordant twins have found that concordance rates are
incomplete and therefore environmental factors, including the
gut microbiome, likely contribute to disease pathogenesis (Berer
et al., 2017; Horta-Baas et al., 2017). Hundreds of studies have
been carried out to better understand the connection between
the microbiome and autoimmunity including studies specifically
focused on inflammatory bowel disease (IBD), multiple sclerosis
(MS), rheumatoid arthritis (RA), type 1 diabetes (T1D), and
systemic lupus erythematosus (SLE). Despite the extensive study
of the human gut microbiome in autoimmune disease, published
results are inconsistent, which can be attributed to the differences
in origin of samples (e.g., fecal or mucosal), sequencing platforms
(Tremblay et al., 2015), sample sizes, therapies administered,
patients’ age (O’Toole and Jeffery, 2015), geographical location
(Yatsunenko et al., 2012), and methods of data analysis. Thus,
the question of whether there are common microbial features
characterizing general autoimmunity still remains.

Therefore, to better understand the role of specific taxa
in autoimmunity, we have reprocessed and reanalyzed 42 16S
and metagenomic studies focused on the gut microbiome and
autoimmunity. To do this, we have taken advantage of several
machine learning approaches to provide an alternative to the
traditional diversity analysis (Knights et al., 2011; Statnikov et al.,
2013; Mossotto et al., 2017). We specifically chose Random Forest
(RF) (Breiman, 2001), eXtreme Gradient Boosting (XGBoost)
(Chen and Guestrin, 2016), Support Vector Machine (Cortes
and Vapnik, 1995) with Recursive Feature Elimination (Kohavi
and John, 1997) (SVM RFE), and Ridge Regression (Hoerl and
Kennard, 1970) algorithms since in addition to predicting a label
they rank features according to how important the feature is
for the label (disease) prediction. Random forest is a decision
tree algorithm that has shown to be one of the most effective
methods for classification of microbiome data, particularly 16S
rRNA sequencing data (Statnikov et al., 2013). XGBoost, also
a tree-based algorithm, has been recently shown to outperform
other machine learning algorithms on a variety of biological

datasets (Dimitrakopoulos et al., 2018; Ma et al., 2020). Further,
we included ridge regression, another widely used algorithm
that differs from these tree-based models in that it is a logistic
regression algorithm with L2 regularization that still enables us
to compare its feature ranking to other algorithms. Finally, we
used SVM RFE since it is a powerful feature selection method that
has been used in numerous biomedical applications (Hemphill
et al., 2014). Moreover, many machine learning methods can
handle sparse data with a large number of features, ranking
them based on importance in their ability to distinguish between
health and disease states (Kuhn and Johnson, 2013). These
algorithms were used to identify microbial features predictive of
general autoimmunity, as well as individual autoimmune diseases
through the reanalysis of publicly available data on human gut
microbiome in autoimmune diseases from the previous 10 years.

MATERIALS AND METHODS

Data Acquisition
The NCBI PubMed database was searched for publications on
April 1, 2020 related to the gut microbiome in autoimmune
diseases from the last 10 years based on the following criteria:
(1) the study was performed on human fecal samples; (2) the
subjects in the studies were older than 2 years old; (3) the
samples were sequenced with either 16S rRNA sequencing or
shotgun metagenomics or both; (4) the raw data in FASTQ format
were publicly available; (5) the provided metadata allowed us to
distinguish between disease and healthy control samples, as well
as between subjects who were explicitly treated in the study and
untreated samples. We identified a total of 42 studies, 30 with
16S rRNA sequencing data, 9 with shotgun metagenomics and
3 studies with both types of data available. In order to balance
the number of the subjects with autoimmune disease with the
number of healthy controls, we added 2 additional 16S rRNA
studies, from which we selected only the healthy controls. Also,
we included healthy samples with both 16S rRNA and shotgun
metagenomics data from Human Microbiome Project 1 (HMP1)
(Supplementarxy Tables 1, 2).

16S rRNA Data Preprocessing
We employed QIIME2 (Bolyen et al., 2018) (v. 2018.11) to
obtain the taxonomic abundances of the samples within each
study, which were reprocessed independently and only the first
time point was selected from each subject. Following data input,
454-based data underwent an error correcting step with qiime
dada2 denoise-pyro (parameters: –p-trunc-len 0, –p-trim-left 20)
command while the remaining samples were processed with
either qiime dada2 denoise-paired (parameters: –p-trunc-len-f
0, –p-trunc-len-r 0, –p-trim-left-f 20, –p-trim-left-r 20) or qiime
dada2 denoise-single (parameters: –p-trunc-len 0, –p-trim-left 2)
commands depending on whether the reads were paired or single
(Supplementary Table 2). The resulted sequence abundance
tables were rarefied to the depth of 5,000. This depth was selected
based on the alpha diversity curves of the studies, in which the
plot reached a plateau. Further, we tried to account for 454-
specific data since the sequencing depth of 454 samples was
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significantly lower than that of Illumina or Ion Torrent. As a
result, the samples with sequencing depth less than 5,000 were
excluded from the further analysis (Supplementary Figure 1).
In the next step we assigned the taxonomy to the sequences by
training a Naïve Bayes classifier on the entire 16S rRNA gene with
qiime feature-classifier fit-classifier-naive-bayes command based
on the Greengenes database (v 13_8) (DeSantis et al., 2006).
Following taxonomy assignment, the taxonomic abundances
tables were collapsed on both genus and species taxonomic levels.
Further the resulting abundance tables from each study were
merged together to create an “autoimmunity” data matrix and
disease-specific matrices.

