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The type 2 diabetes pandemic in recent decades is a huge global health threat. This pandemic is primarily attributed to the surplus
of nutrients and the increased prevalence of obesity worldwide. In contrast, calorie restriction and weight reduction can drastically
prevent type 2 diabetes, indicating a central role of nutrient excess in the development of diabetes. Recently, the molecular links
between excessive nutrients, organelle stress, and development of metabolic disease have been extensively studied. Specifically,
excessive nutrients trigger endoplasmic reticulum stress and increase the production of mitochondrial reactive oxygen species,
leading to activation of stress signaling pathway, inflammatory response, lipogenesis, and pancreatic beta-cell death. Autophagy
is required for clearance of hepatic lipid clearance, alleviation of pancreatic beta-cell stress, and white adipocyte differentiation.
ROS scavengers, chemical chaperones, and autophagy activators have demonstrated promising effects for the treatment of insulin
resistance and diabetes in preclinical models. Further results from clinical trials are eagerly awaited.

1. Introduction

Type 2 Diabetes Mellitus and Obesity: The Role of Nutrient
Oversupply. Type 2 diabetes mellitus (T2DM) has become a
global pandemic with huge health impact in recent decades.
T2DM is a chronic progressive disorder characterized by
peripheral insulin resistance in skeletal muscle, liver, and
adipose tissue and the failure of pancreatic beta-cells to com-
pensate for peripheral insulin resistance. Peripheral insulin
resistance usually appears before the onset of hyperglycemia.
Attenuated insulin action leads to reduced glucose uptake
in skeletal muscle, reduced glucose uptake and increased
lipolysis in adipose tissue, and decreased glycogen synthesis

and increased glucose output of the liver, resulting in elevated
plasma glucose and fatty acid levels [1]. To compensate
for peripheral insulin resistance, pancreatic 𝛽-cells, which
constitute only ∼1% of pancreatic mass, have to dramatically
increase proinsulin synthesis, imposing heavy biosynthesis
burden on 𝛽-cells. Ultimately, pancreatic 𝛽-cells fail to over-
come the resistance and frank hyperglycemia develops.

Obesity is the major driver of insulin resistance and
T2DM. Obesity results from chronic imbalance of energy
intake in excess of energy expenditure. Large prospective
studies showed that lifestyle modification including diet
restriction and exercise prevented the progression from
prediabetes to diabetes by ∼60% [2, 3]. In rhesus monkeys,
long-term caloric-restricted diet drastically reduces incident
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diabetes or prediabetes [4]. These data clearly demonstrate
excessive nutrient is critical for the development of obesity,
leading to insulin resistance and T2DM.

Molecular Mechanism of Insulin Resistance. The molecular
mechanism of insulin resistance is still not fully elucidated.
Binding of insulin to insulin receptor triggers tyrosine
autophosphorylation of the insulin receptor, which in turn
phosphorylates the adaptor proteins insulin receptor sub-
strate (IRS) proteins on tyrosine residues [5]. Tyrosine-
phosphorylated IRS proteins recruit phosphoinositide-3-
kinase (PI3K), a heterodimer consisting of a regulatory
subunit p85 and a tightly associated catalytic subunit p110.
Binding of the p85 regulatory subunit to phosphorylated
IRS relieves catalytic subunit p110 and initiates a complex of
signaling cascades that mediates downstream insulin action.

IRS proteins harbor several serine/threonine phosphory-
lation sites, which served as negative regulatory nodes that
block insulin signaling triggered by tyrosine phosphorylation
[6]. Several serine/threonine kinases including the cellular
nutrient sensor mammalian target of rapamycin (mTOR)
and ribosomal S6 kinase 1 (S6K1), the stress mediators c-Jun
NH2-terminal kinases (JNK), and the proinflammatory I𝜅B
kinase 𝛽 (IKK𝛽) and protein kinase 𝜃 (PKC-𝜃) block insulin
signaling by serine-phosphorylation of IRS [6].

