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Abstract

The quantification of behaviors of interest from video data is commonly used to study brain 

function, the effects of pharmacological interventions, and genetic alterations. Existing approaches 

lack the capability to analyze the behavior of groups of animals in complex environments. We 

present a novel deep learning architecture for classifying individual and social animal behavior, 

even in complex environments directly from raw video frames, while requiring no intervention 

after initial human supervision. Our behavioral classifier is embedded in a pipeline (SIPEC) that 

performs segmentation, identification, pose-estimation, and classification of complex behavior, 

outperforming the state of the art. SIPEC successfully recognizes multiple behaviors of freely 

moving individual mice as well as socially interacting non-human primates in 3D, using data only 

from simple mono-vision cameras in home-cage setups.

While the analysis of animal behavior is crucial for systems neuroscience1 and preclinical 

assessment of therapies, it remains a highly laborious and error-prone process. Over the 

last few years, there has been a surge in machine learning tools for behavioral analysis, 

including segmentation, identification, and pose estimation2–11. Although this has been an 

impressive feat for the field, a key element, the direct recognition of behavior itself, has been 

rarely addressed. Unsupervised analysis of behavior12–17 can be a powerful tool to capture 
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the diversity of the underlying behavioral patterns, but the results of these methods do not 

align with human annotations and therefore require subsequent inspection15. There have 

been advances also in the supervised analysis of mouse behavior, using classifiers on top of 

pose-estimation generated features18–21 or manually defined features such as ellipses22–25. 

Sturman et. al.20 demonstrated that the classification of mouse behaviors using features 

generated from pose-estimation algorithms can outperform the behavioral classification 

performance of commercial systems. Yet, such pose-estimation-based behavior classification 

remains a labor-intensive and error-prone process as we show below. Moreover, pose 

estimation in primates is difficult to achieve with current methods26.

Here, we demonstrate a complementary approach for researchers who automatically seek 

to identify behaviors of interest. Our approach relies on the initial annotation of exemplar 

behaviors, i.e. snippets of video footage. These video snippets are subsequently used to 

train a Deep Neural Network (DNN) to subsequently recognize such particular behaviors 

in arbitrarily long videos and complex environments. To achieve this, we designed a 

novel DNN architecture, called SIPEC:BehaveNet, which uses raw videoframes as input 

and significantly outperforms a pose-estimation-based approach tested on a well-annotated 

mouse dataset and reaches human-level performances for counting grouped behavioral 

events. In addition to this behavioral classification network, we developed the first 

all-inclusive pipeline, called SIPEC, with modules for segmentation (SIPEC:SegNet), 

identification (SIPEC:IdNet), behavioral classification (SIPEC:BehaveNet), and pose 

estimation (SIPEC:PoseNet) of multiple and interacting animals in complex environments. 

This pipeline utilizes four DNNs operating directly on videos, developed and optimized for 

analyzing animal behavior and providing state-of-the-art performance. We use this pipeline 

to classify, for the first time, social interactions in home-caged primates from raw video 

frames and without needing to use any pose estimation.

SIPEC:SegNet is a Mask R-CNN architecture27, optimized to robustly segment animals 

despite occlusions, multiple scales, and rapid movement, and enables tracking of animal 

identities within a session. SIPEC:IdNet has a DenseNet28 backbone, that yields visual 

features, that are integrated over time through a gated-recurrent-unit network (GRU)29,30 to 

re-identify animals when temporal-continuity-based tracking does not work, for example 

when animals enter or exit a scene. This enables SIPEC to identify primates across 

weeks and to outperform the identification module of idtracker.ai4 both within-session 

and across sessions (see also Discussion) as well as primnet31. SIPEC:PoseNet performs 

top-down multi-animal pose estimation which we compared to DeepLabCut (DLC)2. 