Shotgun Metagenomics Preprocessing
KneadData (The Huttenhower Lab) was used to remove host
sequences from reads by aligning the reads to the UCSC
hg38 version of the human genome with the following
Trimmomatic (Bolger et al., 2014) (v.0.36) parameters:
ILLUMINACLIP:TruSeq3-SE:2:30:10 for single-end reads
and ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 for paired-end
reads, LEADING:3,TRAILING:3, SLIDINGWINDOW:4:15,
MINLEN:36. The resulted output was supplied to MetaPhlAn2
(Truong et al., 2015) to obtain relative taxonomic abundance,
after which tables from individual studies were merged. One
exception was the Cekanaviciute et al. (2017) study, for which
only preprocessed tables were available, which were processed in
the similar way (Supplementary Figure 2).

Predictive Modeling
Caret package (Kuhn, 2008) in R was used to build the predictive
models which were computed separately for each data type.
For 16S rRNA we built 4 disease-specific models: autoimmune
disease samples vs. healthy controls, IBD samples vs. healthy
controls, MS samples vs. healthy controls and RA vs. healthy
controls. We built those models on all samples that passed our
inclusion criteria and on only adult (18 years and older) samples
since children gut microbiomes have been shown to differ in
diversity and composition compared with adults (Radjabzadeh
et al., 2020). In addition, we built predictive models comparing
IBD and MS, IBD and RA, and MS and RA. For MS and RA
models only adult samples were used. All models were trained
on both genus and species taxonomic levels. Since we identified
only 13 studies with publicly available shotgun metagenomics
data, we computed only 2 metagenomics models: all autoimmune
disease samples vs. healthy controls model and IBD vs. healthy
controls model. Also, since there were significantly more healthy
samples than disease samples, when considering the individual
disease models, we randomly selected the same number of
healthy controls samples to match the number of available disease
samples. We employed the same approach for the disease vs.
disease models: the condition with the larger number of samples
was randomly subsampled to match the number of samples in the
condition with the smaller number of samples.

The data were split into training (90%) and test (10%)
sets. The predictive models for each dataset were built
with four algorithms: Random Forest (Breiman, 2001),
XGBoost (Chen and Guestrin, 2016), Ridge Regression

(Hoerl and Kennard, 1970) and SVM (Cortes and Vapnik,
1995) with radial kernel and RFE (Kohavi and John, 1997) with
a step of 2. Those models were selected due to their ability
to rank the features based on the importance for the label
prediction. To reduce the computing time before the training
step near-zero-variance features were identified and removed.
In order to avoid overfitting and tune the parameters of the
model, sevenfold-3-times cross-validation was employed. The
final parameters, as well as the number of samples and features
used for each model, are reported in Supplementary Table 3.

Study Specific Models
In order to account for potential study-specific batch effects,
we created “mock” models to predict the study a sample came
from, regardless of disease status. To do this, we used a Random
Forest model to predict study and then identified taxa features
most predictive of each 16S (Supplementary Figures 3A,C)
and metagenomics (Supplementary Figures 3A,C) study. We
classified taxa as “predictive of study” if the feature was found to
have a Gini importance greater than 68.5, a cutoff that was chosen
because it filtered for taxa with the top 1% of importance values
across model features tested (Menze et al., 2009).

Feature Selection
Each of the selected algorithms ranked features based on their
importance to the classification tasks we performed. Since the
four algorithms employ different metrics for the feature ranking,
we sorted the features in the descending order based on the
importance in each algorithm. Further we selected the top 30
most important features for each of the models which were
then collectively visualized using their mean rank average across
models, in descending order.

Metabolomic Analysis
For this purpose, we utilized the Inflammatory Bowel Disease
Multiomics Database (IBDMDB) (Proctor et al., 2019), which
is a part of iHMP (HMP2 in our dataset) that contains
taxonomic, metagenomic, metatranscriptomic, metaproteomic,
and metabolic data comparing the microbiome in IBD subjects
and healthy controls. 382 samples had both metagenomic and
metaproteomic data. For metagenomic data, we utilized the
microbial abundance table that resulted from our analyses
and for metabolomic data we downloaded the metabolites
abundance table from the IBDMDB. Next we selected taxa that
overlapped between at least one disease vs. disease models, that
were identified on the genus level and were present in the
IBDMDB dataset. This method provided 12 different genera, 2
of which were filtered out due to study-based predictive power
(Supplementary Figure 3) and 4 of which were filtered based on
the missingness cutoff (a taxon of interest has to be present in at
least 10% of the HMP2 samples). In the next step we correlated
the abundance of the remaining 6 genera in the IBDMDB with the
metabolomics table from IBDMDB by using pairwise Spearman
correlation with Benjamini-Hochberg correction for multiple
comparisons and selected metabolites based on correlations with
an adjusted p-value cutoff of 0.05.
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All relevant code used for this project has been deposited here:
https://github.com/avolkova1593/autoimmunity_paper.