2. The Role of Endoplasmic Reticulum
Stress and Unfolded Protein Response
(UPR) in Diabetes and Obesity

The ER is a specialized organelle essential for synthesis and
folding of secreted and ER-resident proteins, maintenance of
intracellular calcium homeostasis, and lipid synthesis. The
protein concentration in ER lumen is very high. Therefore,
increased demand for protein synthesis or accumulation of
misfolded protein in the ER luminal causes “ER stress,”
which triggers conserved transcriptional and translation
programs, termed unfolded protein response (UPR), to
cope with the ER stress [7]. The UPR are mediated by
three ER membrane-bound mediators including inositol-
requiring enzyme-1 (IRE-1), PKR-like endoplasmic reticulum
kinase (PERK), and activating transcription factor 6 (ATF6),
which are bound by the abundant ER chaperones glucose-
regulated protein 78 (GRP78) in unstressed conditions. In
stressful conditions when misfolded proteins accumulated,
GRP78 chaperones are sequestered by misfolded proteins,
releasing these UPR mediators. IRE1, an ancient ribonucle-
ase and the oldest branch of UPR, cleaves 26-bp segment
from the mRNA of x-box binding-1 (XBP-1) gene, creating
an active/splice form of XBP-1 (XBP-1s). XBP-1s launches
transcriptional programs to increase chaperone production,
membrane biosynthesis, and gradation ofmisfolded proteins.
Release of ATF6 from ER membrane unmasks its Golgi
localization sequence. After processing by two proteases in
Golgi, ATF6 is translocated to the nucleus to regulate the
expression of genes encoding chaperones, enzymes for pro-
tein degradation, and ER membrane biogenesis. The release
of PERK form membrane leads to its oligomerization and

autophosphorylation. Activated PERK phosphorylates the
eukaryotic initiation factor 2𝛼 (eIF2𝛼), thereby suppressing
general mRNA translation. However, specific mRNAs are
preferentially translated when eIF2𝛼 is inhibited, including
the transcriptional factor ATF4. Two downstream genes
of ATF4 are the proapoptotic transcription factor C/EBP
homologous protein (CHOP) and the growth arrest andDNA
damage–inducible 34 (GADD34) which counteracts PERK’s
action by dephosphorylating eIF2𝛼, thus promoting transla-
tional recovery. Collectively, the UPR relieves ER stress by
decreased global protein synthesis, increased degradation of
misfolded proteins, promoting chaperone synthesis, expan-
sion of ER membrane volume, and triggering cell death [7].

2.1. Nutrient Excess, ER Stress, and Insulin Signaling. Several
lines of evidence in human and mice indicate that chronic
nutrient excess causes ER stress [8]. In contrast, ER stress
is reduced by weight loss [9, 10]. Genetically manipulated
mice models clearly demonstrate that ER stress and UPR
influence insulin signaling and glucose homeostasis (Table 1,
Figure 1(a)). Xbp1 haploinsufficient mice show abnormal
glucose intolerance and impaired insulin signaling in adipose
tissue and liver on high-fat diet (HFD) [11]. The increased
insulin resistance is mediated, at least in part, through IRE1-
dependent activation of JNK. Conversely, hepatic overex-
pression of Xbp1 lowers glucose in mice through interaction
with FoxO1, a key transcriptional factor of gluconeogenesis
[12], or uridine diphosphate (UDP) galactose-4-epimerase,
an enzyme involved in galactose metabolism [13]. Mice with
homozygous mutation at the eIF2𝛼 phosphorylation site
(Ser51Ala) died at neonatal stage with defective gluconeo-
genesis [14]. Intriguingly, hepatic overexpression of Gadd34,
which encodes an eIF2𝛼-specific phosphatase that selectively
counteracts PERK-eIF2𝛼 action, results in improved insulin
sensitivity and diminished hepatic steatosis on HFD [15].
Hepatic overexpression of Atf6 reduces gluconeogenesis [16]
while silencing of hepaticAtf6 increases gluconeogenesis [16].
The effect ofATF6 to suppress gluconeogenesis ismediated by
disrupting the interaction between cAMP response element-
binding protein (CREB) and transducer of regulated CREB
protein 2 (TORC2), thereby decreasing the expression of glu-
coneogenic genes [16]. In addition, overexpression of chap-
erone GRP78 alleviates ER stress, restores insulin sensitivity,
and resolves fatty liver in obesemice [17]. Similarly, deficiency
of ER chaperoneORP150 results in impaired insulin signaling
and impaired glucose tolerance, while overexpression of
Orp150 improves glucose tolerance and insulin signaling in
obese mice [18]. These pieces of evidence strongly support
that UPR modulates glucose homeostasis.

Mechanistically, all three canonical branches of UPR
have been shown to promote inflammatory pathways. The
activated IRE-1 recruits the tumor necrosis factor recep-
tor associated factor 2 (TRAF2) and the apoptosis signal-
regulating kinase 1 (ASK1) to the ER membrane, thereby
activating JNK [19]. The PERK signaling has been shown to
inhibit the translation of IKK𝛽, the main negative regulator
of NF-𝜅B, through phosphorylation of eIF2𝛼 [20]. ATF6
has also been shown to activate the NF-𝜅B pathway [21].
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Table 1: Genetically modified mice model linking organelle stress to metabolic diseases.

