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Abstract: Periodontal disease is a major public health issue, and various periodontal therapies
have been performed to regenerate periodontal tissues. The periodontium is a complex structure
composed of specialized tissues that support the teeth, and most periodontal surgeries are invasive
procedures, including a resection of the gingiva or the alveolar bone. The periodontal wound healing
process is slightly different from cutaneous wound healing and is similar to fetal healing, being
almost scar-free. The aim of this review article is to provide an overview of periodontal wound
healing and discuss various surgical and pharmaceutical approaches to achieve stable wound healing
and improve the treatment outcomes. In addition, detrimental and limiting factors that induce a
compromised prognosis are discussed, along with the perspective and future direction for successful
periodontal tissue regeneration.
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1. Introduction

The periodontium acts as a supporting apparatus for the teeth and is a complex
structure consisting of soft and hard tissues [1]. The main functions of the periodontium
are to ensure that the teeth are attached to the bones; to protect the nerves, blood vessels,
and teeth from injuries; and to provide a barrier to the underlying structures from the oral
microbiome. Soft tissue includes the gingiva, mucosa, and periodontal ligament (PDL),
and hard tissue includes the cementum and the alveolar bone (Figure 1).
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The gingiva is a covering tissue that protects the alveolar bone from external stimuli
such as microbial attack or mechanical force and consists of epithelial and connective
tissues. The general risk factor of periodontal disease is oral microbial infection, which can
induce inflammation of the gingiva, and if not treated on time, it affects the periodontium in
general [2,3]. Periodontal disease is the most common oral disease with a high prevalence
of 20–50% of the world population [4]. Gingivitis and periodontitis are typical periodon-
tal diseases [1]. Gingivitis is the mildest form of periodontal disease, which is limited
to gingival inflammation and is reversible [5]. Conversely, periodontitis is irreversible,
accompanied by alveolar bone defect, can induce tooth mobility when untreated, and
finally, leads to tooth extraction [6]. Periodontal defect is caused by chronic pathological
conditions, such as periodontitis, and exhibits the loss of gingiva, periodontal ligament,
and alveolar bone. Various procedures to support the regeneration of the periodontal
tissue as well as therapeutics to enhance the wound healing process have been studied. A
specialized oral environment with saliva and oral microorganisms can affect the defect for-
mation and wound healing process. The objective of this review is to provide an overview
of periodontal wound healing and discuss the complications and factors influencing the
healing process and therapeutics for improving periodontal wound healing.

2. Normal Wound Healing

Wound healing is a dynamic process, which has been a challenge in the clinical setting
after treatment. Much effort has been focused on wound management for developing
healing techniques and new treatment approaches. Basically, the wound healing pro-
cess consists of four distinct but overlapping phases [7]: 1. hemostasis and coagulation,
2. inflammation, 3. cell proliferation, and 4. wound remodeling and maturation (Figure 2).
This general principle of wound healing also applies to periodontal wound healing [8]. The
wound healing procedure involves several types of cells, extracellular matrix, cytokines,
and growth factors. Understanding wound healing with regard to various aspects of
cells, molecules, physiology, and biochemistry is important to regenerate tissues that are
functionally and structurally indistinguishable from the original tissue and not repaired
tissue with fibrotic scars. If there is an injury that damages the vessel, hemorrhage is the
first process to begin on the wound site. Under normal conditions, a molecular machinery
for blood clot formation is immediately operated, protecting the injury site and serving
the provisional matrix for cell migration. Blood clot formation continues to the initial in-
flammatory stage, in which inflammatory cells, including polymorphonuclear neutrophils
and monocytes, are activated. These cells clean the wounds of necrotic tissue and bacteria
and secrete various enzymes for wound debridement. This inflammatory response shifts
into the late phase where macrophages move into the wound area and secrete cytokines
or growth factors for the cells involved in the wound healing process. Following the
inflammatory stage, granulation tissue formation is initiated with collagen accumulation.
Cytokines and growth factors by macrophages induce the migration and proliferation
of fibroblasts and endothelial cells into the wound site. This cell-rich granulation tissue
activates the phase of matrix formation and maturation. Fibroblasts replace the provisional
extracellular matrix by producing a new collagen-rich matrix, and the endothelial cells
are involved in angiogenesis for vascularization. Subsequently, wound epithelization is
conducted by epithelial cells from the basal layer. The granulation tissue maturation leads
to tissue regeneration or repair, which is decided by two main factors: available cells and
cell recruiting signals. The skin and gingiva, typical body covering tissues, are consid-
ered structurally and functionally homogenous tissues showing similar healing patterns
in response to injury. Both are characterized by the presence of keratinized epithelium
with underlying connective tissue, which acts as a barrier to microorganisms and other
contaminants [9].



Pharmaceuticals 2021, 14, 456 3 of 17
Pharmaceuticals 2021, 14, x FOR PEER REVIEW 3 of 18 
 

 

 
Figure 2. Wound healing process. After injury, wound healing begins with the following process: 
1. hemostasis and coagulation, 2. inflammation, 3. cell proliferation, and 4. wound remodeling and 
maturation. 