RESULTS

Autoimmunity-Associated Changes in
Microbial Composition
We used a standardized meta-analysis approach to collect,
reprocess and integrate available metagenomics data from case-
control autoimmunity studies focusing on changes in the gut
microbiome from human fecal samples. Using an expansive
literature search we identified a total of 132 autoimmunity studies
fulfilling our criteria (Supplementary Figure 1). Following
filtering based on unique data, age (2 years or older), metadata
and raw file availability and sequencing depth we were able to
successfully download raw (FASTQ)16S rRNA and/or shotgun
metagenomics data from 42 studies, 30 with 16S rRNA
sequencing data (Hevia et al., 2014; Mejía-León et al., 2014; Stoll
et al., 2014; Consolandi et al., 2015; Miyake et al., 2015; Chen
et al., 2016a,b; Di Paola et al., 2016; Dunn et al., 2016; Jangi et al.,
2016; Mar et al., 2016; Shaw et al., 2016; Tejesvi et al., 2016; Bajer
et al., 2017; Halfvarson et al., 2017; Jacob et al., 2017; Pascal et al.,
2017; Goyal et al., 2018; Luo et al., 2018; Manasson et al., 2018;
Moris et al., 2018; Braun et al., 2019; Kozhieva et al., 2019; Lee
et al., 2019; Li et al., 2019; Ruff et al., 2019; Sprockett et al., 2019;
Sun et al., 2019; Zegarra-Ruiz et al., 2019; Choileáin et al., 2020)
and 9 studies with shotgun metagenomics data (Lewis et al., 2015;
Heintz-Buschart et al., 2016; Ananthakrishnan et al., 2017; Hall
et al., 2017; Wen et al., 2017; Ye et al., 2018; Proctor et al., 2019;
Ventura et al., 2019; Zhou et al., 2020), and 3 studies with both
(Scher et al., 2013; Cekanaviciute et al., 2017; Connors et al.,
2020; Supplementary Table 1 and Supplementary Figure 1).
These included studies on Inflammatory Bowel Disease (IBD,
N = 14), Multiple Sclerosis (MS, N = 7), Rheumatoid Arthritis
(RA, N = 5), Juvenile Idiopathic Arthritis (JIA, N = 3), Systemic
Lupus Erythematosus (SLE, N = 3), Type 1 Diabetes (T1D, N = 2),
Behcet’s Syndrome (BS, N = 2), Ankylosing Spondylitis (AS,
N = 2), Antiphospholipid Syndrome (APS, N = 1), Primary
Sclerosing Cholangitis (PSC, N = 1), Myasthenia Gravis (MG,
N = 1) and Reactive Arthritis (ReA, N = 1) (Figure 1 showing 16S
study Ns, Supplementary Figure 2 showing metagenomic study
Ns). Three additional studies with healthy subjects were included
to balance the disease and non-diseased cohorts (Supplementary
Tables 1, 2).

Initially, 16S rRNA data was reprocessed using a standard
analysis pipeline, which included filtering and taxonomic
assignment. Each study was reprocessed individually and final
taxonomic abundance tables were then concatenated to a build
a final autoimmunity matrix. Disease specific datasets were also
created through combining reprocessed data tables for each
individual disease type. Each table was then used to build
predictive models of general autoimmunity as well as disease-
specific models (Figure 1) with the primary goal of identifying
the most important features (taxa) involved in autoimmunity
across and within disease types. Metagenomics data was

also reprocessed using a separate analysis pipeline, providing
taxonomic abundance tables (Supplementary Figure 2).

Following quality control (QC) and filtering, 33 studies
containing 16S rRNA (Scher et al., 2013; Hevia et al., 2014; Mejía-
León et al., 2014; Stoll et al., 2014; Consolandi et al., 2015; Miyake
et al., 2015; Chen et al., 2016a,b; Di Paola et al., 2016; Dunn
et al., 2016; Jangi et al., 2016; Mar et al., 2016; Shaw et al., 2016;
Tejesvi et al., 2016; Bajer et al., 2017; Cekanaviciute et al., 2017;
Halfvarson et al., 2017; Jacob et al., 2017; Pascal et al., 2017;
Goyal et al., 2018; Luo et al., 2018; Manasson et al., 2018; Moris
et al., 2018; Braun et al., 2019; Kozhieva et al., 2019; Lee et al.,
2019; Li et al., 2019; Ruff et al., 2019; Sprockett et al., 2019;
Sun et al., 2019; Zegarra-Ruiz et al., 2019; Choileáin et al., 2020;
Connors et al., 2020) and 12 studies containing metagenomics
(Scher et al., 2013; Lewis et al., 2015; Heintz-Buschart et al., 2016;
Ananthakrishnan et al., 2017; Cekanaviciute et al., 2017; Hall
et al., 2017; Wen et al., 2017; Ye et al., 2018; Proctor et al., 2019;
Ventura et al., 2019; Connors et al., 2020; Zhou et al., 2020) data
remained for downstream analysis (Figure 1 and Supplementary
Figure 2). Notably, 10 out of the 33 16S rRNA and 5 of the 12
metagenomics data sets investigated the role of the human gut
microbiome in IBD, due in part to its relatively high prevalence
in 1.3% of US adults (CDC, 2019). However, we were also able
to acquire data from studies of more rare autoimmune diseases
including Behçet’s Syndrome, which results from inflammation
of the blood vessels (Consolandi et al., 2015), Myasthenia Gravis,
a neuromuscular disorder, and Reactive Arthritis. A portion of
these studies contained significantly more disease samples than
the healthy samples, with Halfvarson et al. (2017) having 10
times more samples from individuals with autoimmune disease
than from healthy controls, and with 6 other studies (Lewis
et al., 2015; Ananthakrishnan et al., 2017; Jacob et al., 2017;
Lee et al., 2019; Sprockett et al., 2019; Connors et al., 2020)
containing only disease samples (Figure 2). For this reason, we
included healthy samples from three additional studies which
investigated non-autoimmune diseases (Huttenhower et al., 2012;
Giloteaux et al., 2016; Whisner et al., 2018), which after QC and
preprocessing resulted in additional 232 16S and 322 shotgun
metagenomics samples.