Model Gene function Tissue Phenotypes

Xbp1 UPR Global
haploinsufficiency Weight gain, glucose intolerance, and insulin resistance on HFD [11]

Xbp1 UPR Liver-specific KO Diminished hepatic cholesterol and triglyceride secretion and hepatic
lipogenesis [22]

Xbp1 UPR Liver-specific OE
Reducing serum glucose concentrations and increasing glucose
tolerance [12] Fasting and postprandial hypoglycemia; increased
hepatic triglyceride content [13]

Xbp1 UPR 𝛽-cell-specific KO Hyperglycemia and glucose intolerance resulting from decreased
insulin secretion [14]

Perk UPR
Mammary

epithelium-specific
KO

Reduced accumulation of lipid content and the milk produced [23]

Perk UPR 𝛽-cell-specific KO Hyperglycemia associated with loss of islet and 𝛽-cell architecture
[29, 30]

eIF2𝛼 UPR Phosphorylation site
mutation Defective gluconeogenesis and deficiency of pancreatic beta-cell [14]

Gadd34 UPR Liver-specific OE Lower liver glycogen levels, fasting hypoglycemia, diminished
hepatics steatosis [15]

Atf6 UPR Liver-specific
OE/silencing Increased hepatic glucose output/lowered hepatic glucose output [16]

Atf6 UPR Global KO Hepatic steatosis [24]

Atf6,
eIF2𝛼, Ire1 UPR

Global
KO/phosphorylation

site mutation
Hepatic steatosis [25]

Chop UPR Global KO Delayed the onset of diabetes and beta-cell apoptosis [32]

Grp78 Chaperone Liver-specific OE Reduced hepatic triglyceride and cholesterol contents and improved
insulin sensitivity improved [17]

Orp150 Chaperone Liver-specific
OE/Silencing

Improved insulin resistance and ameliorated glucose
tolerance/increased insulin resistance [18]

Aif
Mitochondrion-

localized
flavoprotein

Muscle and
liver-specific KO

Improved glucose tolerance, reduced fat mass, and increased insulin
sensitivity [49]

Pgc-1𝛼 Mitochondrial
biogenesis Global KO Resistance to diet-induced obesity and insulin resistance [50, 51]

Tfam Mitochondrial DNA
transcription

Muscle-specific and
adipose-specific KO Improved glucose disposal [52, 53]

Tfam Mitochondrial DNA
transcription 𝛽-cell-specific KO Reduced 𝛽-cell mass and insulin secretion [61]

Cisd1 Mitochondrial iron
transport

Global and
liver-specific OE

Massive expansion of adipose tissue but improved insulin sensitivity
[54]

Fxn
Assembly of

iron-sulfur cluster in
mitochondria

𝛽-cell-specific KO Increased islet oxidative stress, reduced islet mass, and diabetes [62]

Atg5 Autophagy Adipose-specific KO Impaired adipocyte differentiation [124]

Atg5 Autophagy Global OE Lean, enhanced glucose tolerance, insulin sensitivity, and extended
lifespan [125]

Atg7 Autophagy Global KO Increased hepatic ER stress and impaired insulin sensitivity [69]

Atg7 Autophagy 𝛽-cell-specific KO Reduction of 𝛽-cells mass, reduced insulin secretion, mitochondria
swelling, and lower ATP production [74, 75]

Atg7 Autophagy Adipose-specific KO Lean, browning of white adipose tissue, increased fatty acid oxidation,
and improved insulin sensitivity [82, 83]

Atg7 Autophagy Muscle-specific KO
Reduced weight and body fat, enhanced glucose tolerance and insulin
sensitivity, enhanced lipolysis and fatty acid oxidation, and increased
FGF21 level [85]



4 Analytical Cellular Pathology

Table 1: Continued.

Model Gene function Tissue Phenotypes

Atg7 Autophagy AgRP
neuron-specific KO Lean with decreased food intake [126]

Atg7 Autophagy POMC
neuron-specific KO

Increased body weight and food intake,
impaired glucose tolerance [127, 128]

Atg7 Autophagy
Myf 5+

progenitors-specific
KO

Impaired brown adipose tissue and skeletal muscle differentiation,
browning of white adipose tissue, increased energy expenditure,
increased body temperature, impaired glucose tolerance [129]

Atg7 Autophagy 𝛽-cell-specific KO in
hIAPP transgenics Decreased 𝛽-cell mass and diabetes [77–79]

Atg7 Autophagy
Global

haploinsufficiency in
ob/obmice

Reduces ER stress; improves insulin sensitivity and glucose tolerance
ob/obmice [84]

Atg7 Autophagy Liver-specific OE in
ob/obmice Improved insulin sensitivity and glucose tolerance [69]

Atg12 Autophagy POMC
neuron-specific KO

Weight gain, adiposity, and impaired glucose tolerance under HFD
[130]

KO: knockout; OE: overexpression; UPR: unfolded protein response; HFD: high-fat diet; AgRP: agouti-related peptide; POMC: proopiomelanocortin; hIAPP:
human islet amyloid polypeptide.