SIPEC:BehaveNet uses an Xception32 network in combination with a temporal convolution 

network (TCN)33,34 to classify behavioral events directly from raw pixels. To rapidly 

train our modules, we use image augmentation35 as well as transfer-learning36, optimized 

specifically for each task. SIPEC enables researchers to identify behaviors of multiple 

animals in complex and changing environments over multiple days or weeks in 3D space, 

even from a single camera with relatively little labeling, in contrast to other approaches that 

use heavily equipped environments and large amounts of labelled data8.

To accelerate the reusability of SIPEC, we share the network weights among all four 

modules for mice and primates, which can be directly used for analyzing new animals in 
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similar environments without further training or serve as pre-trained networks to accelerate 

training of networks in different environments.

Results

Our algorithm performs segmentation (SIPEC:SegNet) followed by identification 

(SIPEC:IdNet), behavioral classification (SIPEC:BehaveNet) and finally pose estimation 

(SIPEC:PoseNet) from video frames (Fig. 1). These four artificial neural networks, trained 

for different purposes, can also be used individually or combined in different ways (Fig. 1a). 

To illustrate the utility of this feature, Fig. 1b shows the output of pipelining SIPEC:SegNet 

and SIPEC:IdNet to track the identity and location of 4 primates housed together (Fig. 1b, 

Supp. Video 1). Fig. 1c shows the output of pipelining SIPEC:SegNet and SIPEC:PoseNet to 

do multi-animal pose estimation in a group of 4 mice.

Segmentation module SIPEC:SegNet

SIPEC:SegNet (see Methods, Supp. Fig. 8) is based on the Mask-RCNN architecture27, 

which we optimized for analyzing multiple animals and integrated into SIPEC. We further 

applied transfer learning36 onto the weights of the Mask-RCNN ResNet-backbone37 pre-

trained on the Microsoft Common Objects in Context (COCO dataset)38 (see Methods 

for SIPEC:SegNet architecture and training). Moreover, we applied image augmentation35 

to increase network robustness against invariances, e.g. rotational invariance and therefore 

increase generalizability.

Segmentation performance on individual mice and groups of 4—We first 

examined the performance of SIPEC:SegNet on top-view video recordings of individual 

mice, behaving in an open-field test (OFT). While segmenting black mice on a blank 

background could be achieved by thresholding alone, we still included this task for 

completeness. 8 mice were freely behaving for 10 minutes in the TSE Multi Conditioning 

System's OFT arena, previously described in Sturman et al.20. We labeled the outlines of 

mice in a total of 23 frames using the VGG image annotator39 from videos of randomly 

selected mice. To evaluate the performance, we used 5-fold cross-validation (CV). We 

assessed the segmentation performance on images of individual mice, where SIPEC:SegNet 

achieved a mean-Average Precision (mAP) of 1.0 ± 0 (mean ± s.e.m., see Methods for 

metric details). We performed a videoframe ablation study to determine how many labeled 

frames (outline of the animal, see Supp. Fig. 1) are needed for SIPEC:SegNet to reach peak 

performance (Extended Data Fig. 1). While randomly selecting an increasing amount of 

training frames, we measured performance using CV. For single-mouse videos, we find that 

our model achieves 95% of mean peak performance (mAP of 0.95 ± 0.05) using as few as 

a total of 3 labeled frames for training. To the existing 23 labeled single-mouse frames, we 

added 57 labeled 4-plex frames, adding to a total of 80 labeled frames. Evaluated on a 5-fold 

CV, SIPEC:SegNet achieves an mAP of 0.97 ± 0.03 (Fig. 2b). For segmentation in groups 

of 4 mice, we performed an ablation study as well and found that SIPEC:SegNet achieves 

better than 95% of the mean peak performance (mAP of 0.94 ± 0.05) using as few as only 

16 labeled frames. To assess the overlap between prediction and ground truth, we report IoU 

and dice coefficient metrics as well (Fig. 2b).
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Segmentation performance of groups of primates—To test SIPEC:SegNet for 

detecting instances of primates within a group, we annotated 191 frames from videos on 

different days (Day 1, Day 9, Day 16, Day 18). As exemplified in Fig. 2a, the network 

handles even difficult scenarios very well: representative illustrations include ground-truth 

as well as predictions of moments in which multiple primates are moving rapidly while 

strongly occluded at varying distances from the camera. SIPEC:SegNet achieved a mAP of 

0.91 ± 0.03 (mean ± s.e.m.) using 5-fold CV. When we performed the previously described 

ablation study, SIPEC:SegNet achieved 95% of mean peak performance (mAP of 0.87 ± 

0.03) with only 30 labeled frames (Fig. 2b). To assess the overlap between prediction and 

ground truth, we report IoU and dice coefficient metrics as well (Fig. 2c).