3. Distinct Characteristics of the Oral Wound 
The cutaneous and gingival tissues follow similar macroscopic healing patterns—

hemostasis, inflammation, proliferation, and remodeling of the collagen—but are accom-
panied by microscopic changes at the molecular level and show a distinguished healing 
response. In the oral cavity, wound healing occurs in warm mouth fluids containing mil-
lions of oral microorganisms that might be perceived as detrimental to the healing process 
[10]. Nevertheless, wounds in the oral cavity heal much faster compared to skin wounds, 
with rapid re-epithelialization and re-modeling resulting in minimal scar formation [11]. 
This advantage could be explained by the presence of growth factors or cytokines in the 
saliva and the important role of fibroblasts. Saliva contains a number of important mole-
cules, such as epidermal growth factors, lysosomes, and lactoferrin, which have antimi-
crobial and anti-inflammatory properties [12]. Fibroblasts are the main cells of gingival 
tissue and play an important role in wound healing, especially extracellular matrix (ECM) 
remodeling by the synthesis of ECM components (such as collagen, fibronectin, hyalu-
ronan, and elastin) and the secretion of matrix metalloproteinase and tissue inhibitor of 
metalloproteinase [13]. The only exception in the healing potential is excisional wounds 
on the hard palate. The connective tissue is very thin at palate; therefore, the depth of the 
wound can reach to the surface of cranial bone and the healing is slow [14]. Recent re-
search has revealed the molecular differences between oral and skin wound healing. Most 
studies have suggested that an oral wound is in the “primed” state for wound healing 
compared to a skin wound (Table 1) [9,15–17]. 

3.1. Attenuated Inflammatory Reaction 
Regarding the phenomenon of scarless and rapid healing, some studies have tried to 

explain it using the similarity of oral and fetal wounds that includes decreased levels of 
pro-inflammatory cytokines, such as IL-6 and IL-8 [11], and inflammatory cells, including 
macrophages and neutrophils [18], but the healing process is not identical. Compared to 
adult skin wounds, fetal wounds showed decreased levels of transforming growth factor-
β1 and increased IL-10; however, no change was seen in oral wounds. Additionally, other 
studies have suggested positive effects on the inflammation of saliva containing growth 
factors, protease inhibitors, and cytokines [19]; however, a clear explanation is still not 
characterized with controversial results [20]. Further in-depth research about the critical 
difference of oral wounds could provide good candidate biomarkers for wound healing 
acceleration materials. 

3.2. Differential Angiogenesis Pattern 
Compared to skin wounds, oral wounds exhibit reduced levels of vascular endothe-

lial growth factor expression and more muted angiogenic response, which was supported 

Figure 2. Wound healing process. After injury, wound healing begins with the following process:
1. hemostasis and coagulation, 2. inflammation, 3. cell proliferation, and 4. wound remodeling
and maturation.

3. Distinct Characteristics of the Oral Wound

The cutaneous and gingival tissues follow similar macroscopic healing patterns—
hemostasis, inflammation, proliferation, and remodeling of the collagen—but are accom-
panied by microscopic changes at the molecular level and show a distinguished healing
response. In the oral cavity, wound healing occurs in warm mouth fluids containing
millions of oral microorganisms that might be perceived as detrimental to the healing
process [10]. Nevertheless, wounds in the oral cavity heal much faster compared to skin
wounds, with rapid re-epithelialization and re-modeling resulting in minimal scar for-
mation [11]. This advantage could be explained by the presence of growth factors or
cytokines in the saliva and the important role of fibroblasts. Saliva contains a number of
important molecules, such as epidermal growth factors, lysosomes, and lactoferrin, which
have antimicrobial and anti-inflammatory properties [12]. Fibroblasts are the main cells of
gingival tissue and play an important role in wound healing, especially extracellular matrix
(ECM) remodeling by the synthesis of ECM components (such as collagen, fibronectin,
hyaluronan, and elastin) and the secretion of matrix metalloproteinase and tissue inhibitor
of metalloproteinase [13]. The only exception in the healing potential is excisional wounds
on the hard palate. The connective tissue is very thin at palate; therefore, the depth of the
wound can reach to the surface of cranial bone and the healing is slow [14]. Recent research
has revealed the molecular differences between oral and skin wound healing. Most studies
have suggested that an oral wound is in the “primed” state for wound healing compared
to a skin wound (Table 1) [9,15–17].

3.1. Attenuated Inflammatory Reaction

Regarding the phenomenon of scarless and rapid healing, some studies have tried to
explain it using the similarity of oral and fetal wounds that includes decreased levels of
pro-inflammatory cytokines, such as IL-6 and IL-8 [11], and inflammatory cells, including
macrophages and neutrophils [18], but the healing process is not identical. Compared
to adult skin wounds, fetal wounds showed decreased levels of transforming growth
factor-β1 and increased IL-10; however, no change was seen in oral wounds. Additionally,
other studies have suggested positive effects on the inflammation of saliva containing
growth factors, protease inhibitors, and cytokines [19]; however, a clear explanation is
still not characterized with controversial results [20]. Further in-depth research about the
critical difference of oral wounds could provide good candidate biomarkers for wound
healing acceleration materials.
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Table 1. Characteristics and differences of oral and skin wounds.