Both NF-𝜅B and JNK pathways are critical mediators of
inflammatory response that impairs insulin signaling by
serine phosphorylation of IRS1.

2.2. ER Stress and Lipid Synthesis. In addition to glucose
homeostasis, the three UPR branches also regulate lipid
synthesis (Table 1, Figure 1(a)). Selective deletion of Xbp-
1s in the liver resulted in marked diminished hepatic
cholesterol and triglyceride secretion and hepatic lipogen-
esis by downregulating genes involved in fatty acid syn-
thesis [22], whereas liver-specific overexpression of Xbp-1s
increases hepatic triglycerides content [13]. Targeted dele-
tion of Perk in mammary gland inhibits lipogenic enzymes
expression, resulting in reduced lipid content and milk
production [23]. Atf6 knockout mice developed hepatic
steatosis upon ER stress through regulation of genes involved
in lipogenesis [24]. Similar phenotypes were observed in
liver-specific Ire1-knockout mice and eIF2𝛼 loss-of-function
mutation [25].

2.3. ER Stress and Insulin Secretion. Pancreas is exocrine
and endocrine organ with heavy protein synthesis load.
A transgenic green fluorescent mouse model for dynamic
monitoring of ER stress detects significant ER stress signal
(Xbp1mRNA splicing) in the pancreas 16 days after birth [26].
Several lines of evidence showed that UPR affect pancreatic
islet survival and function (Table 1, Figure 1(a)). For example,
mice with 𝛽-cell-specific deletion of Xbp-1 displayed hyper-
glycemia and glucose intolerance resulting from decreased
insulin secretion [27]. Translation attenuation through eIF2𝛼
phosphorylation prevents the oxidative stress and maintains
the differentiated state of 𝛽-cells [28]. Preventing eIF2𝛼
phosphorylation in 𝛽-cells also causes hyperglycemia, indi-
cating a significant role in PERK-eIF2𝛼 for islet survival
[14]. Perk-deficient mice develop severe hyperglycemia due
to reduced islet mass [29, 30]. In human, a loss-of-function

mutation in Perk causes a heritable form of juvenile diabetes
(the Wolcott-Rallison syndrome) (Table 2), characterized by
severe defects in pancreatic 𝛽-cells [31]. Furthermore, loss
of CHOP, a downstream proapoptotic transcription factor
of PERK-eIF2𝛼 arm, protects islets from apoptosis in the
diabeticmice [32].Hence, the twomajor pathological features
of type 2 diabetes including peripheral insulin resistance and
defective insulin secretion are both affected by ER stress and
UPR.

3. The Role of Mitochondrial Dysfunction in
Diabetes and Obesity

3.1. Mitochondrial Dysfunction and Insulin Resistance. Mito-
chondrion is a specialized organelle where tricarboxylic acid
cycle, oxidative phosphorylation, and fatty acid 𝛽-oxidation
occur. Reduced mitochondrial phosphorylation and fatty
acid 𝛽-oxidation are consistently observed in skeletal muscle
and liver of insulin-resistant human [33–35]. Furthermore,
expression of genes involved in mitochondrial oxidative
phosphorylation is coordinately reduced in insulin-resistant
or type 2 diabetic subjects [36, 37]. Therefore, it is long
hypothesized that, in the presence of excessive nutrient
flux, defective mitochondria lead to increased superoxide
production and fatty acid accumulation in skeletal muscle
and liver, leading to insulin resistance.

In support of these findings, HFD has been shown
to increase mitochondrial reactive oxygen species (ROS)
emission and shift the cellular environment to oxidized state
in muscle in mice and human [38–40]. Mitochondrion-
targeted overexpression of catalase reduces mitochondrial
ROS emission and prevents diet-induced insulin resistance
in mice [38]. ROS has been shown to activate the proinflam-
matory JNK and through modulation of cysteine residue or
IKK𝛽 [41–43], which in turn impairs insulin signaling via
serine phosphorylation of IRS-1 (Figure 1(b)).
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Figure 1: Continued.
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Figure 1: (a) Endoplasmic reticulum (ER) stress response and unfolded protein response (UPR) are linked to insulin resistance, inflammation
lipogenesis, and pancreatic beta-cell survival. (b) Defective mitochondrial function leads to inflammation, insulin resistance, and reduced
insulin secretion. (c) Autophagy regulates hepatic lipogenesis, adipocyte physiology, pancreatic beta-cell function, and appetite control. UPR:
unfolded protein response; ROS: reactive oxygen species; NAD: nicotinamide adenine dinucleotide; NADH: reduced nicotinamide adenine
dinucleotide; ADP: adenosine diphosphate; ATP: adenosine triphosphate; TCA: tricarboxylic acid cycle; KATP: ATP-dependent potassium
channel; UQ: ubiquinol; FGF21: fibroblast growth factor-21; AgRP: agouti-related peptide; POMC: proopiomelanocortin.