Pose estimation module SIPEC:PoseNet

We also added a pose estimation network, built on an encoder-decoder architecture40 with 

an EfficientNet41 backbone, to SIPEC for performing pose estimation (SIPEC:PoseNet) 

(see Methods, Supp. Fig. 7). SIPEC:PoseNet can be used to perform pose estimation on N 
animals (with N the total number of animals or less), yielding K different coordinates for 

previously defined landmarks on each animal's body. The main advantage of SIPEC:PoseNet 

in comparison to previous approaches is that it receives its inputs from SIPEC:SegNet 

(top-down pose estimation): While bottom-up approaches such as DLC2 require grouping 

of pose estimates to individuals, our top-down approach makes the assignment of pose 

estimates to individual animals trivial, as inference is performed on the masked image of 

an individual animal and pose estimates within that mask are assigned to that particular 

individual (Fig. 1c). We labeled frames with 13 standardized body parts of individual mice 

in an OFT similarly to Sturman et. al.20 to train and test the performance of SIPEC:PoseNet 

against that of DLC2. SIPEC:PoseNet achieves a Root-Mean-Squared-Error (RMSE) (see 

Methods) of 2.9 pixels in mice (Fig. 2d) for a total of 96 labeled training frames, while 

DLC2 achieves a 3.9 pixel RMSE2. Previously published pose estimation methods for single 

animals can easily be substituted into our pipeline to perform multi-animal pose estimation 

in conjunction with SIPEC:SegNet.

Identification module SIPEC:IdNet

The identification network (SIPEC:IdNet) (see Methods, Supp. Fig. 6) allows the 

determination of the identity of individual animals. Given SIPEC:IdNet receives input as 

a series (T time points) of cropped images of N (with N the total number of animals 

or less) individuals from SIPEC:SegNet, the output of SIPEC:IdNet are N identities. The 

input images from SIPEC:SegNet are scaled to the same average size (see Methods) before 

being fed into SIPEC:IdNet. We designed a feedforward classification neural network, 

which utilizes a DenseNet28-backbone pre-trained on ImageNet42. This network serves as 

a feature-recognition network on single frames. We then utilize past and future frames 

by dilating the mask around the animal with each timestep. The outputs of the feature-

recognition network on these frames are then integrated over T timesteps using a GRU 

(see Methods for architecture and training details). SIPEC:IdNet can integrate information 

from none to many temporally-neighboring frames based on a particular application's 

accuracy and speed requirements. We used spatial area dropout augmentations to increase 

robustness against occlusions43. We developed an annotation tool for a human to assign 
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identities of individual animals, in a multi-animal context, to segmentation masks in 

videoframes, which capture primates from different perspectives (Supp. Fig. 2). This tool 

was used for annotating identification data in the following sections. Below we compared 

SIPEC:IdNet's performance to that of the current state-of-the-art i.e. the identification 

module of idTracker.ai4 and the primnet31 network for primate re-identification. primnet31 

relies on faces of individuals being clearly visible for re-identification, which in our case 

is not possibe for most of the video frames. idTracker.ai4 is a self-supervised algorithm for 

tracking the identity of individual animals within a single session. Particularly in complex 

or enriched home-cage environments, where animals are frequently obstructed as they move 

underneath/behind objects or enter/exit the scene and background or lighting conditions 

change constantly, temporally based tracking and identification as idtracker.ai performs 

it becomes impossible. We evaluated the identification performance of SIPEC:IdNet 

across sessions with the identification module of idTracker.ai, providing each network 

with identical training and testing data. While idtracker.ai behaves self-supervised, the 

identification module it uses to distinguish animals is trained with the labels generated by 

idTracker.ai's cascade algorithm in a supervised fashion. Apart from re-identifying animals 

across sessions using SIPEC:IdNet, SIPEC:SegNet segmentation masks can be used via 

greedy-mask matching (see Methods) to track the identities of animals temporally as well 

