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Abstract
Purpose The standard clinical treatment ofTwin-to-Twin transfusion syndromeconsists in the photo-coagulation of undesired
anastomoses located on the placenta which are responsible to a blood transfer between the two twins.While being the standard
of care procedure, fetoscopy suffers from a limited field-of-view of the placenta resulting in missed anastomoses. To facilitate
the task of the clinician, building a global map of the placenta providing a larger overview of the vascular network is highly
desired.
Methods To overcome the challenging visual conditions inherent to in vivo sequences (low contrast, obstructions or presence
of artifacts, among others), we propose the following contributions: (1) robust pairwise registration is achieved by aligning the
orientation of the image gradients, and (2) difficulties regarding long-range consistency (e.g. due to the presence of outliers)
is tackled via a bag-of-word strategy, which identifies overlapping frames of the sequence to be registered regardless of their
respective location in time.
Results In addition to visual difficulties, in vivo sequences are characterised by the intrinsic absence of gold standard. We
present mosaics motivating qualitatively our methodological choices and demonstrating their promising aspect. We also
demonstrate semi-quantitatively, via visual inspection of registration results, the efficacy of our registration approach in
comparison with two standard baselines.
Conclusion This paper proposes the first approach for the construction of mosaics of placenta in in vivo fetoscopy sequences.
Robustness to visual challenges during registration and long-range temporal consistency are proposed, offering first positive
results on in vivo data for which standard mosaicking techniques are not applicable.

Keywords Fetoscopy · Image mosaicking · Image registration

Introduction

Twin-to-twin transfusion syndrome (TTTS) is a condition
affecting identical twin pregnancies, where unexpected vas-
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cular anastomoses occur between two twins sharing a single
placenta [3]. This results in a blood imbalance between
the two twins. The current state-of-the-art curative proce-
dure consists in laser photo-coagulation via fetoscopy of the
abnormal vessel anastomoses located on the placenta. More
precisely, surgeons perform a progressive visual exploration
of the placenta, with the aim of localising and eliminating the
anastomoses which allow a direct blood transfer between the
two twins. Due to the difficulty of manipulating the feto-
scope and due to the very limited field-of-view available
at each timepoint to the surgeon, some anastomoses can
be missed by the surgeon leading to an only incomplete
treatment [12]. To assist a clinician during TTTS surgery,
mosaicking approaches are desirable to create a map of the
placenta from a video acquired during fetoscopy. With the
help of such a map, the field-of-view can be enlarged to facil-
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itate the task of the clinician regarding the identification of
yet unexplored areas of the placenta, and to provide a better
overview of the topology of the vascular network.

Image mosaicking is a classical computer vision problem,
where the panorama of a scene is built from a series of over-
lapping pictures. The most standard approach for stitching
images consists of the registration of overlapping pairs via the
detection andmatching of landmarks [5]. Such feature-based
methods have been successfully applied for some medical
applications, such as retinal mosaicking [15] and fibroscopic
videomosaicking [1]. However, other type of clinical images
may display a lack of texture, occlusions and other factors
that make a landmark-based registration of a pair of images
not reliable enough. To address this issue, alternative reg-
istration methods have been employed such as semi-dense
registrationmethod for dynamic view expansion in an in vivo
porcine experiment [21]. In [13], dense correspondences in
an in vivo experiment were used, demonstrating improve-
ments over RANSAC-based algorithms. Another example of
dense registration was also successfully applied for confocal
microscopy [23]. We refer to [4] for a more comprehensive
review of the intersection between simultaneous localisation
and mapping (SLAM), scene reconstruction and mosaicking
in endoscopic procedures.