Oral Wound Skin Wound

Re-epithelialization Re-epithelialization in oral wound is faster than
skin wound

Re-epithelialization (24 h) 100% 40%

Inflammation Inflammatory reaction is reduced and resolution is faster
in oral wound than skin

Inflammatory cells (Neutrophils,
T cells, Macrophages) ↓ ↑

Cytokines (IL-1β, IL-6, IL-α, TNF-α) ↓ ↑
Angiogenesis Angiogenic response is decreased in oral wound

Vessel density ↓ ↑
VEGF ↓ ↑
ECM MMT/TIMP ratio is decreased in oral wound

Matrix metalloproteinases (MMP) ↓ ↑
Tissue inhibitor of
metalloproteinase (TIMP) ↑ ↑

SCAR Reduced scar formation is observed in oral wound

TGF-β1/β3 ↓ ↑

3.2. Differential Angiogenesis Pattern

Compared to skin wounds, oral wounds exhibit reduced levels of vascular endothelial
growth factor expression and more muted angiogenic response, which was supported by
dissimilar levels of hypoxia and hypoxia inducible factor-1alpha (HIF-1α) expression. Skin
wounds have been shown to be significantly more hypoxic and to have higher levels of
HIF-1α than oral wounds [21]. However, this finding of decreased angiogenesis could be
open to controversy, since unwounded oral mucosa is more vascularized than the skin [18].

4. Periodontal Treatment and Wound Healing

In periodontal surgery, the wound healing pattern is largely divided into two types:
primary and secondary healing [22]. Primary healing is a proper procedure for wound
healing, which is performed when the gingival tissue is perfectly replaced or closely
approximated in the same position pre- and post-operatively. The healing pattern shows
rapid healing time with little or no scarring and low infection risk. Conversely, secondary
healing occurs when the wound site is not covered by epithelial tissue due to accidents
(rupture of suturing and loss of covering materials, etc.) or intention (apically positioned
flap and tooth extraction socket, etc.).

4.1. Tooth Extraction

Tooth extraction is one of the most common surgical procedures performed in dental
clinics. When diagnosed with hopeless tooth condition due to periodontitis, dental caries,
trauma, etc., tooth extraction is performed. The subsequent process of socket healing has
become an important subject of research and clinical practice for the successful healing and
restoration in the missing region with dental implants. The socket healing pattern post
tooth extraction follows a bone healing process with a series of orderly biological events.
In general, after that tooth is isolated from the socket in the alveolar bone, the socket is
filled with blood clots. Re-epithelization is progressed around 24 h after extraction, and
then blood clots are replaced by granulation tissue. The extraction socket is gradually filled
with bone, and the bone remodeling process proceeds around 6 months after extraction
(Figure 3). The process of socket healing has been widely studied in human and animal
models, such as canines, rats, and mice, with radiographical and histological methods.
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Although the sequence of biological events was similar, a difference was seen in healing
time [23]. The socket healing process is accompanied by the loss of alveolar bone height
and width due to bone remodeling, including bone formation and resorption. The degree
of bone resorption during the remodeling procedure depends on various factors, including
local factors such as the quality and quantity of alveolar bone, the presence of inflammation,
the use of grafting materials, and oral hygiene, and systemic factors such as smoking,
nutrition, and medical condition. A fresh extraction socket, such as extraction due to
dental caries or tooth fracture, mostly follows a favorable healing procedure; however, a
periodontally compromised socket with severe bone defect by chronic pathologic lesion
can result in erratic healing by connective tissue infiltration instead of bone formation [24].
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4.2. Resective Periodontal Surgery

In the treatment of patients with periodontitis, surgical intervention (such as scal-
ing and root planing) could be required after completion of the non-surgical phase. A
periodontal flap is a section of gingiva or mucosa which is surgically separated from the
underlying tissues such as the alveolar bone and connective tissue. The periodontal flap
operation enables access to root surfaces for cleaning and to remove inflamed soft or hard
tissue to reestablish a stable periodontal structure. Depending on the bone exposure after
flap reflection, the periodontal flaps are classified as partial-thickness or full-thickness flaps.
For favorable healing, the entire surgical procedure should be planned in detail with regard
to type of incision, flap design, flap closure, suture, etc., before the procedure. The flap
design with a sharp and correct incision is important to preserve good blood supply for
the maintenance of vascularization and a reduction in postoperative shrinkage, and an
exact flap position with stable suturing is crucial for the stability of the blood clot in the
wound site. To improve the healing potential, minimally invasive surgery (MIS), a surgical
technique to minimize flap reflection, has been introduced to reduce the wound size and
healing time with decreased pain and infection risk. MIS is defined as “refinements in
existing basic surgical techniques that are made possible by the use of surgical micro-
scopes and subsequent improved visual acuity,” and three principles are required to be
fulfilled [25]: 1. enhancing the surgical ability by the improvement of motor skills, 2. exact
primary apposition of the wound edge by passive wound closure, and 3. the application of
micro surgical instruments and sutures to reduce tissue trauma. Based on this concept, in
2007, Cortellini and Tonetti suggested the minimally invasive surgical technique (MIST) in
periodontal surgery [26], and the use of a microscope and microsurgical instrument was
necessary to increase the surgical prognosis. Several studies have shown the advantages of
MIST, which include rapid wound healing with less granulation or scar tissue formation
and less inflammation or pain.
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4.3. Regenerative Periodontal Surgery