(Supp. Videos 2–4) or to smooth the outputs of SIPEC:IdNet as a secondary step, that can 

boost performance for continuous video sequences, but this advantage was not used in the 

following evaluations for mice and primates.

Identification of mice in an open-field test—We first evaluated the performance of 

SIPEC:IdNet in identifying 8 individual mice. We acquired 10-minute-long videos of these 

mice behaving in the previously mentioned OFT (see Methods for details). While for the 

human observer, these mice are difficult to distinguish (Supp. Fig. 3), our network copes 

rather well. We used 5-fold CV to evaluate the performance, i.e. splitting the 10-minute 

videos into 2-minute long ones, while using one fold for testing and the rest to train 

the network Since this data is balanced, we use the accuracy metric for evaluation. We 

find that SIPEC:IdNet achieves 99 ± 0.5 % (mean and s.e.m.) accuracy, while the current 

state of the art idTracker.ai4 only achieves 87 ± 0.2 % accuracy (Fig. 2e). The ablation 

study shows that only 650 labeled frames (frame and identity of the animal) are sufficient 

for the SIPEC:IdNet to achieve 95% of its mean peak performance (Fig. 2f). We tested 

how this performance translates to identifying the same animals during the subsequent 

days (Extended Data Fig. 2). We find that identification performance is similarly high on 

the second day 86 ± 2 %, using the network trained on day 1. Subsequently, we tested 

identification robustness with respect to the interventions on day 3. Following a forced 

swim test, the identification performance of SIPEC:IdNet, trained on data of day 1, dropped 

dramatically to 4 ± 2 %. This indicates that features utilized by the network to identify the 

mice are not robust to this type of intervention, i.e. their behavior and outlook is altered by 

the stress and residual water on the fur significantly.

Identification of individual primates in a group—To evaluate SIPEC: IdNet's 

performance on identifying individual primates within a group, we used the SIPEC:SegNet-

processed videos of the 4 macaques (see Section "Segmentation performance of groups of 
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primates"). We annotated frames from 7 videos taken on different days, with each frame 

containing multiple individuals, yielding approximately 2200 labels for cutouts of individual 

primates. We used leave-one-out CV with respect to the videos in order to test SIPEC:IdNet 

generalization across days. Across sessions SIPEC:IdNet reaches an accuracy of 78 ± 3 % 

(mean ± s.e.m.) while idTracker.ai4 achieves only 33 ± 3 % and primnet31 34 ± 3 % (Fig. 

2e), where the human expert (i.e. ground truth) had the advantage of seeing all the video 

frames and the entire cage (i.e. the rest of the primates). We did a separate evaluation of the 

identification performance on "typical frames" i.e., the human expert can correctly identify 

the primates using single frames. In this case, SIPEC:IdNet achieved a performance of 86 ± 

3 (Extended Data Fig. 3). The identification labels can then be further enhanced by greedy 

mask-match-based tracking (see Methods for details). Supp. Video 1 illustrates the resulting 

performance on a representative video snippet. We perform here an ablation study as well, 

which yields 95% of mean peak performance at 1504 annotated training samples (Fig. 2g).