Closer to our application case, someworks have attempted
to perform mosaicking in placental images. In [16], the
authors report challenging situations that they tackle using
a modified RANSAC algorithm. In [9], a robust matching
in phantom data was proposed via a new feature extrac-
tor algorithm using CNNs. External modalities such as 3D
ultrasound [11] or an electromagnetic tracker [20] were also
investigated as means of guiding the mosaicking process.
However, these approaches addressing themosaicking of pla-
centa images were until now limited to phantom and ex vivo
data, for which visual properties are considerably different
from the in vivo cases encountered in clinical scenarios. In the
latter conditions, challenges such as repeated occlusions (e.g
from foetal limbs or impurities present in the amniotic fluid,
see Fig. 1) and low image contrast do not allow a success-
ful application of standard landmark-based computer vision
techniques.

In this paper, we propose a first approach towards the gen-
eration of placental mosaics from in vivo fetoscopy data.
Our method combines (1) a registration method based on
the alignment of gradient orientations, ensuring robustness
to visual challenges inherent to in vivo acquisitions, and
(2) a strategy based on bags of visual words which allows
the identification of pairs of overlapping frames located at
arbitrary time points in the sequence. By retrieving and reg-
istering these key pairs of frames, the global consistency of
the mosaic can be improved in a scalable manner. Qualitative
results are reported and discussed based on real sequences
and demonstrate first promising results towards the clinical

use of mosaicking methods for TTTS surgery. In addition,
we inspected visually the results of pairwise registration on
an example sequence and labelled manually their quality,
showing the benefit of our approach in comparison with two
standard baselines: registration based on the robust matching
of SURF-based keypoints, and dense image alignment based
on normalised cross-correlation.

An approach for in vivomosaicking

Problem statement

Each frame of a fetoscopy sequence offers a partial view of
the imaged placenta. Under the assumption that the placenta
is planar, two arbitrary frames of the sequence are related by
a homography transformation. Formally, given a sequence of
N frames I1, . . . , IN where each Ii : Ωi → R

3 is an RGB
image defined over a domainΩi ⊂ R

2, there exists for every
pair of images (Ii , I j ) a homographic warping w j,i : Ωi →
Ω j such that for every x ∈ Ωi , Ii (x) and I j (w j,i (x)) are
visual measurements corresponding to the same location of
the placenta. To create and visualise a mosaic, we propose
the following approach. First, without loss of generality, the
first frame of the sequence is defined as a reference frame
located within the central part Ω1

abs ⊂ Ωabs of a (sufficiently
large) mosaic image M : Ωabs → R

3. The mosaicking
task aims at stitching together overlapping images to create
a global map of the placenta or, in other words, at warping
and placing each frame of the sequence on the corresponding
part of the mosaic domain Ωabs. For every frame Ii , the cor-
responding subset Ω i

abs of the absolute mosaic domain Ωabs

must be found. Equivalently, we propose to estimate a global
homography Wi such that Ω i

abs = Wi (Ω
1
abs). Note that W1

is already defined as the identity via our choice of reference
frame.Moreover, global and relative warpings are related via
Wi ◦ W−1

j = wi, j . To estimate the global warpings, we rely
primarily on a series of pairwise registrations of overlapping
frames which are directly conducted in the relative image
domains Ωi .

A fully sequential approach formosaickingwould register
all consecutive frames and, with the obtained relative warp-
ings wk,k−1 for 2 ≤ k ≤ i , compute the global warping Wi

of the i-th frame as follows:

Wi = wi,i−1 ◦ wi−1,i−2 ◦ · · · ◦ w2,1. (1)

If the estimation of the relative warpings is perfect, the
equation above allows in theory a perfect mosaicking. How-
ever, in practice, errors in the estimation of each relative
warping accumulate so that a clearmismatch can be observed
when the fetoscope comes back to a previously visited
location. This effect can even degenerate if the presence

123



International Journal of Computer Assisted Radiology and Surgery (2018) 13:713–720 715