The treatment of periodontal disease has been gradually shifting from resective to
regenerative therapy with progress in the understanding of periodontal wound heal-
ing. The development of biomaterials, instruments, and techniques has supported the
paradigm shift focusing on actual periodontal tissue regeneration, including functional
PDL formation [27]. Periodontal tissue regeneration is largely classified into guided tissue
regeneration (GTR) and guided bone regeneration (GBR). Simply, GTR refers to the re-
generation of periodontal attachment including bone, PDL, and cementum, whereas GBR
refers to works on the edentulous area, such as bone grafting and ridge augmentation. GTR
is a representative procedure of regenerative surgery in the periodontally compromised
site and is defined as follows: “procedures attempting to regenerate lost periodontal struc-
tures through differential tissue response” [28] (Figure 4). In periodontitis, alveolar bone
resorption is accompanied with gingival inflammation, which causes the breakdown of
periodontal attachment. Theoretically, periodontal defects (including soft tissue and hard
tissue) cannot be regenerated to the original structure by repair. For successful regeneration,
cells that have the ability to form cementum, PDL, and bone should move to the defect
site and activate the differentiation potential from progenitor cells. However, practically,
epithelial cells move rapidly to the defect site and inhibit the proliferation and differentia-
tion of progenitor cells for the maturation of cementum, PDL, and bone; eventually, the
repair would be superior to the regeneration. Therefore, the concept of “guide” using a
barrier was introduced for selective cell repopulation, proliferation, and differentiation.
As a barrier, resorbable or non-resorbable membranes have been widely used to prevent
gingival epithelium or connective tissue entering the bony defect site and to induce os-
teogenesis and PDL regeneration. The membrane creates a space acting as a scaffold for
vascularization and cell ingrowth from the base of the periodontal defect, prevents bacterial
invasion, and isolates the inner space from undesirable cells after therapy. Furthermore,
it provides a good environment for favorable wound healing, acting as a double layered
gingival flap to improve the stability of the blood clot and protect the interface between the
root surface and healing tissues, preventing the rupture of the surgical wound site.
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5. Complications after Periodontal Treatment

A complication is a secondary disorder arising as a consequence of the primary disease
or condition. The complications arising after periodontal therapy include postoperative
infection, bleeding, swelling, pain, bruising, and adverse tissue changes. Among them,
the first three can interfere with the wound healing procedure and alter the treatment
outcomes [29].

5.1. Postoperative Infection

Due to the distinct character of the oral cavity—an open space toward the outside—and
food intake, infection could be a risk factor inhibiting the normal wound healing process.
Oral microbiome on the wound bed is one of the most critical barriers for the infection. The
wound healing process could be impaired by pathological microorganisms that produce
free-radicals, destructive enzymes, and toxins and down-regulate the immune response
and inhibit collagen formation. Generally, the occurrence of bacteremia depends on the
degree of trauma during treatment and could be prevented by prophylactic antibiotics.
Amoxicillin is widely used as the first choice for infection prophylaxis [22].

5.2. Bleeding

Postoperative bleeding is always followed at varying degrees. Within 12 h of surgery,
some bleeding is considered normal; however, persistent hemorrhage or oozing could be
problematic to wound healing [30]. Postoperative bleeding is classified into primary, reac-
tionary, and secondary hemorrhage. Primary hemorrhage occurs at the time of operation,
reactionary hemorrhage occurs 2–3 h after operation due to the loss of vasoconstrictor effect
under anesthesia, and secondary hemorrhage occurs up to 2 weeks after the operation due
to infection. In uncontrolled hemorrhage, various methods are applied for bleeding control.
The hemostatic agents typically used are silver nitrate and ferric sulphate, and materials
include oxidized cellulose, suturing, and collagen or gelatin sponges. Furthermore, bone
wax is used to prevent bleeding from bones, and electric devices used to seal the damaged
vessel are effective in the control of extensive bleeding. Hemostasis in patients with a bleed-
ing disorder or taking anticoagulants should be handled with great caution. Preoperative
cessation of anticoagulants and the preparation of blood transfusion in case of emergency
are considered.