Behavioral classification module SIPEC:BehaveNet

SIPEC:BehaveNet (see Methods, Supp. Fig. 9) offers researchers a powerful means to 

recognize specific animal behaviors directly from raw pixels using a single neuronal net 

framework. SIPEC:BehaveNet uses video frames of N individuals over T time steps to 

classify the animals' actions. The video frames of the N individuals are generated by 

SIPEC:SegNet. If only a single animal is present in the video, SIPEC:BehaveNet can be 

used directly without SIPEC:SegNet. We use a recognition network to extract features from 

single frames analysis, based on the Xception32 network architecture. We initialize parts 

of the network with ImageNet4 weights. These features are then integrated over time by a 

TCN33,34 to classify the animal's behavior in each frame (see Methods for architecture and 

training details).

SIPEC behavior recognition outperforms DLC-based approach—We compare 

our raw-pixel-based approach to Sturman et al.20, who recently demonstrated that they 

can classify behavior based on DLC2 generated features. On top of a higher classification 

performance with fewer labels, SIPEC:BehaveNet does not require annotation and training 

for pose estimation if the researcher is interested in behavioral classification alone. The 

increased performance with fewer labels comes at the cost of a higher computational 

demand since we increased the dimensionality of the input data by several orders of 

magnitude (12 pose estimates vs. 16384 pixels). We used the data and labels from Sturman 

et al.20 on 20 freely behaving mice in an OFT to test our performance. The behavior of 

these mice was independently annotated by 3 different researchers on a frame-by-frame 

basis using the VGG video annotation tool39. Annotations included the following behaviors: 

supported rears, unsupported rears, grooming and none (unlabeled/default class). While 

Sturman et al.20 evaluated the performance of their behavioral event detection by averaging 

across chunks of time, evaluating the frame-by-frame performance is more suitable for 

testing the actual network performance since it was trained the same way. Doing such 

frame-by-frame analysis shows that SIPEC:BehaveNet has fewer false positives as well as 

false negatives with respect to the DLC-based approach of Sturman et al. 20. We illustrate 

a representative example of the performance of both approaches for each of the behaviors 

with their respective ground truths (Fig. 3a). We further resolved spatially the events that 
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were misclassified by Sturman et al., that were correctly classified by SIPEC:BehaveNet 

and vice versa (Fig. 3b). We calculated the percentage of mismatches, that occurred in the 

center or the surrounding area. For grooming events mismatches of Sturman et al.20 and 

SIPEC:BehaveNet occurs similarly often in the center 41 ± 12 % (mean and s.e.m.) and 

42 ± 12 % respectively. For supported and unsupported rearing events Sturman et al.20 has 

more mismatches occurring in the center compared to SIPEC:BehaveNet (supported rears: 

40 ± 4 % and 37 ± 6 %, unsupported rears: 12 ± 2 % and 7 ± 2 %). This indicates that 

the misclassifications of the pose estimation-based approach are more biased towards the 

center than the ones of SIPEC:BehavNet. To quantify the behavioral classification over the 

whole time course of all videos of 20 mice, we used leave-one-out CV (Fig. 3c). We used 

macro-averaged F1-score as a common metric to evaluate a multi-class classification task 

and Pearson correlation (see Methods for metrics) to indicate the linear relationship between 

the ground truth and the estimate over time. For the unsupported rears/grooming/supported 

rears behaviors SIPEC:BehaveNet achieves F1-Scores of 0.6 ± 0.16/0.49 ± 0.21/0.84 ± 0.04 

(values reported as mean ± s.e.m.) respectively, while the performance of the manually 

intensive Sturman et al.20’s approach reaches only 0.49 ± 0.11/0.37 ± 0.2/0.84 ± 0.03, 

leading to a significantly higher performance of SIPEC:BehaveNet for the unsupported 

rearing (F1: p=1.689x10-7, Wilcoxon paired-test was used as recommended44) as well as 

the grooming (F1: p=6.226x10-4) behaviors. While we see a higher precision only in the 

classification of supported rears in the DLC-based approach, SIPEC:BehaveNet has an 

improved recall for the supported rears as well as improved precision and recall for the 

other behaviors (Extended Data Fig. 4a). As expected, more stereotyped behaviors with 

many labels like supported rears yield higher F1. In comparison, less stereotypical behaviors 

like grooming with fewer labels have lower F1 for SIPEC:BehaveNet and the DLC-based 

approach. Additionally, we computed the mentioned metrics on a dataset with shuffled 

labels to indicate chance performance for each metric as well as computed each metric when 

tested across human annotators to indicate an upper limit for frame-by-frame behavioral 

classification performance (Extended Data Fig. 4b). While the overall human-to-human 