Fig. 1 Visual challenges in in
vivo fetoscopy. Nearly
consecutive frames of an in vivo
sequence are shown. Together
with a low contrast, in vivo data
are subject to more or less
severe occlusions due to foetal
limbs or impurities present in
the amniotic fluid

of occlusions makes the pairwise registration of two con-
secutive frames unfeasible, thereby breaking the chain of
transformations (1). For increased robustness and temporal
consistency over a large number of frames, it is therefore
desired to register additional overlapping frames that are not
necessarily consecutive (for example, the frames obtained
when revisiting a portion of the placenta). Overall, if we
denote R the set of couples of indices (i, j) for which a
registration has been performed and for which a resulting
(possibly noisy) warping ŵi, j estimating the true warping
wi, j has thus been computed, and noticing thatWi ◦W−1

j =
wi, j , we can look for global warpings Ŵ1, . . . , ŴN such that

Ŵ1, . . . , ŴN = argmin
W1,...,WN

∑

(i, j)∈R
d(Wi ◦ W−1

j , ŵi, j ), (2)

where d is a measure of dissimilarity between two warpings.
The formulation (2) is closely related to bundle adjustment
and was proposed by Vercauteren et al. in the context of
rigid transformations [23]. We define the distance d(w1, w2)

between two warpings w1 and w2 defined over a rectangular
image domain Ω as follows. First, we decide on a discrete
set of reference points X = {x1, . . . , xm} ⊂ Ω , which we
choose in our case as a regular grid of step 3 over Ω . The
distance d(w1, w2) is then defined as

d(w1, w2) = max
x∈X

‖w1(x) − w2(x)‖2. (3)

This allows us to obtain an intuitive geometrical interpre-
tation of the distance between warpings as the maximum
deviation in terms of Euclidean distance over the set of ref-
erence points X .

After having found estimates of the absolute warpings
by solving (2), a final mosaic can be created with blending
algorithms [6,14]. In this paper, we focus on the accurate
assessment of the global warpings, i.e. on the correct place-
ment of the frames of the sequence on the mosaic. We used
a standard publicly available technique [6] to generate the
mosaics shown in this paper (Fig. 4).

To summarise, we identified two crucial components for
mosaicking:

1. Given two overlapping frames Ii and I j , we need a robust
and reasonably fast way to register them to obtain awarp-
ing wi, j .

2. To improve the consistency of the estimation over long
timeframes, it is crucial to identify additional overlapping
frames that are not consecutive but located at timepoints
arbitrarily far from another.

We propose in this work a strategy to address separately these
two challenging problems, respectively, exposed in “Pairwise
registrationof consecutive frames” and “Ensuring long-range
consistency with bag of words” section, which takes into
account the visual properties of in vivo sequences.

Pairwise registration of consecutive frames

The traditional image stitiching technique [5] based on the
detection and matching of landmarks (e.g. with a combina-
tion of SIFT and RANSAC) is prone to failure in in vivo
sequences encountered in clinical conditions. The lack of
constrast in the acquired images and the cluttered and vary-
ing aspect of the observed scene are challenges responsible
for these difficulties. In this section, we present a registration
method that addresses the pairwise registration of in vivo
frames. Given the aforementioned challenges, we propose
not to rely on landmarks. Instead, we perform a dense pix-
elwise alignment of the gradient orientations and propose
a variant of the maximisation of the correlation of image
gradients introduced by Tzimiropoulos et al. [22], with two
main differences exposed in details below. Aligning gradient
orientations possesses several advantages: it is for example
invariant to local changes of contrast and is suitable for reg-
istering accurately linear structures such as vessels, which
matches the main clinical objective of mosaicking for TTTS
surgery, i.e. the creation of an overview of the topology of
the placental vascular network.Moreover, by focusing solely
on gradient orientations and not on the gradient norms, each
pixel is given the same weight, which naturally improves the
robustness of the registration to visual artifacts and partial
occlusions.