5.3. Swelling

Swelling is defined as the enlargement of a body part as a result of inflammation or
filling with tissue fluids and is considered to be a normal postoperative reaction until it
interferes with wound healing [31]. This expected swelling is generally related to surgical
range and operating time, and especially associated with increased blood supply to the
surgical site. If swelling persists, the wound site can reopen despite the suture, and primary
healing will not be possible. The administration of antibiotics and steroids is recommended
pre- or post-operatively to prevent unexpected swelling from disturbing the process of
healing [32].

5.4. Scar Formation

Scar formation, known as fibrosis, is an inevitable result of cutaneous wound healing;
however, it varies widely depending on the anatomical sites. Scar formation occurs when
normal physiological process is not achieved. Most oral wounds do not cause serious scars;
however, fibrosis can occur when healthy bone does not support the base of the wound,
such as in congenital defects, lip clefts, and/or palate clefts [33]. Additionally, a persistent
inflammation in the chronic wound can result in delayed healing and fibrosis [16].

6. Factors Affecting Periodontal Wound Healing

It is important to recognize risk factors related to the wound healing process to achieve
favorable wound healing after treatment.
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6.1. Vascularization, Flap Design, and Incision

In periodontal surgery, a comprehensive anatomical understanding is significant for
flap design with incision. To prevent complications in wound healing and angiogenesis, an
accurate cognition on the branching of periosteal vessels is required [34,35]. It is widely
accepted that flap elevations without a vertical incision benefit from accelerating blood
supply and favorable wound healing, resulting in the improvement of esthetic outcomes,
better patient satisfaction, and minimal risk of scarring [34,36]. In particular, scarring on
the anterior part by impaired blood supply creates an esthetic problem. Vertical incision,
such as a coronally advanced flap in vertical bone augmentation, is unavoidable, and
the incision should be placed at the mesial side of the flap to avoid the interruption of
vascular flow from the posterior end to the anterior end of the scar [37]. Additionally, long
time periodontal surgery with a vertical incision and additional local anesthetics such as
epinephrine can induce ischemia in the mucogingival flap [38,39].

6.2. Aging (Senescence)

Aging is a biological process characterized by a decrease in cellular function that is
induced by a gradual deficiency in regenerative reactions with a dramatic change in gene
expressions in body tissues [40]. After tissue injury, various types of cells (neutrophils,
lymphocytes, monocytes, fibroblasts, endothelial cells, and keratinocytes) are recruited,
which secrete and organize the components of the ECM, including collagen, proteoglycan,
and fibronectin. Normal periodontal wound healing requires normal reactive cells and
a healthy ECM; however, aging affects both cell response and physiology of the ECM
unfavorably [41]. Differences in the wound healing process by aging are as follows. In the
inflammatory phase of wound healing, aging may prolong the production of inflamma-
tory cytokines, which delay wound healing and tissue fibrosis, reducing the regenerative
potential. Senescence-associated secretory phenotype (SASP) is characterized by a proin-
flammatory trait of senescent cells, with the involvement of CCAAT/enhancer and nuclear
factor-kB (NF-kB) associated with the secretion of chemokines, cytokines, and proteolytic
enzymes. Following the altered inflammatory phase, new tissue formation and remodeling
phases are also affected. Aging decreases collagen synthesis, cell migration, prolifera-
tion, and differentiation in the new tissue formation phase and increases the production
and activity of matrix metalloproteinases (MMP) and apoptosis in the tissue remodeling
phase [42].

6.3. Diabetes Mellitus (DM)

DM is a representative disease exhibiting an impairment in wound healing [43]. This
impaired healing process in DM patients involves complex pathophysiological mechanisms.
Hypoxia, which is induced by insufficient perfusion or angiogenesis, is a critical risk factor
in DM that amplifies early inflammatory responses, thus increasing the production of
oxygen radicals [44]. Hyperglycemic conditions aggravate wound healing with hypoxia
by increasing the oxidative stress and formation of advanced glycation end-products [45].
High levels of MMP and the dysfunction of fibroblasts and keratinocytes inhibit the
normal repair process, resulting in tissue destruction. Dysregulated immune-related cell
functions, including defects in bactericidal capacity, leukocyte chemotaxis, phagocytosis,
and dysfunctions of fibroblasts, also add to impaired repair. Additionally, neuropathy in
DM may contribute to impaired wound healing with a decrease in neuropeptides, including
substance P, calcitonin related peptide, and nerve growth factor [46].