In addition to ROS, defective mitochondrial fatty acid
𝛽-oxidation leads to accumulation of triglycerides and fatty
acids intermediates (e.g., diacylglycerol or ceramide) that
activate PKC-𝜃, a serine/threonine kinase, thus attenuating
insulin signaling [44, 45] (Figure 1(b)). Knockout of acetyl-
CoA carboxylase 2 (Acc2), an enzyme generating malonyl-
CoA which is a strong inhibitor of fatty acid oxidation,
resulted in increased fatty acid oxidation, reduced adiposity,
and improved insulin sensitivity [46]. Fat infusion increases
fatty acids intermediates accumulation inmuscle and induces
insulin resistance in humans [47]. In contrast, pharmaco-
logical inhibition of ceramide (a fatty acid intermediate)
production prevented fat-induced insulin resistance in mice
and human [48] (Figure 1(b)).

However, whether the observed reduced mitochondrial
function in insulin-resistant human is causative or com-
pensatory for the development of insulin resistance is not

certain in experimental mice model. Muscle- or liver-specific
deletion of Aif, a mitochondrial protein essential for respira-
tory chain function, leads to decreased mitochondrial oxida-
tive phosphorylation but improves insulin sensitivity [49].
Knockout of peroxisome proliferator-activated receptor-
gamma coactivator 1-alpha (Pgc1𝛼), a master regulator of
mitochondrial biogenesis, resulted in decreased mitochon-
drial oxidative phosphorylation but protection from diet-
induced obesity and insulin resistance in mice [50, 51].
Similarly, muscle- or adipose-specific knockout of the tran-
scription factor A, mitochondria (Tfam), a key transcription
factor for mitochondrial DNA transcription, causes abnor-
mal mitochondrial morphology and function but improved
glucose disposal [52, 53]. Furthermore, lower rate of fatty acid
beta-oxidation and compromised mitochondrial oxidative
phosphorylation caused by overexpression of the CDGSH
iron sulfur domain 1 protein (Cisd1), which encodes an outer
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Table 2: Human hereditary syndrome linking organelle stress and diabetes mellitus.

Disease Gene Function Phenotypes
Wolcott-Rallison
syndrome PERK UPR Neonatal or early-infancy diabetes, epiphyseal dysplasia,

osteoporosis, and growth retardation [31]

Wolfram syndrome WFS1 Negative regulator of
UPR Neurological dysfunctions and diabetes [131]

Friedreich’s ataxia FXN Assembly of iron-sulfur
cluster in mitochondria Ataxia, cardiac dysfunction, and diabetes [63]

Kearns-Sayre syndrome Large deletion of
mitochondrial DNA Respiratory chain Ataxia, weakness, ptosis, pigmentary retinopathy, and

diabetes [58]
MELAS (Mitochondrial
encephalomyopathy, lactic
acidosis, and stroke-like
episodes)

Mitochondrial tRNA tRNA Seizure, ataxia, hemiparesis, cortical blindness, diabetes,
and short stature [58]

mitochondrial membrane protein blocking iron transport
iron into the mitochondria, resulted in massive fat accumu-
lation but improved insulin sensitivity [54] (Table 1). These
data suggest that mitochondrial dysfunction does not cause
insulin resistance.

From electrochemical point of view, mitochondrial
superoxide (mostly from complex I) is generated when
complex I is fully reduced with electrons but downstream
electron transfer components are also fully reduced and
thus cannot accept any more electrons (“electron jam”).
In this situation, the saturated electrons in complex I leak
and react prematurely with oxygen to form superoxide, a
partially reduced form of molecular oxygen. This occurs
when adenosine triphosphate (ATP) synthesis is not required
or when the reduced nicotinamide adenine dinucleotide
(NADH)/nicotinamide adenine dinucleotide (NAD+) ratio is
high [55]. Formitochondria that are activelymaking ATP, the
electrons are passed smoothly in the electron transfer train
and hence the extent of superoxide production is low. When
the ratio of NADH/NAD+ is low (such as diet restriction),
complex I is not reduced so that electron leak is also low
[55]. It is actually not certain whether reducedmitochondrial
biogenesis or reduced oxidative phosphorylation rate by
genetic manipulation would actually decrease or increase
ROS production.This may explain the controversies between
insulin resistance and various mitochondrial dysfunction
models.