The registration task consists in estimating the true warp-
ing w j,i such that Ii (x) and I j (w j,i (x)) correspond to the
same location for every x ∈ Ωi . With this formulation,
Ii is called the fixed image and I j the moving image. We
parametrise the homographic warpings with a vector p ∈ R

8

corresponding to the 8 coefficients of the canonical homo-
graphic representation, i.e. such that
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w((x, y),p) =
(
p1x + p2y + p3
p7x + p8y + 1

,
p4x + p5y + p6
p7x + p8y + 1

)
.

(4)

As discussed above, we propose to look for the registration
warping ŵ j,i which aligns best the gradients of Ii and I j .
Since we explicitly do not want to take into account the
strength of the gradients, we first normalise the gradients of
the fixed and moving images ensuring a unit gradient norm
at every pixel. For a point x ∈ Ωi of the domain of the fixed
image, we denote Δθ(x,p) the angle between the gradient
of the fixed image and the gradient of the warped moving
image at x. We define the final warping ŵ j,i , i.e. the output
of our registration method, as ŵ j,i = w(., p̂) where

p̂ = argmin
p

∑

x∈Ωi

sin2 Δθ(x,p). (5)

Since sin2 t = 1
2 (1 − cos 2t), the proposed approach can be

seen as a variant of the maximisation of the correlation of
image gradients [22] defined by

p̂ = argmax
p

∑

x∈Ωi

cosΔθ(x,p). (6)

We can identify twomain differences between the two formu-
lations. First, our pixelwise costs based on the sine function
are minimal for Δθ = 0 or Δθ = π , whereas the terms
in (6) are minimal for Δθ = 0 only. Thereby, only the ori-
entation (modulo π ) of the gradients is taken into account
in our cost function, and not their direction. It appears to
be a useful property in practice: as we try to match vessels
with an iterativemethod (see below), optimisation stepsmust
be able to cross areas where gradients are oriented in oppo-
site directions before reaching the optimal vessel alignment.
Having written our minimisation problem (5) as a sum of
squares, we are also able to use known results on nonlinear
least squares, and more precisely the forward additive ver-
sion of the Lucas Kanade algorithm [2]. This formulation not
only leads to simpler theoretical mathematical derivations,
but also offers the possibility to use off-the-shelf optimised
solvers for nonlinear least squares problem, such as the Ceres
solver [17] which includes classical optimisation techniques
(the Gauss–Newton, Levenberg–Marquardt or Powell Dog–
Leg algorithms, for example).

Solving (5) with the Gauss–Newton algorithm To solve
numerically the minimisation problem (5), we use the fact
that it is a nonlinear least squares problem to apply the
Gauss–Newton algorithm, which, in the context of image
registration, can also be seen as the forward additive version
of the Lucas–Kanade algorithm [2]. To keep the following
derivations as general as possible, we denote N = |Ωi |
and arbitrarily order the elements of Ωi so that Ωi =

{x1, . . . , xN }, and we denote M the number of parameters
encoding the transformation, i.e. the size of the parame-
ter vectors p. Applying the Gauss–Newton algorithm, we
approximate iteratively the desired minimum with a series
of parameters p(1),p(2), . . . such that

p(k+1) = p(k) − (JT J)−1JT s(p(k)), (7)

where s(p(k)) is the N × 1 column vector (sinΔθ(xi ,
p(k))

)
1≤i≤N and J is the N × M Jacobian matrix whose

coefficients Ji j are defined as

Ji j = ∂si (p(k))

∂ p j
= ∂Δθ(xi ,p(k))

∂ p j
cosΔθ(xi ,p(k)). (8)

We denote gm(xi ,p(k)) = (
gm,x (xi ,p(k)), gm,y(xi ,p(k))

)

the gradient of the warped moving image at the location xi ,
and θm(xi ,p(k)) (respectively, θ f (xi )) the angle of the gra-
dient of the moving image (respectively, the fixed image)
at the location xi . By definition, we have Δθ(xi ,p(k)) =
θm(xi ,p(k)) − θ f (xi ) and