While combining these diverse datasets there were several
study-specific characteristics known to impact microbial
identification that we paid specific attention to, such as
geography, age, sequencing platform and 16S rRNA primers.
A majority of the studies were based on populations from
North America, Europe and Asia, however Manasson et al.
(2018) investigated the gut microbiome of spondyloarthritis in
Guatemalan patients, Mejía-León et al. (2014) looked at Type 1
Diabetes in Mexico, while Sprockett et al. (2019) had participants
from four different countries, Poland, Israel, Netherlands and
Canada. Further, there was a large range in age across studies,
with participants being from 2 to 76 years old. Studies focusing
on newborn children (less than 2 years of age) were not included
since it has been well established that the microbial diversity in
the first few years of life is significantly lower when compared
with adults (Korpela and de Vos, 2018). We also controlled
for age by building separate models for adults only (18 years
or older) in addition to models including all participants in
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FIGURE 1 | Autoimmunity Analysis Workflow. Thirty 16S rRNA sequencing datasets from studies focused on 12 different autoimmune diseases and three datasets
representing healthy (non-autoimmune disease) cohorts were reprocessed using QIIME2 (Bolyen et al., 2018) with data2 denoising and rarified to 5,000 sequence
depth. The output species and genus level relative abundance matrices were used to create four machine learning models for (1) general autoimmunity; (2)
inflammatory bowel disease (IBD); (3) multiple sclerosis (MS); and (4) rheumatoid arthritis (RA). Top ranked features from these models were identified and metabolic
changes associated with these taxa of interest were assessed using the IBDMDB dataset (Proctor et al., 2019).

datasets where children were included (general autoimmunity
and IBD). DNA was sequenced with one of three sequencing
platforms, 454 pyrosequencing, Ion Torrent, or Illumina

instruments with both paired and single reads techniques.
Description of the characteristics for each study can be found
in Supplementary Table 2 and Figure 2. To assess potential
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FIGURE 2 | Study overview. Overview of (A–C) 16S rRNA sequencing and (D) shotgun metagenomics studies included in our analysis. Includes the number of
healthy (blue bars) and disease (red bars) samples in each, geographic location, age group and disease studied. Also includes the average relative abundance of
taxa at the genus level for the healthy and diseased subjects following re-processing. Inflammatory bowel disease (IBD), multiple sclerosis (MS), rheumatoid arthritis
(RA), juvenile idiopathic arthritis (JIA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), primary sclerosing cholangitis (PSC), Behcet’s syndrome (BeS),
ankylosing spondylitis (AS), antiphospholipid syndrome (APS), myasthenia gravis (MG), and reactive arthritis (ReA).
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batch effects, we employed a Principal Coordinate Analysis
(PCoA) (Gower, 1966) based on the Bray-Curtis distance
(Beals, 1984) and investigated disease and non-disease based
differences. All variables are shown by PCoA and, as expected,
were found to have significant differences based on an Adonis
test (p < 0.001) (Supplementary Figures 4, 5). To combat this,
we completed study-based analysis to identify study-specific
vs. disease-specific features as part of our downstream analysis
(Supplementary Figure 3).

We first examined the taxonomic composition on the genus
level of the healthy and diseased samples in each study to verify
expected changes based on previously published results. We were
able to recapitulate major findings from all studies. For example,
we identified disease-specific alterations in multiple studies in
Akkermansia (Jangi et al., 2016; Kump et al., 2018), Bacteroides
(Hevia et al., 2014; Dunn et al., 2016; Zhou et al., 2020), Blautia
(Luo et al., 2018; Manasson et al., 2018), Clostridiaceae (Di
Paola et al., 2016), Faecalibacterium (Stoll et al., 2014; Chen
et al., 2016b), Lachnospira (Stoll et al., 2014; Mar et al., 2016;
Halfvarson et al., 2017), Parabacteroides (Cekanaviciute et al.,
2017), Prevotella (Mejía-León et al., 2014; Mar et al., 2016;
Wen et al., 2017; Manasson et al., 2018; Zhou et al., 2020),
Ruminococcacaea (Dunn et al., 2016; Mar et al., 2016; Halfvarson
et al., 2017; Kump et al., 2018; Manasson et al., 2018), and
Streptococcus (Chen et al., 2016b; Figure 2). Interestingly, these
previously published results, and our reanalyzed results, varied
in the directionality of the change for many of these taxa, with
disease specific overabundance occurring in a subset of studies
and a reduction in other. These inconsistencies further highlight
the need for standardized reanalysis and integration of these
valuable datasets to better understand the potential impact of
microbial changes in autoimmune disease.