Another point of view, termed “mitohormesis” holds
that increased ROS production from mitochondria may
act as downstream effectors that trigger nuclear compen-
satory response including antioxidant defense and metabolic
adaptation. An example comes from the observation that
antioxidant treatment blocks the extension of life induced by
nutrient deprivation in worm [56]. Mildmitochondrial stress
appears to be beneficial for organism to adapt for subsequent
metabolic perturbations [57].

3.2. Mitochondrial Dysfunction and Insulin Secretion. Mito-
chondrial ATP generation plays a pivotal role in insulin
secretion of pancreatic 𝛽-cell. Increased mitochondrial ATP

production in response to hyperglycemia closes the ATP-
sensitive potassium channel, leading to membrane depolar-
ization, opening of voltage-sensitive calcium channel, cal-
cium ion influx, and insulin granule exocytosis (Figure 1(b)).
Several forms of syndromic mitochondrial diseases are
characterized with diabetes [58] (Table 2). Mutations in the
mitochondrial DNA (mtDNA), especially those in tRNA
genes such as A3243G mutation, cause approximately 0.5–
1% of all types of diabetes [59, 60]. Consistently, 𝛽-cell-
specific disruption of Tfam causes severe mtDNA depletion,
deficient oxidative phosphorylation, abnormal appearing
mitochondria in islets, and impaired insulin secretion [61].
Similarly, targeted disruption of frataxin, a mitochondrial
iron-binding protein in pancreatic 𝛽-cell, causes increased
islet ROS, decreased islet mass, and diabetes in mice [62].
Furthermore, patients with mutations in the frataxin gene
develop diabetes in 23% of cases [63] (Table 2).

4. The Role of Autophagy in
Diabetes and Obesity

Autophagy is a cellular housekeeping process which traf-
ficked cytoplasmic misfolded protein and damaged organ-
elles for lytic degradation and recycle, hence maintaining a
normal cellular function [64]. During autophagy, part of the
cytoplasm containing sequestered materials is bounded by
a double membrane to form an autophagolysosome, which
further fuses with lysosome for degradation. This process
involves induction, cargo recognition, and nucleation that are
tightly controlled by a group of over 30 autophagy-related
(ATG) proteins [65].

Autophagy is originally considered as a protein turnover
process to replenish amino acid pool during starvation. This
signaling process is converged to the mammalian target of
rapamycin complex 1 (mTORC1) pathway and is strongly
affected by the nutrient level or growth factors such as
insulin. During nutrient-rich condition, mTORC1 is acti-
vated to phosphorylate Atg1/UNC51-like kinase 1 (ULK-1)
complex and inactivate the autophagy process. Conversely,
during starvation, the adenosine monophosphate (AMP) to
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Figure 2: Interactions between endoplasmic reticulum (ER) stress, mitochondrial reactive oxygen species (ROS), and autophagy during
nutrient deficiency and excess.

ATP increases. The energy depletion is sensed by AMP-
activated protein kinase (AMPK) which activates autophagy
by blocking mTORC1 activity and direct phosphorylation
of Atg1/ULK1 [66]. A study using transgenic mouse model
expressing a fluorescent marker of autophagy revealed that
starvation activates autophagy in liver, heart, skeletal muscle,
and kidney [67]. During starvation, autophagy provides
amino acid for cellular fueling, protein synthesis, gluconeo-
genesis, and lipid mobilization.

In stressful condition such as increased mitochondrial
ROS, ER stress, or accumulation of excessive lipid droplet,
autophagy is activated to degrade defective mitochondria
(mitophagy), stressed ER (ER-phagy), or accumulated lipid
(lipophagy) to remove excessive ROS, ER stress, or lipid [68]
(Figure 2).

4.1. Autophagy and Hepatic Lipid Metabolism. Obesity is
associated with downregulation of autophagy in the liver
[69]. Autophagy of lipid droplet (lipophagy) in hepatocyte
facilitates the degradation of lipid in the liver and defective
autophagy leads to massive accumulation of triglyceride,
ER stress, and insulin resistance in the liver [69, 70]. In
contrast, restoration of theAtg7 expression in liver resulted in
alleviated ER stress and improved hepatic sensitivity in obese
mice [69].