θm(xi ,p(k)) = arctan
gm,y(xi ,p(k))

gm,x (xi ,p(k))
, (9)

so that the coefficients of the Jacobian given in (8) can be
written more explicitly as

Ji j = 1

‖gm‖2
(
gm,x

∂gm,y

∂ p j
− gm,y

∂gm,x

∂ p j

)
cosΔθ, (10)

where the dependencies in xi and p(k) were omitted for
readability. We finally mention that, although the gradients
gm(xi ,p(k)) could be computed at each iteration by warping
themoving image and computing the gradient of the resulting
warped image numerically, it is more efficient to precompute
once for all the gradient of the (unwarped) moving image and
obtain gm by warping this gradient and multiplying it by the
Jacobian of thewarping, by application of the chain rule [22].
The partial derivatives of gm,x and gm,y are obtained simi-
larly.

Ensuring long-range consistency with bag of words

As discussed in “Problem statement” section, evaluating
the set of global homographies from a series of pairwise
registrations of consecutive frames inevitably leads to an
accumulation of registration errors. In themost extreme case,
the chain of transformations can even be broken if a reg-
istration is not feasible at all, for example in the presence
of a full occlusion. However, fetoscopy conditions naturally
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lead to long sequences during which the surgeon follows
vessels one by one, resulting in the presence of numerous
overlapping areas in the sequence. Therefore, introducing
additional constraints from the registration of non-temporally
consecutive frames may provide the redundancy to compen-
sate for the drift and the robustness to failed registrations
of consecutive frames. If we could have a reliable way to
decide from the registration result if the registration was
successful (see “Assessing the validity of a registration”
section), we could in theory register all image pairs to
extract the highest amount of information. However, regis-
tering all image pairs is computationally intractable for long
sequences and would probably introduce more redundancy
than required. Therefore, we need an efficient way to pre-
dict, from their visual appearance, the pairs that are worth
registering.

Following an idea introduced in computer vision [10], we
adopt a strategy based on bags of visual words [7] to effi-
ciently identify frames sharing a similar content without the
need to register them first. We sample dense keypoints using
the VGG descriptor [19] and perform a K -means clustering
over the full video to obtain a vocabulary of K visual words.
Each image is then described by a signature vector v ∈ N

K

encoding the frequency of each visual word in the image.
The visual similarity between two images Ii and I j is then
computed as the cosine distance between the two associated
signature vectors u and v, i.e

s(Ii , I j ) =
∑K

k=1 ukvk√∑K
k=1 u

2
k

√∑K
k=1 v

2
k

. (11)

Bycomputing this similaritymeasure for everypair of images
in the videos, we obtain a similarity matrix on which the
revisiting of previous locations is apparent (Fig. 2). The con-
struction of this matrix is more scalable than attempting the
registration of all pairs and, in fact, only requires approximate
nearest neighbours for which algorithms in linear time (e.g.
FLANN) are available. Figure 2 shows an example of similar-
ity matrix. In this example video, the trajectory followed by
the clinician is "star-shaped": every vessel is followed until
its extremity, before following it back until the last intersec-
tion, usually at the coord insertion site. The timepoints and
patterns corresponding to these "back and forth" trajectories
are apparent on the similarity matrix as lines orthogonal to
the diagonal.

To define the set of additional candidate registrations to
be included in the bundle adjustment formulation (2), we
simply rely on a threshold on the similarity above which
the registration of a pair is tried. The choice of this thresh-
old is mainly driven by computational considerations, as it
is directly related to the number of attempted registrations

Fig. 2 Similarity matrix Every entry (i, j) of this matrix states how
visually similar the frames Ii and I j are. Note how the camera follow-
ing a vessel back and forth creates branches that are orthogonal to the
diagonal line

which are going to be performed before solving the bundle
adjustment problem.