F1 is 0.79 ± 0.07 (mean ± s.e.m.), SIPEC:BehaveNet classifies with an F1 of 0.71 ± 

0.07. We then grouped behaviors by integrating the classification over multiple frames as 

described in Sturman et al.20. This analysis results in a behavior count per video. For these 

per video behavior counts, we found no significant difference between human annotators, 

SIPEC:BehaviorNet and Sturman et al.20 (Tukey's multiple comparison test, Extended Data 

Fig. 6). Such classification and counting of specific behaviors per video are commonly 

used to compare the number of occurrences of behaviors across experimental groups. 

Using such analysis, Sturman et al.20 demonstrate how video-based analysis outperforms 

commonly used commercial systems. Moreover, we also tested combining the outputs of 

pose estimation-based classification together with the raw-pixel model (Combined Model in 

Methods, Extended Data Fig. 4). Lastly, we performed a frame ablation study and showed 

that SIPEC:BehaveNet needs only 114 minutes, less than 2 hours, of labeled data to reach 

peak performance in behavior classification (Fig. 3d).

Socially interacting primate behavior classification

We used the combined outputs of SIPEC:SegNet and SIPEC:IdNet, smoothed by greedy 

match-based tracking, to generate videos of individual primates over time (see Methods for 
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details). To detect social events, we used SIPEC:SegNet to generate additional video events 

covering "pairs" of primates. An interaction event was detected whenever the masks of 

individual primates came sufficiently close (see Methods). We were able to rapidly annotate 

these videos again using the VGG video annotation tool39 (overall 80 minutes of video are 

annotated from 3 videos, including the individual behaviors of object interaction, searching, 

social grooming and none (background class)). We then trained SIPEC:BehaveNet to 

classify individuals' frames and merged frames of pairs of primates socially interacting over 

time. We used grouped 5-fold stratified CV over all annotated video frames, with labeled 

videos being the groups. Overall SIPEC:BehaveNet achieved a macro-F1 of 0.72 ± 0.07 

(mean ± s.e.m.) across all behaviors (Fig. 4a). This performance is similar to the earlier 

mentioned mouse behavioral classification performance. The increased variance compared 

to the classification of mouse behavior is expected as imaging conditions, as previously 

mentioned, are much more challenging and primate behaviors are much less stereotyped 

compared to mouse behaviors. This can be likely compensated with more training data.

Tracking position of primates in 3D without stereo-vision

By performing SIPEC:SegNet and SIPEC:IdNet inference on a full one-hour video, we 

built a density map of positions of individuals within the husbandry (Fig. 1a). Without 

stereo-vision, one cannot optically acquire depth information. Instead, we used the output 

masks of SIPEC:SegNet and annotated the positions of the primates in 300 frames using a 

3D model (Supp. Fig. 4). Subsequently, we generated 6 features using Isomap45 and trained 

a multivariate linear regression model to predict the 3D positions of the primates (Fig. 4b). 

Using 10-fold CV, our predicted positions using only single camera have an overall RMSE 

of only 0.43 ± 0.01 m (mean ± s.e.m.), that is of 0.27 ± 0.01 m in x-direction or 6% error 

w.r.t the room dimension in x-direction; 0.26 ± 0.01 m / 7% and 0.21 ± 0.01 m / 7% for the 

y and z coordinates respectively. If an annotation is impossible, quasi depth estimates can be 

calculated through the mask size alone and correlate highly with the actual depth (Extended 

Data Fig. 5).