The taxonomic composition of healthy individuals showed
clear differences, which can be attributed to several factors.
First, it is well established that microbial composition differs
by age and geography (Yatsunenko et al., 2012). Secondly, it
is not guaranteed that the “healthy” recruits included in these
studies did not suffer from another pathology impacting the
gut microbiome. In most studies, researchers only ensured that
healthy controls had not been diagnosed with an autoimmune
disease of interest and had not taken antibiotics at least
during the sample collection. Thirdly, as these studies were
sequenced on different platforms and with differing 16S rRNA
hypervariable regions during PCR amplification, we expect a
level of variability in the identified taxa even across controls
(Fredriksson et al., 2013).

Predictive Modeling of Autoimmunity
In order to identify which taxa are most important for
distinguishing between healthy controls and subjects with
autoimmune disease we built four independent machine learning
disease models on 16S rRNA data: (1) IBD specific; (2) MS
specific; (3) RA specific; and (4) general autoimmunity; which
included samples from all the autoimmune diseases available
(Figure 1). Genus level taxonomic abundances were used
for the final predictive modeling analyses. Four independent
algorithms were used to capitalize on the strengths and

limitations of each: Random Forest (RF) (Breiman, 2001),
eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin,
2016), Support Vector Machine (Cortes and Vapnik, 1995) with
Recursive Feature Elimination (Kohavi and John, 1997) (SVM
RFE), and Ridge Regression (Hoerl and Kennard, 1970). For
both the general autoimmunity and IBD model, an “Adult
only” model was also created, removing all participants younger
than 18 years old, to control for known age-specific differences
in microbial composition. MS and RA models included only
adults. Application of four independent algorithms capable
of feature ranking to the same data provided an advantage
in robustly identifying the most important features predictive
of autoimmunity by multiple models, providing an additional
level of confidence. Models were run at both the genus
and species level.

Model performance was evaluated using both Area Under
the receiver operating characteristics Curve (AUC) and macro
F1 score, which reports the balance between the precision and
the recall. Notably, we incorporated near-zero-variance feature
removal to reduce both computational load and to consider
only features with reasonable variation between the samples, as
those with little variation likely would not impact disease state.
Among the four algorithms for the autoimmunity model, the
best performance was achieved by Random Forest with an AUC
of 0.8 using the species level data. The superior performance by
this algorithm was not unexpected, as Random Forest has been
previously shown to perform well on microbial data (Statnikov
et al., 2013). Random Forest was also the best predictor for
the species-level RA model, with an AUC of 0.879. XGBoost
produced the best AUC at the species level for the IBD and MS
disease prediction of 0.942 and 0.877, respectively (Figure 3). In
general, model performance was similar at the species and genus
level, with slightly higher AUCs occurring in the species models.
In addition, we applied the same predictive modeling strategy
to shotgun metagenomics data. Due to data availability, we
built only general autoimmunity and IBD models, with highest
AUCs for “Adult only” models reaching 0.866 for the general
autoimmunity model and 0.923 for the IBD model using the
species level data.

Overall, the most stable AUCs across the three algorithms was
reached on the IBD data set, likely due to the considerably higher
number of IBD samples compared with other autoimmune
diseases. Notably, we were able to predict autoimmunity based
on only microbial composition of the samples, which suggests
that there exists a common gut microbiome signature present
that may be relevant to all autoimmune diseases. In order to
determine whether our AUCs could be predicted by chance, we
assigned the labels to the samples at random, and computed
our models again. The models trained with the random
label assignment produced the AUCs of ∼0.5 (Supplementary
Figure 6), which is indicative of a true difference between the
healthy controls and autoimmune disease subjects based on the
gut microbial composition.

Most Predictive Model Features
Since all four of our models employed feature ranking we
were able to identify which features were most important for
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FIGURE 3 | Predictive Modeling of Autoimmune Disease. Area under the curve (AUC) (A,C) and F1-scores (B,D) for models predicting any autoimmune disease,
inflammatory bowel disease (IBD), multiple sclerosis (MS) and rheumatoid arthritis (RA) for four machine learning models, random forest, XGBoost, support vector
machine with recursive feature elimination (SVM RFE) and ridge regression and at the genus and species level. Adult-only (18 years and older) and All
(adult + children) models are included for general autoimmunity and IBD studies.

predicting the three distinct autoimmune diseases as well as
general autoimmunity. From this, we identified features that
were ranked highly by all four algorithms. The top 30 features

were selected based on a combined feature score of ranked taxa
across all 4 models for each disease (Figure 4 and Supplementary
Figure 7). This combined feature ranking approach allowed
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us to focus specifically on the most confident set of features
in our dataset that were commonly identified by all four
classification approaches.

In order to account for potential batch affects occurring due
to study population differences (Supplementary Figures 4, 5),
we created “mock” models to predict the study a sample
came from, regardless of disease status. This allowed us to
identify taxa that were able to specifically identify a study
population rather than the disease. These models identified
Coriobacteriaceae, Bacteroidales, Rikenellaceae, Streptococcaceae
Streptococcus, Lachnospiraceae Blautia, Lachnospiraceae Dorea,
Alcaligenaceae Sutterella, and Enterobacteriaceae as able to
predict study regardless of disease or healthy status in at least
one 16S rRNA study and Ruminococcaceae Faecalibacterium,
Desulfovibrionaceae Bilophila, and Enterobacteriaceae Escherichia
in the metagenomics studies (Supplementary Figure 3). This
allowed us to identify taxa that are likely tied to the study
population, sequencing platform or experimental method, rather
than disease status.