Assessing the validity of a registration

In the previous subsections, we described a robust method
to register two images, as well as a way to retrieve pairs of
non-consecutive imageswhich share a visual overlap so that a
registration of these pairs can be attempted, in addition to the
consecutive pairs. Each registration is used as a term in the
bundle adjustment formulation (2) and acts as a constraint
in the estimation of the global homographies necessary to
create the mosaic. However, in practice, the obtained reg-
istrations are not always accurate, due for example to the
registration optimiser being trapped in a local minimum, to a
failure of the retrieval of overlapping frames (leading to the
unfeasible registration of two frames for which there is no
overlap), or to the presence of a large occlusion in a frame
caused for example by foetal limbs. Assessing the correct
registrations within the attempted ones is of critical practical
importance to filter out these wrong constraints added in the
bundle adjustment, which would bias the final estimation of
global homographies.

In this work, we declare a registration as successful if it is
close enough from the identity (in the sense of the distance d
defined in “Problem statement” section), and if the gradient-
based cost functionwhichwasminimised in (5) is sufficiently
small in comparison with the costs obtained with random
warpings sampled around the identity. Although this empir-
ical strategy proved to be effective in practice, we plan to
investigate as future work more sophisticated methods, such
as consistency checks over cycles of frames [8] or learning-
based approaches.
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Experimental validation

Implementation details

We implemented our method in C++ using the OpenCV
library. The bundle adjustmentminimisation problem (2)was
solved numerically using the Levenberg–Marquardt algo-
rithm with the Ceres solver [17]. By restricting the warpings
to affine transformations, i.e. homographies where p7 = 0
and p8 = 0 with the notations introduced in (4), convergence
to a visually sound solution was achieved, even when start-
ing from identity warpings as initialisation. If one desired to
work with general homographies instead, closed-form solu-
tions could be used to obtain initialisations close enough from
the global optimum [18]. The pairwise registrations using the
forward additive Lucas Kanade algorithmwere performed in
a Gaussian pyramidal fashion with 6 levels (where each level
is a blurred and scaled down version of the original image, as
implemented in OpenCV), starting by registering the images
at a coarse level and refining progressively the warpings by
increasing the resolution. In the case where a registration
is rejected at a level of the pyramid, it was reinitialised as
the identity for the next level. For increased robustness, we
performed for each pair both a forward and backward regis-
tration (i.e. switched fixed and moving image) and kept the
registration leading to the lowest cost. The bags of visual
words were computed using the OpenCV implementation,
with default parameters in the extraction of theVGGdescrip-
tors.

The pairwise registration between two frames takes
approximately 1 second. These registrations remain the main
bottleneck in practice: on our example video of 600 frames,
solving the bundle adjustment problem takes a few minutes,
as does the construction of the similarity matrix from the
bag of words. Therefore, there is a direct linear relation-
ship between the total computational time and the amount
of attempted registrations of retrieved pairs of frames. For a
given computational budget, this time can be controlled by
registering a predefined amount of pairs with the maximum
similarity, as mentioned at the end of “Ensuring long-range
consistency with bag of words” section. Given our current
implementation and set of parameters, the total mosaicking
pipeline took about 3 hours.

Qualitative results

Due to the nature of in vivo acquisitions, a ground truth
for placenta mosaicking is not available. This makes a
quantitative evaluation of our approach very difficult. Never-
theless, we demonstrate first promising visual results with
our approach, which we discuss qualitatively in this sec-
tion. Figure 3 shows, on an example video of 600 frames,
the appearance of the mosaic obtained after the estimation

of the global homography of each video frame. To facili-
tate the visual interpretation of the results and relate it more
easily to the actual content of our example video, we limit
the display of the mosaic to truncated versions of the video
at different timepoints (from 1 to 4, chronologically). Each
frame of the video is pasted chronologically onto the mosaic
according to the global homography obtained after the offline
optimisation. Note that the global optimisation has been run
once for all on the whole video, and that these chronolog-
ical timepoints are only introduced for the visualisation of
our results. Figure 3 illustrates the global consistency of the
mosaic: although an area showing a

Y

-shaped vascular inter-
section is visited 4 times during the sequence (once at each
chosen snapshot), this intersection is correctly placed at the
same location in the mosaic over time. This is due to the
fact that video frames containing this intersection have been
recognised as similar in terms of visual content and success-
fully registered, adding additional constraints in the global
optimisation which lead to improved temporal consistency.