4.2. Autophagy and Insulin Secretion. Pancreatic 𝛽-cells keep
on synthesizing large amount of insulin to maintain normo-
glycemia. When the protein folding cannot keep pace with
themassive synthesis rate such as during hyperglycemia,UPR
occurred to halt the process [71]. ER-phagy is the specific
term for autophagic control to degrade excessive misfolded
protein to the lysosome for degradation and prevent insulin
secretory defects [72, 73]. Disruption ofAtg7 in pancreatic 𝛽-
cells causes ER stress, reduction of 𝛽-cells mass, and increase
in 𝛽-cells apoptosis [74, 75]. IAPP is another peptide hor-
mone released from 𝛽-cells, which normally are cosecreted
with insulin [76]. Intracellular oligomer accumulation of
human islet amyloid polypeptide (hIAPP) is toxic to 𝛽-cells,
which is a typical morphological change in T2DM. Abnor-
mal hIAPP aggregates are primary degraded by autophagy.
Transgenic mice expressing hIAPP with 𝛽-cell-specific Atg7
deletion accumulate hIAPP oligomers and develop diabetes
with increased oxidative damage and decreased 𝛽-cell mass
[77–79] (Table 1, Figure 1(c)). Density volume of autophagic
vacuoles and autophagosomes was significantly higher in 𝛽-
cells of diabetic human [80].

Mitophagy also acts to prevent the accumulation of depo-
larized mitochondria and maintain optimal 𝛽-cells mito-
chondrial function [81]. 𝛽-cells-specific Atg7 knockout mice
showed swollen mitochondria and reduced insulin secretion
(Table 1, Figure 1(c)) [75].
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Table 3: Treatment targeting organelle stress for diabetes mellitus and obesity.

Agent Specific mechanism Highest level of
studies Result

Tauroursodeoxycholic
acid Chemical chaperone Randomized

controlled trials
Improved insulin sensitivity in muscle and liver in obese
individuals [86]

Phenylbutyrate Chemical chaperone Randomized
controlled trials

Improved insulin sensitivity and beta-cell function in lipid-infused
individuals [87]

Azoramide ATF6 activators Rodents Improves insulin sensitivity and beta-cell function in obese mice
[89]

Valproate Increasing GRPP78 Rodents Ameliorates atherosclerosis and hepatic steatosis in Apoe−/−mice
[90]

L-Carnitine or
carnitine-orotate

Fatty acid transfer
for beta-oxidation

Randomized
controlled trials

Twelve of 17 studies showing improved insulin sensitivity or
glycemic control in type 2 diabetic patients or alleviation of hepatic
steatosis [98, 99]

Co-enzyme Q
10

Electron carrier
from complex I and
II to complex III

Randomized
controlled trials No net effect on glycemic control in type 2 diabetic patients [100]

𝛼-lipoic acid Antioxidant
Randomized

controlled trials;
rodent

Weight-reducing, glucose-lowering, and insulin-sensitizing effect;
prevention of hepatic steatosis [101–110]

Vitamin E Antioxidant Randomized
controlled trials

Inconsistent results on glycemic control [111–115]; reduced hepatic
steatosis [122]

N-acetylcysteine Antioxidant Rodents Prevents diet-induced obesity [116–118]

Peptide SS31
Mitochondria-

targeted antioxidant
peptide

Rodent Improved glucose tolerance in diet-induced obese mice [38]

Resveratrol SIRT1 agonist Randomized
controlled trials

Improved insulin sensitivity and glycemic control in diabetic
patients; no effect in nondiabetic patients [120];

GSK5182
Estrogen-related
receptor gamma
inverse agonist

Rodents Reduces hyperglycemia due to inhibition of hepatic
gluconeogenesis [121]

Trehalose, imanitib Enhance autophagy Rodents Improved glucose tolerance and insulin sensitivity in obese mice
[84]

Dh404 Nrf2 activator Rodents Increased viability of islet by enhancing autophagy [123]

4.3. Autophagy, Adipose Tissue, and Skeletal Muscle. In con-
trast to the role of autophagy in hepatic lipid clearance
and alleviating stress of pancreatic 𝛽-cells, the function of
autophagy in adipose tissue and skeletal muscle deserves
separate mention. Mice targeted with Atg7 disruption in
adipose tissue have reduced body fat, increased fatty acid 𝛽-
oxidation, and improved insulin sensitivity [82, 83], indicat-
ing that autophagy is required for the production of large
lipid droplets characteristic of white adipose tissue. However,
𝐴𝑡𝑔7+/−-ob/ob mice showed exacerbated insulin resistance
with elevated lipid levels [84] (Table 1, Figure 1(c)). Muscle-
specific Atg7 knockout mice exhibit lean phenotype with
increased lipolysis and 𝛽-oxidation rate in adipose tissue,
enhanced glucose tolerance, and improved insulin sensitivity
[85]. This is due to the impairment of autophagy to degrade
defective mitochondria, which leads to the fibroblast growth
factor (FGF21) release, causing lipolysis and 𝛽-oxidation rate
in adipose tissue [85]. These diverse results of the same gene
exerting different function in different organs may be a result
of noncell autonomous function.