The most predictive features identified by our IBD model
were reduced levels of Christensenellaceae, Odoribacter, and
Gemmiger and increased abundance of Peptostreptococcaceae
(Figure 4A). MS predictive features included increases
in Lactococcus, Mogibacteriaceae, Erysipelotrichaceae
Clostridium, and Lachnospiraceae Clostridium and reduced
levels Ruminococcaceae (Figure 4B). Further, the RA model
identified reduced abundance of Desulfovibrionaceae Bilophila,
Akkermansia, and Veillonellaceae Dialister and increased levels
of Lachnospiraceae Clostridium as most predictive of disease
state (Figure 4C). Lastly, for our comprehensive autoimmunity
analysis, we identified Odoribacter and Mogibacteriaceae
as the most important features with reduced abundance in
autoimmune disease samples compared with healthy controls
and Clostridium having increased expression in diseased
participants (Figure 4D). Although Rikenellaceae was repeatedly
identified by all disease models, our study-specific models also
identified this genus as being highly study specific for one of the
additional healthy control cohorts (HMP1) and therefore we
did not consider it in our downstream biological interpretation
(Supplementary Figure 3).

By also comparing our three disease types (IBD, MS, and RA)
to each other we were able to further refine our disease specific
predictive taxa from our heterogeneous dataset. To do this, we
again used predictive modeling (Random Forest) to compare
each disease to each other, identifying a new set of predictive
taxa, and overlapped these with those identified in the original
model created based on healthy controls. The model performance
(AUC, F1 score) and overlap of the thirty most predictive taxa
from each model is shown in Figure 5. This analysis provided
us with a list of taxa able to distinguish each disease not only
from healthy controls, but from other autoimmune diseases.
In IBD, 12 features were identified in all three comparisons,
including increased Peptostreptococcaceae, and decreased levels
of Mogibacteriaceae and Gemmiger (Figure 5C). Increased
Butyricicoccus, Akkermansia, and Holdemania were three of the
seven taxa consistently predicted in our MS models (Figure 5D)
and increased Clostridiaceae Clostridium and Lachnospiraceae

and reduced Erysipelotrichaceae were three of the eight identified
in all RA models (Figure 5E).

To validate these findings, we also applied the same machine
learning approach to shotgun metagenomics data from 13
studies (Huttenhower et al., 2012; Scher et al., 2013; Lewis
et al., 2015; Heintz-Buschart et al., 2016; Ananthakrishnan
et al., 2017; Cekanaviciute et al., 2017; Hall et al., 2017;
Wen et al., 2017; Ye et al., 2018; Proctor et al., 2019;
Ventura et al., 2019; Connors et al., 2020; Zhou et al., 2020;
Supplementary Figure 2). Six of the top 15 features most
predictive features overlapped in both the 16S autoimmunity
(Figure 4D) and metagenomics autoimmunity adult models
(Supplementary Figure 7E), including Clostridium, Odoribacter,
and Parabacteroides. Similarly, both 16S (Figure 4A) and
metagenomics (Supplementary Figure 7F) IBD models
had 3 overlapping top features including Odoribacter and
Ruminococcus.

Correlations Between Highly Ranked
Taxa and Metabolism in IBD
To better understand the potential downstream effects of altered
abundance levels of these taxa, we used the Inflammatory Bowel
Disease Multiomics Database (IBDMDB) metabolomic dataset
to identify metabolites which are significantly correlated with
our taxa of interest. For this purpose, we chose features that
overlapped in at least two of the three disease vs., disease models
that identified on the genus level (25 taxa total, Figures 5C–E)
and which were present in the IBDMDB shotgun metagenomics
dataset. This resulted in a total of 12 genera in common between
our dataset and IBDMDB cohort (Figure 6 and Supplementary
Figure 8). A total of 6 taxa were excluded from the further
analysis due to the following reasons. Two of these taxa (Dorea,
Sutterella) were excluded from this analysis as they were also
flagged as being consistently able to predict 16S study regardless
of disease or healthy status of the samples (Supplementary
Figure 3), and another four taxa (Butyricicoccus, Eggerthella,
Lactococcus, Odoribacter) were filtered based on missingness
(>90% missing) in the metagenomics data set.

Investigating correlations between the abundance of the
remaining 6 genera with metabolites within the IBDMDB, we
identified 215 metabolites that significantly correlated with at
least one taxon at an adjusted p < 0.05. One of the 6 genera
assessed, Roseburia, was found to be reduced in IBD (Figure 5C).
It had the highest correlations occurring in a number of bile
acids (e.g., taurocholate, taurochenodeoxycholate, glycocholate),
in addition to several triacylglycerols (TAGs) and fatty acids
(Figure 6B). Specifically, the short chain fatty acid (SCFA)
butyrate was found to be positively associated with Roseburia
abundance, consistent with known butyrate production in
the Roseburia genus (Tamanai-Shacoori et al., 2017). Bacterial
fermentation of carbohydrates in the gut are known to produce
SCFAs and butyrate, in particular, has been established as playing
a critical role in host metabolism (Kasubuchi et al., 2015) and
intestinal anti-inflammatory action through NF-kB inhibition in
colonic epithelial cells (Canani et al., 2011) and regulatory T cell
(Treg) and T helper cell 17 (Th17) response (Arpaia et al., 2013;
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FIGURE 4 | Taxa Predictive of Disease Top 30 taxa across four predictive models (adults only), random forest (RF), XGBoost, and support vector machines (SVM),
ridge regression for (A) inflammatory bowel disease (B) multiple sclerosis, (C) rheumatoid arthritis and (D) general autoimmunity. Features ranked by mean rank
across the four models in descending order and color indicates the rank of each taxa in each model. Log fold change of disease vs. healthy for each taxon.
*Indicates that the taxa highlighted was identified as being highly study specific (Supplementary Figure 3).
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FIGURE 5 | Disease vs. disease comparison models. Model (A) AUCs and (B) F1 scores when predicting diseased samples when compared against other disease.
Taxa consistently identified in multiple comparison models for (C) inflammatory bowel disease (IBD), (D) multiple sclerosis (MS), and (E) rheumatoid arthritis (RA).