6.4. Smoking

The negative effects of smoking on wound healing are well known [47]. In peri-
odontal surgeries, including dental implant placement, impaired healing in smokers has
been reported [48–51]. Nicotine, a major component of tobacco, is quickly absorbed by
diffusion through the buccal mucosa and produces a variety of systemic effects [52,53].
Reportedly, nicotine inhibited the fibroblast activities of fibronectin and collagen synthesis,
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and increased collagenase activity, inducing collagen degradation [52,54]. In periodontal
disease, gingival bleeding is lesser in smokers than in non-smokers because of decreased
gingival blood flow due to nicotine’s vasoconstrictive effect. This effect leads to insufficient
vascularization of the gingiva, in turn lowering the wound healing potential and increasing
the chance of bacterial infection [55]. Additionally, Imamura et al. reported that nicotine
reduced epithelial cell migration, which is important for re-epithelialization during wound
healing, through MAPL ERK1/2 and p38 signaling pathways [56]. Based on this evidence,
smoking delays wound healing and adds various complications, such as wound rupture,
infection, tissue necrosis, and epidermolysis [57].

7. Therapeutics for Periodontal Wound Healing
7.1. Biopharmaceutical Approaches
7.1.1. Enamel Matrix Derivative (EMD)

EMD was introduced as a tissue healing agent derived from proteins during cemen-
togenesis in the tooth development to stimulate tissue regeneration. Amelogenin is the
main protein component of EMD, and EMD has been focused in GTR in particular because
it promotes PDL fibroblast proliferation and inhibits epithelial growth, which is a key
and necessary mechanism in GTR. Emdogain® (Straumann, Switzerland) is a commercial
product containing a mixture of EMDs that promote periodontal tissue regeneration in the
application at the root surface and have osteopromotive properties [58,59]. Furthermore,
Emdogain® enhances wound healing in the gingival tissue with reduced complications,
such as inflammatory reaction and pain, even in skin wound healing [60,61]. In vitro
and in vivo studies have shown that EMD reduces the secretion of chemokines and pro-
inflammatory cytokines related to chemotaxis, angiogenesis, inflammation, and fibroplasia,
and its effect is critical in early wound healing according to a clinical study [61]. Diabetes
is one of the main risk factors for wound healing, and Takeda et al. reported that EMD
promotes periodontal tissue regeneration through the Akt/VEGF signaling pathway even
in diabetic patients [62].

7.1.2. Collagen

Collagen is a naturally available, as well as the most abundant, protein present in
the extracellular matrix and acts as an important component of physical and functional
structure in the body [63]. With its chemotactic character, collagen improves the fibroblasts’
migration, proliferation, and differentiation of specialized cells. Additionally, collagen
plays an important role in wound healing, including platelet activation and angiogen-
esis [64]. In addition to these advantages, collagen has been widely used in various
formulations in periodontal surgery due to its easy manipulation. However, its hydrophilic
properties can act as a disadvantage, leading to rapid enzymatic degradation and swelling.
Collagen membrane is used as a barrier to prevent the preoccupancy of epithelial cells in
the periodontal defect site in GTR (Table 2). Various types of membranes used in GTR
derived from different animals (porcine, bovine, and equine) consist of type I or III collagen
or both. Collagen is also applied to the tooth extraction socket for bleeding control and
blood clot stabilization. This hemostatic collagen is highly absorbent; therefore, it absorbs
the blood as soon as it is applied to the bleeding site, serving as a mechanical obstruction.
Furthermore, when collagen comes in contact with blood, it causes platelet aggregation,
releasing thromboxane A2, and creates an artificial clot-like structure.
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Table 2. Clinical application of collagen in periodontal treatment.

Types Application Commercial Product (Manufacturer) Reference

Sponge

- Hemostasis
- Reduction in pain
- Soft tissue contouring
- Wound dressing
- Socket grafting

CollaPlug (Integra LifeSciences Corp.) [65,66]

OraPlug (Salvin) [67]

Teruplug (Olympus Terumo Biomaterials) [68–70]

Avitene Ultrafoam Collagen Sponge (Davol, Inc.) [71,72]

Membrane - Barrier in GTR or GBR

Bio-Gide (Geistlich) [73–78]

BioMend/OsseoGuard (Zimmer Biomet Inc.) [73,78,79]

Ossix (Datum Dental Ltd.) [80,81]

Periogen (Collagen Corporation) [73,82]

CollaCote/CollaTape (Integra LifeSciences Corp.) [83–85]

7.1.3. Blood-Derived Products

Blood-derived products, including platelet rich plasma (PRP), plasma rich growth
factor (PRGF), and fibrin sealant, have been used in regenerative surgical procedures. The
preparation method is based on concentrating platelets, leukocytes, and growth factors, but
their contents are slightly different. PRP consists of platelets and leukocytes, but PRGF does
not have leukocytes. Fibrin sealant is derived from blood plasma, which is cryoprecipitated
to obtain fibrinogen.