4.4. Autophagy and Appetite Control. Furthermore, food
intake in mice with agouti-related peptide (AgRP) neuron-
specific Atg7 deletion was decreased while it increased in
proopiomelanocortin (POMC) neuron-specific Atg7 dele-
tion. The changes of the functional consequences converge
on the controlling of a commonneuropeptide,𝛼-melanocyte-
stimulating hormone (𝛼-MSH), level (Table 1, Figure 1(c)).

5. Targeting Organelle Stress for Treating
Metabolic Diseases

Chemical chaperones including tauroursodeoxycholate
(TUDCA) and 4-phenylbutyrate (PBA) have been shown to
reduce ER stress and improve insulin sensitivity in rodents
and human [86, 87] (Table 3). These two drugs have been
approved by the US Food and Drug Administration for
the treatment of primary biliary cirrhosis. Numerous small
molecules are identified to increase chaperone expression or
tomodulate specific armofUPR in vitrousing various screen-
ing strategies. For example, GSK2606414 has been shown to
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inhibit PERK kinase activity [88], azoramide to activate ATF6
[89], valproate to increase GRP78 expression [90], salubrinal
and guanabenz to inhibit eIF2𝛼 dephosphorylation [91, 92],
and 3-ethoxy-5,6-dibromosalicylaldehyde [93], STF-083010
[94], MKC-3946 [95], 4𝜇8C [96], and KIRA6 to inhibit IRE1
RNase activity [97]. Among them, valproate has been shown
to attenuate atherosclerosis and alleviate hepatic steatosis [90]
and azoramide has been shown to improve insulin sensitivity
and pancreatic 𝛽-cell function in rodent models [89].

Pharmacological approaches to alleviate mitochondrial
stress include carnitine [98, 99], Coenzyme Q

10
[100], ROS

scavengers (peptide SS31 [38], 𝛼-lipoic acid [101–110], vita-
min E, beta-carotene, vitamin C [111–114], N-acetylcysteine
[115–118], and mitoQ [119]), stimulators of mitochondrial
biogenesis (resveratrol and other sirtuin activators [120],
and estrogen-related receptor modulators [121]). Specifically,
carnitine or carnitine-orotate complex, which promotes fatty
acid 𝛽-oxidation, improves insulin sensitivity or attenuates
hepatic steatosis in most randomized clinical trials [98, 99].
Coenzyme Q1, however, showed no net effect on glycemic
control in most type 2 diabetic patients [100]. Most evidence
demonstrated that 𝛼-lipoic acid is a potent weight-reducing
and insulin sensitizing agent in human clinical trials and
rodent models [101–110]. Multiple small clinical trials inves-
tigating the effect of antioxidant vitamin E, vitamin C, and
beta-carotene on glycemic control in diabetic patients yielded
inconsistent results [111–115]. However, in a randomized
clinical trial of 247 adults with nonalcoholic steatohepatitis,
vitamin E use, as compared with placebo, was associated with
a significantly higher rate of improvement in nonalcoholic
steatohepatitis [122]. N-acetylcysteine, an approved drug for
acetaminophen intoxication andmucolysis, has been demon-
strated to prevent diet-induced obesity in rodent models
[116–118]. Significant controversies remained regarding the
metabolic action of resveratrol in human; a meta-analysis
of 11 randomized controlled trials revealed that resveratrol
significantly reduces glucose, insulin, and insulin resistance
in diabetic patients but not in nondiabetics [120] (Table 3).
Further results from clinical trials and more potent SIRT1-
activating compounds (STAC) such as SRT1720 and SRT2104
are awaited.

Various therapeutic agents may be used to enhance
autophagy. Trehalose is an autophagy enhancer which
improves the glucose intolerance of hIAPP transgenic mice
fed a HFD and further reduced hIAPP oligomer accumula-
tion and improved 𝛽-cells function [77]. Both Imatinib and
trehalose were reported to improve metabolic parameters
of 𝐴𝑡𝑔7−/−-ob/ob mice by enhanced autophagic flux [84].
Dihydro-CDDO-trifluoroethyl amide (dh404) is an Nrf2
activator which can reduce oxidative stress in isolated rat islet
by enhancing autophagy [123] (Table 3).

6. Future Perspectives

The interaction between ER stress, mitochondrial oxidative
stress, and autophagy is complex. Most small molecules used
to date do not have the required specificity. Furthermore,
the multiple intrinsic feedback pathways, the cross-organ

communication, and the interplay between autophagy and
carcinogenesis make it difficult to target a single pathway
to treat metabolic diseases without triggering unwanted side
effects. Currently, the most efficient and safe way to reduce
organelle stress and to treat metabolic disease is probably
prevention of overnutrition.
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