Smith et al., 2013). Further, Roseburia has a known anti-
inflammatory role in the intestine (Lin and Zhang, 2017) and it’s
positive association with butyrate is consistent with a deficiency
in this genus being highly predictive of IBD (Figure 5C).

In models of RA, reduced abundance of Faecalibacterium
was found to be predictive of disease (Figure 5E) and this
bacterium was found to be significantly positively correlated with
a number of metabolites including the vitamin B metabolites
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FIGURE 6 | Metabolites significantly correlated with disease-predictive taxa: (A) Faecalibacterium, (B) Roseburia, (C) Akkermansia, (D) Bilophila, (E) Anaerotruncus,
and (F) Holdemania. Spearman correlation coefficient scores plotted and shaded by adjusted p-value for 6 taxa found to be predictive of IBD, MS, and RA based on
the multiple disease model comparisons.

riboflavin, nicotinate and pantothenate; nucleotides adenine,
guanine and uracil; and the SCFA butyrate. As a butyrate
producer, Faecalibacterium is generally considered beneficial
(Sokol et al., 2008), a point that is further highlighted by
its positive correlation with B vitamins which have been
shown to play important roles in immune function and
both dietary and gut-derived vitamin B help to modulate
immune homeostasis (Suzuki and Kunisawa, 2015; Hosomi
and Kunisawa, 2017). Faecalibacterium was also found to be
negatively associated with a number of acylcarnitines and
cholesterol esters (Figure 6A).

Increased abundance of Akkermansia and Holdemania were
found to be predictive of MS (Figure 5D). Akkermansia showed
negative associations with the bile acid components taurocholate,
bile acid glycocholate and fatty acid anions 3-hydroxyoctanoate
and caproate (Figure 6C). The identification of bile acids
associated with a number of our taxa is consistent with several
studies showing an integral role of the gut bile acid pool as a
modulator of host immune response and inflammation (Hang
et al., 2019; Song et al., 2020). Holdemania had increased levels
of the artificial sweetener, acesulfame, and the benzyl cyanide,
hydroxybenzene acetonitrile (Figure 6F). Lastly, Bilophila, was
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found to be increased in RA (Figure 5E) and positively associated
with the branched chain amino acid alloisoleucine and the lysine
metabolite, 2-aminoadipate (Figure 6D).

DISCUSSION

In this analysis, we used data from 42 studies investigating
the role of the human gut microbiome in autoimmune disease,
assessing both general autoimmunity, and specific diseases.
Since it is not always possible to find consistent differences
using traditional meta-analysis methods, we applied classification
algorithms to predict whether a sample comes from a healthy
control or an autoimmune disease sample across multiple studies.
We specifically used random forest, XGBoost, ridge regression
and SVM RFE as these algorithms are capable not only predicting
the disease status of the samples, but also ranking the features
based on how important they are for the prediction.

Random forest has a long history in microbiome studies and
has proven to be a robust algorithm that performs well on sparse
unbalanced datasets. XGBoost is quickly gaining popularity and
uses both types of regularization: L1 and L2 which prevents model
from overfitting and it has in-built capability of handling sparse
data and missing values. While random forest employs a bagging
strategy, where each tree is provided with a full set of features
and a sample of the data with replacement, XGBoost uses a
boosting strategy, which is based on sequential training of shallow
trees where each tree tries to correct the errors by the previous
trees. Interestingly, both algorithms showed similar performance
on our datasets. Further, we applied SVM RFE with a radial
kernel, an algorithm that defines a non-linear hyperplane that
maximizes the boundary between the two classes. In addition,
SVM RFE utilizes recursive feature elimination, which is a
wrapper algorithm that starts by training the model with all
the features where the least important feature is eliminated, and
it repeats this process until the best performance is reached.
Due to the need to train the model repeatedly, SVM RFE
requires significantly more training time than a regular SVM.
For comparison we also used ridge regression, which is logistic
regression with L2 regularization. Since it is a simpler model
that captures only linear relations, which might be not sufficient
enough to capture connections in the microbiome community, it
did not perform as well as the other three models. A recent paper
by Topçuoğlu et al. (2020) evaluating the application of 7 diverse
machine learning models to microbiome data found similar
results to ours, with tree-based models performing best but with
logistic regression with L2 regularization closely following.