1. PRP

PRP is an autologous bioactive substance that has various applications in the medical
and dental field, including plastic surgery and periodontal or maxillofacial surgery for the
enhancement of wound healing. PRP is obtained from the middle layer of white blood
cells and platelets in centrifugated blood. Platelets contain biologically active proteins that
bind to the fibrin mesh or ECM and recruit stem cells that promote wound healing [86]. In
periodontal treatment, PRP is easily applied to soft or hard tissue therapy. In hard tissue
application, PRP enhances the healing of intrabony defects when combined with bone
grafting [87]. In soft tissue application, several clinical reports suggested the advantages of
PRP, such as accelerated wound healing and improved esthetics [88]. However, the efficacy
of PRP in periodontal treatment has been controversial due to diverse or adverse clinical
outcomes. PRP may not provide additional effects compared to GBR in relation to dental
implants, and the evidence of effects of PRP in sinus elevation seem weak [89]. This may be
due to different platelet numbers or PRP concentration related to growth factors [90]. PRP
has been somewhat advantageous when used for periodontal tissue regeneration; however,
enough controlled clinical trials have not been conducted to prove its efficacy.

2. PRGF

PRGF is a second-generation blood-related product, similar to PRP, and requires
less venous blood, making it convenient, time-consuming, safe, easy-to-use, and fast
healing [91]. In contrast to PRP, PRGF does not contain white blood cells and associated
inflammatory byproducts for avoiding the proinflammatory effects of proteases and acid
hydrolases [92]. Plasma-derived adhesive molecules, such as fibronectin, fibrinogen, and
vitronectin, serve as a matrix for attracting progenitor cells, and platelet concentrates act as
reservoirs for growth factors, such as platelet derived growth factor (PDGF), insulin-like
growth factor (IGF), transforming growth factor (TGF), and vascular endothelial growth
factor (VEGF). PRGF induces fibroblast proliferation and epithelial tissue healing. Due
to its gel-like consistency, it seems more ideal for non-surgical application than surgical.
In randomized clinical trials, the clinical efficacy of PRGF as an adjunct to non-surgical
periodontal treatment has been proved with a reduction in pocket depth and gain in clinical
attachment level [91]. Even in surgical procedures, the use of liquid PRGF accelerates bone
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healing in the extraction socket and sinus lift and promotes the osseointegration of dental
implants [88].

3. Fibrin Sealant

The proteins fibrin and fibronectin play a crucial role in hemostasis and wound healing.
If an injury occurs, fibrinogen is activated by thrombin to form insoluble fibrin clots for
hemostasis. Wound healing is processed via interactions of cell surface receptors with
fibrin and other proteins, including fibronectin. Fibronectin is an adhesive glycoprotein
with multiple binding sites for surface receptors on various cells, such as fibroblasts [93].
Fibrin sealant, known as glue, has been used in surgeries for hemostasis and anchoring
the graft. The application of fibrin sealant in periodontal surgery also showed excellent
hemostatic and tissue adhesive effects [94]. The product of fibrin sealant is composed of
thrombin and fibrinogen. When they are mixed together, fibrin clot formation is conducted
by the induction of the final stage of the blood clotting pathway. Fibrin sealant enhances
mechanical strength and blood clot stability and can be prepared from autologous blood
without an immune reaction.

7.2. Periodontal Dressing Materials

Periodontal dressing has been introduced for the protection of wounds by preventing
post-operative hemorrhage, irritation, and microbial contamination in the surgical site.
The first use of a periodontal dressing with iodoform gauze was reported, and then the
first commercial product, “Wonderpak,” which consists of zinc oxide, eugenol, pine oil,
alcohol, and asbestos fibers, was introduced. The two types of periodontal dressings are
largely classified according to the gradients: 1. zinc oxide eugenol (hard type) and 2. zinc
oxide non-eugenol (soft type). Zinc oxide non-eugenol dressings are more commonly used
because zinc oxide eugenol has disadvantages such as hardness, difficulty of adaptation,
burning sensation, or allergic reaction from unreacted eugenol. A widely used non-eugenol
dressing is Coe-Pak (Dentsply, Germany), which consists of two types of pastes—base
and accelerator (Figure 5). In addition, dressings without zinc oxide or eugenol, such
as light curing or collagen-containing periodontal dressings, are also available. Due to
its transparent property, a light curing dressing is applied to the anterior part. Collagen-
containing dressing promotes wound healing by deposition of the fibers in the granulation
tissue. In the past, despite the advantages of periodontal dressing, whether to use or not
use it was debatable. The type of dressing used for a wound seems subjective. Presently, it
might be accepted that if adequate primary closure of the gingival flap is achieved, there
is little necessity to use dressing, but the protection of the surgical area with dressing is
recommended when secondary healing is anticipated.
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7.3. Devices to Improve Wound Healing
7.3.1. Light Amplification by Stimulated Emission of Radiation (Laser)