Discussion

We have presented SIPEC, a novel pipeline, using specialized deep neural networks 

to perform segmentation, identification, behavioral classification, and pose estimation 

on individual and interacting animals. With SIPEC we address multiple key challenges 

in the domain of behavioral analysis. Our SIPEC:SegNet enables the segmentation of 

animals with only 3-30 labels (Fig. 2a,b,c). In combination with greedy-mask matching, 

SIPEC:SegNet can be used to track animals' identities within one session similar to 

idtracker.ai, but even in complex environments with changing lighting conditions, where 

idtracker.ai fails (Supp. Video 1).

Subsequently, SIPEC:BehaveNet enables animal behavior recognition directly from raw 

video data. Raw-video classification has the advantage of not requiring pre-processing 

adjustments or feature engineering to specific video conditions. Moreover, we show that 

learning task-relevant features directly from the raw video can lead to better results than 

pose-estimation-based approaches which train a classifier on top of the detected landmarks. 
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In particular, we demonstrate that our network outperforms a state-of-the-art pose estimation 

approach13 on a well-annotated mouse behavioral dataset (Fig. 3) and reaches human-level 

performance for counting behavioral events (Extended Data Fig. 6). Thus, pose-estimation 

can be skipped if researchers are solely interested in classifying behavior. We note that our 

raw-pixel approach increases the input-dimensionality of the behavior classification network 

and therefore uses more computational resources and is slower than pose-estimation-based 

approaches.

SIPEC:IdNet identifies primates in complex environments across days with high accuracy. 

SIPEC:SegNet enhances SIPEC:IdNet’s high identification performance through mask-

matching-based tracking and integration of identities through time. We demonstrate that 

identification accuracy is significantly higher than that of the identification module of state-

of-art idtracker.ai and primnet31 (Fig. 2e). We note, however, that identification using deep 

nets is not robust to interventions that affect mice's appearance strongly immediately after 

the intervention (such as forced swim test, Extended Data Fig. 2). However, even without 

any interventions, expert human observers have difficulty identifying mice of such similar 

size and color. The effects of different interventions on the recognition performances of deep 

net architectures should be studied in the future. Finally, SIPEC:PosNet enables top-down 

pose estimation of multiple animals in complex environments, making it easy to assign pose 

estimates to individual animals with higher performance than DLC (Fig. 2d).

All approaches are optimized through augmentation and transfer learning, significantly 

speeding up learning and reducing labeling compared to the other approaches we tested on 

the mouse and non-human primate datasets. We also performed ablation studies for each of 

the networks to estimate the number of labels necessary for successful training. The number 

of labels necessary can change depending on the dataset, for example, if the background, 

etc. are more complex each network could require more annotated frames to be trained 

successfully. To perform well under the complex video conditions for non-human primates, 

SIPEC:SegNet needs about 30 labels, SIPEC:IdNet about 1500 labels and SIPEC:BehaveNet 

less than 2 hours of annotated video (Fig. 2c,g; Fig. 4a).

SIPEC can be used to study the behavior of primates and their social interactions over longer 

periods in a naturalistic environment, as we demonstrated for social grooming (Fig. 4a). In 

addition, after initial training of SIPEC modules, they can automatically output a behavioral 

profile for each individual in a group, over days or weeks and therefore also be used to 

quantify the changes in behaviors of individuals in social contexts over time. Since SIPEC 

is fully supervised, it may be difficult to scale it to large colonies with hundreds of animals, 

such as bees and ants. However, SIPEC is well suited for most other animal species beyond 

insects.

Finally, we show how SIPEC enables 3D localization and tracking from a single-camera 

view, yielding an off-the-shelf solution for home-cage monitoring of primates, without the 

need for setting stereo-vision setups (Fig. 4b). Estimating the 3D position requires the 

experimenter to create a 3D model and annotate 3D data. However, we show a quasi-3D 

estimate can be generated directly from the mask size, without manual annotation, that 

correlates highly with the actual position of the animal (Extended Data Fig. 5).
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Behaviors which were not recognized and annotated by the researcher and therefore not 

learned by the neural network could be picked up using complementary unsupervised 

approaches12,13. The features-vectors, embedding individual behaviors, created by 

SIPEC:BehaveNet can be used as input to unsupervised approaches, which can help align 

the outputs of unsupervised approaches with human annotation. Moreover, the output of 

other modules (SIPEC:SegNet, SIPEC:IdNet and SIPEC:PoseNet) can also be used after 

such unsupervised approaches to analyse individual animals.