Connections between the gut microbiome and general
autoimmunity have been made by studies investigating the
role of human leukocyte antigen (HLA) gene polymorphisms
in autoimmunity risk in a number of diseases including
type 1 diabetes (Jerram and Leslie, 2017), spondyloarthritis
(Kopplin et al., 2016), Behcet’s disease (Ohno et al., 1982),
and Celiac disease (Karell et al., 2003) explained through
the impact of HLA on the amino acid sequence in class
II major histocompatibility complex (MHC). It has been
hypothesized that these polymorphisms may be involved in
immune response in the gut and could be a link between

autoimmune disease and the microbiome composition (Russell
et al., 2019). Interestingly, one of the top features identified by our
IBD model, Peptostreptococcaceae (Figure 4), was also identified
as being associated with HLA risk alleles in a T1D risk study.
This taxa was found to be significantly associated with a lower
HLA genetic risk of autoimmunity, identifying it as a potential
environmental trigger for autoimmune disease and warranting
further study in IBD genetic risk based on our results (Russell
et al., 2019). We also identified a number of additional genera
that were consistently predictive of disease. For example, reduced
levels of Lachnospiraceae Clostridium and Mogibacteriaceae were
identified as a top feature in all four of our disease models and
serve as possible factors further connecting the gut microbiome
and autoimmunity (Figure 4).

In addition to identifying taxa predictive of general
autoimmunity we were able to identify a number of novel
taxa specific to IBD, MS, and RA. Although several of these taxa
have been previously associated with these diseases, conflicting
and inconsistent results have been common. To try to circumvent
these limitations, we have reanalyzed a large number of available
gut microbiome studies to provide a broad perspective on the
connection between the microbiome and specific disease. Our
analysis has recapitulated several recent articles connecting
the microbiome with autoimmunity and has also identified a
number of novel taxa that may be related to these pathologies. For
example, we found a depletion in Roseburia, Ruminococcaceae
in IBD compared with controls, consistent with other studies
of IBD (Duvallet et al., 2017) and identified Akkermansia as a
consistently predictive taxa for MS, an organism which has been
shown to interact with spore-forming bacteria to worsen the
impact of MS-associated microbiota (Cekanaviciute et al., 2018).

Further, 6 of the taxa we identified as being predictive of
autoimmune disease were correlated with metabolites that have
been potentially involved with autoimmunity and inflammation.
Recent publications have identified a number of bile acids
(Hang et al., 2019; Song et al., 2020), triacylglycerols (Franzosa
et al., 2019), vitamin B (Salem and Wadie, 2017; Lloyd-
Price et al., 2019), and acylcarnitine (Lloyd-Price et al., 2019)
metabolites involved immune response and the microbiome,
many of which we also found to be significantly associated
with our most predictive taxa. Histamine, along with taurine
and spermine which were also highlighted by our analysis, have
been found to help shape the host-microbiome relationship
through the regulation of the NLRP6 inflammasome signaling
(Levy et al., 2015). Further, we identified an association between
IBD and RA predictive taxa, Roseburia and Faecalibacteria,
with the SCFA butyrate, which among other SCFAs has
been shown to inhibit histone deacetylases (HDACs) and
inhibit immune response through Treg regulation and as
ligands for G-protein coupled receptors with downstream anti-
inflammatory effects (Smith et al., 2013; Rooks and Garrett,
2016; Haase et al., 2018). The association identified between
metabolites and taxa could be either due to the impact of that
metabolite on the growth of the taxa, the metabolite being a
produced by said taxa, or the metabolite negatively associating
growth of an inhibitory species, and thus must be followed
up by a more targeted approach to understand the precise
biological mechanism.
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Duvallet et al. (2017), completed a similar meta-analysis
study in 2017 looking across 10 disease types (arthritis, autism
spectrum disorder, Crohn’s disease, Clostridium difficile infection,
liver cirrhosis, colorectal cancer, enteric diarrheal disease,
HIV infection, liver diseases, minimal hepatic encephalopathy,
non-alcoholic steatohepatitis, obesity, Parkinson’s disease,
psoriatic arthritis, rheumatoid arthritis, type I diabetes, and
ulcerative colitis) to identify disease-specific and shared
taxa. They too, identified a number of genera associated
with more than one disease, including Lachnospiraceae
and Ruminococcaceae families and several members of the
Lactobacillales order and showed the strengths of cross disease
comparison using publicly available data. Studies delving into
specific disease subcategories, such as this study focused on
autoimmune disease, build upon their original study. Further,
our reanalysis focused more acutely on investigation of inter-
study batch effects and methods of reducing the impact of
these on downstream analysis. Since our dataset is immensely
heterogenous, we had to tackling this issue creatively. Before
using machine learning we used a percentile normalization
approach implemented in QIIME 2 which was unable to address
the batch effects in his dataset and therefore was not used in
our downstream analyses and disease vs. healthy or disease
vs. disease models.

We understand there are several limitations of this study.
Firstly, the sample size is relatively small for machine learning
reducing model reliability. As additional data is generated
on larger cohorts from different ages and different cultural
backgrounds we can continue to develop and run similar models
to further elucidate how gut microbiome promotes autoimmune
diseases. Additionally, the differences in sequencing platform,
geography and subject characteristics provide confounders
that are difficult to remove from the dataset post hoc.
Cautious evaluation of taxa identified by our methods in
addition to the use of control models testing the ability to
predict by study rather than disease were used to combat
this issue, however we are aware that these confounders
remain. Future analysis further evaluating how each of these
study design techniques and participant make-up effects the
results of a microbiome study would be of great benefit
to the community.
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