We show in Fig. 4 the resulting mosaics, where frames are
merged in a seemless fashion following the method of Burt
and Adelson [6] publicly available in the software Enblend,1

where one frame every 5 frames is used for blending. We
show the mosaics obtained when our gradient-based regis-
tration method was used, with and without the long-range
consistency with the bag-of-word formulation (respectively,
Fig. 4a, b). In the purely sequential case (Fig. 4a), the drift-
ing behaviour can be seen via the generally more distorted
aspect of the mosaic, as well as clear misalignments (best
seen when compared to Fig. 3), for example of the vessels
on the top left part and of the membrane of the amniotic sac
(linear demarcation on the bottom left part).

Manual evaluation of pairwise registrations

In addition to the qualitative results discussed in “Qualitative
results” section, we compare our gradient-based registra-
tion approach with two baselines. Our first baseline is a
classical image stitching technique used in computer vision
available in OpenCV which consists in detecting SURF-
based keypoints in each image and align the images with
RANSAC. SURF features were chosen over SIFT as they
performed slightly better empirically, confirming the obser-
vations made by Reeff [16] on other placenta images. Our
second baseline is obtained by replacing our gradient-based
similaritymeasure by the normalised cross-correlation, keep-
ing the rest of our Gauss–Newton optimisation framework
unchanged.

To conduct the comparison, we considered our example
video of 600 frames and assessed visually the quality of the
599 sequential pairwise registrations for each baseline. Each

1 http://enblend.sourceforge.net/.
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Fig. 3 Retrieval and registration
of overlapping frames for
long-range consistency. By
retrieving and successfully
registering frames showing the
same vascular intersection
(marked with blue arrows), the
location of this area in the
mosaic is kept stable, ensuring
an improved global consistency

Fig. 4 Mosaics obtained after
blending. We show two example
mosaics obtained with and
without the introduction of
long-range consistency. Without
long-range consistency (a), an
accumulation of errors between
pairwise registrations occurs, so
that misalignments are caused
when revisiting locations (such
as the vessels on the top left part
or the membrane on the bottom
left part, both marked with blue
arrows). a Purely sequential
alignments. b Our approach

registration was manually labelled as either correct, incor-
rect or doubtful (for ambiguous cases where the correctness
of the registration is difficult to assess visually). To remove
any subjective bias, the 1797 registrations to be labelled were
randomly shuffled so that the annotation was done without
knowledge of the approach which was actually evaluated
in each case. Table 1 summarises the count of registration
belonging to each category for the three methods and con-
firms the benefit of our approach based on the alignment of
gradient orientations.

Conclusion

We proposed a first step towards the mosaicking of placenta
images from in vivo fetoscopy data. A robust registra-
tion method based on the alignment of gradient orienta-
tions addresses the visual challenges inherent to in vivo
sequences which prevent the successful application of clas-
sical mosaicking techniques used in computer vision. More-
over, the global consistency of the mosaics was improved
via a retrieval strategy based on bags of visual words, which
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Table 1 Evaluation of pairwise
registrations

Method Correct registrations Doubtful Incorrect registrations

SURF–RANSAC 56 (9.3%) 83 (13.9%) 460 (76.8%)

NCC 29 (4.8%) 61 (10.2%) 509 (85.0%)

Ours 477 (79.6%) 67 (11.2%) 55 (9.2%)

identifies pairs of frameswhich are worth registering, regard-
less of their respective location in time. Qualitative results
were shown and discussed to illustrate the relevance of our
approach.
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