The laser has three key elements: power (thermal property), wavelength (optical
property), and pulse or wave (operating mode). Two types of lasers are available depending
on tissue penetration depth. High-intensity laser therapy (HILT), such as neodymium-
doped yttrium-aluminum-garnet (Nd:YAG), carbon dioxide (CO2), erbium, and diodes,
is used in the surgical process of not only ablation, vaporization, and coagulation but
also the stimulation of wound healing. Conversely, low-level lasers and light-emitting
diodes (LEDs) are used as “biostimulators” with lower power than that of surgical lasers.
Photobiomodulation therapy (PBMT) is defined as light therapy using low-level lasers
and LEDs that promote wound healing by inducing epithelial cell proliferation, anti-
inflammatory response, pain relief, and inhibition of scar formation [95]. In dentistry, lasers
have been widely used in periodontal treatment (Table 3). The best advantage of HILT is
hemostasis with easy ablation of the soft tissue. Compared to blade incision, HILT can
easily cut and reshape the gingival tissue with reduced pain, bleeding, and suturing [96].
In addition, PBMT is a unique aspect of lasers, which promotes wound healing and
reduces inflammation and pain [97,98]. The U.S. Food and Drug Administration (FDA)
defined the therapeutic lasers with wavelengths of less than 500 mW as harmless, classified
them as “low-risk devices,” and proposed the guideline for laser application in dentistry;
the coagulation of extraction sites using diode lasers and CO2 lasers. The advantage of
therapeutic lasers is that they stimulate natural biological processes and mainly affect cells
with oxidation–reduction (redox) reactions. Healthy cells do not respond strongly to lasers
because they cannot increase their redox ability immediately, while damaged cells with
low redox level will be quickly stimulated. Light photons absorbed by the mitochondria of
the cells increase the amount of adenosine triphosphate, a cellular energy, via the removal
of nitric oxide on cytochrome c oxidase and generate reactive oxygen species, which
eventually stimulates cell signaling and gene expression-related wound healing.

Table 3. Dental application of therapeutic laser.

Application Type Method Effect Ref.

Extraction socket Combined HILT
and PBMT

HILT (27 J) was performed
immediately after tooth
extraction to enhance blood
coagulation, followed by PBMT
(0.7 J) 1 day later to
enhance healing

Combined HILT and PBMT
following tooth extraction
hastened wound healing and
preserved alveolar crest
height, suggesting a role in
socket preservation

[99]

Recurrent aphthous
stomatitis (RAS)

CO2 laser, Nd:YAG laser
and diode laser

Laser treatment included
Nd:YAG laser ablation, CO2
laser applied through a
transparent gel (non-ablative)
and diode laser in a low-level
laser treatment (LLLT) mode

The use of lasers (CO2 laser,
Nd:YAG laser and diode laser)
to relieve symptoms and
promote healing of RAS

[100]

Inflammatory fibrous
hyperplasia

Diode laser
systems

Randomized, split-mouth
clinical trial; comparative
evaluation of diode laser and
scalpel surgery

Bleeding and bacterial count
was low in the laser group [101]

Frenectomy Nd:YAG laser treatment

Randomized clinical trial on
postoperative discomfort
after Nd:YAG laser and
conventional frenectomy

Nd:YAG laser treatment used
for frenectomies provides
better postoperative comfort
(pain, chewing, talking)

[102]

Harvesting de-epithelialized
palatal graft

Diode laser
systems

Randomized clinical trial:
comparative evaluation of diode
laser and scalpel surgery

Laser technique decreased
post-operative morbidity [103]

Free gingival graft PBMT
A split-mouth triple-blind
randomized controlled
clinical trial

PBMT accelerated the rate
of epithelialization at the
donor site

[104]
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7.3.2. Hyperbaric Oxygen

Hypoxia is a microenvironmental feature of inflammatory disease, wound healing,
and cancers, in which the demand of O2 is higher [105]. Hypoxia and low O2 pressure have
a negative effect on the function of inflammatory cells and fibroblasts during the healing
procedure [106]. Hyperbaric oxygen therapy (HBOT) is used for therapeutic purposes with
100% O2 under a certain pressure. HBOT increases the oxygen tension in the arterial blood
and sequentially improves the cellular oxygen tension, which stimulates angiogenesis and
wound healing, and has bactericidal or bacteriostatic effects [107,108]. For these reasons,
the use of HBOT has been applied as an adjunctive therapy in periodontal treatment;
however, most are case reports [109,110]. Further controlled studies are needed to confirm
the clinical potential of HBOT.

8. Perspective and Future Directions

Wound healing in the oral cavity is similar and different in many ways from skin
wound healing. Successful periodontal wound healing after treatment can support optimal
periodontal tissue regeneration. In-depth understanding of the biological factors affecting
periodontal therapy has always been emphasized to optimize the clinical outcome and in-
crease the predictability of therapy. Adjunctive use of biomaterials or devices can reinforce
the healing process, and wound biomodification using therapeutic agents, such as growth
factors, may amplify the regenerative potential.

Stem-cell related research has received a lot of attention for the bright future of
periodontal tissue regeneration; however, several problems remain to be solved. The
development of appropriate scaffolds that deliver the cells and growth factors even in the
infective healing environment (due to the oral microbiome) is important for genuine tissue
engineering. A well-organized strategy for the periodontal healing process is needed since
the advantages of high healing potential and disadvantages of oral microbial attacks are
combined. With recent ongoing advanced technologies of three-dimensional printing and
next-generation sequencing for personalized medicine, ideal wound healing and tissue
regeneration would be more achievable.
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