Methods

Animals

C57BL/6J (C57BL/6JRj) mice (male, 2.5 months of age) were obtained from Janvier 

(France). Mice were maintained in a temperature- and humidity-controlled facility on a 

12-h reversed light-dark cycle (lights on at 08:15 am) with food and water ad libitum. Mice 

were housed in groups of 5 per cage and used for experiments when 2.5−4 months old. 

For each experiment, mice of the same age were used in all experimental groups to rule 

out confounding effects of age. All tests were conducted during the animals' active (dark) 

phase from 12−5 pm. Mice were single housed 24 h before behavioral testing in order to 

standardize their environment and avoid disturbing cage mates during testing. The animal 

procedures of these studies were approved by the local veterinary authorities of the Canton 

Zurich, Switzerland, and carried out in accordance with the guidelines published in the 

European Communities Council Directive of November 24, 1986 (86/609/EEC).

Acquisition of mouse data

For mouse behavioral data and annotation, we refer to Sturman et al.20. For each day, we 

randomized the recording chamber of mice used. On days 1-2, we recorded animals 1-8 

individually. On day 3, for measuring the effect of interventions on performance, mice were 

forced-swim-tested in water for 5 minutes immediately before the recording sessions.

Acquisition of primate data

4 male rhesus macaques were recorded with a 1080p camera within their home-cage. The 

large indoor room was about 15m2. Videos were acquired using a Bosch Autodome IP 

starlight 7000 HD camera with 1080p resolution at 50 Hz.

Annotation of segmentation data

To generate training data for segmentation training, we randomly extracted frames of mouse 

and primate videos using a standard video player. Next, we used the VIA video annotator39 

to draw outlines around the animals.

Generation and annotation of primate behavioral videos

For creating the dataset, 3 primate videos of 20-30 minutes were annotated using the VIA 

video annotator39. These videos were generated by previous outputs of SIPEC:SegNet and 

SIPEC:IdNet. Frames of primates, identified as the same over consecutive frames, were 

stitched together to create individualized videos. To generate videos of social interactions, 
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we dilated the frames of each primate in each frame and checked if their overlap crossed a 

threshold, in which case we recalculated the COM of those two masks and center-cropped 

the frames around them. Labeled behaviors included 'searching', 'object interacting', 'social 

grooming' and 'none' (background class).

Tracking by segmentation and greedy mask-matching

Based on the outputs of the segmentation masks, we implemented greedy-match-based 

tracking. For a given frame the bounding box of a given animal is assigned to the bounding 

box previous frames with the largest spatial overlap, with a decaying factor for temporally 

distant frames. The resulting overlap can be used as a confidence of SIPEC:SegNet based 

tracking of the individual. This confidence can be used as a weight when using the resulting 

track identities to optionally smooth the labels that SIPEC:IdNet.

Identification labeling with the SIPEC toolbox

As part of SIPEC we release a GUI that allows to label for identification when multiple 

animals are present (Supp. Fig. 2). To use the GUI, SIPEC:SegNet has to be trained and 

inference has to be performed on videos to be identity labeled. SIPEC:SegNet results can 

then be loaded from the GUI and overlaid with the original videos. Each box then marks 

an instance of the species that is to be labeled in green. For each animal, a number on 

the keyboard can be defined, which corresponds to the permanent ID of the animal. This 

keyboard number is then pressed, and the mask-focus jumps to the next mask until all masks 

in that frame are annotated. Subsequently, the GUI jumps to the next frame in either regular 

intervals or randomly throughout the video, as predefined by the user. Once a predefined 

number of masks is reached, results are saved, and the GUI is closed.

SIPEC top-down workflow

For a given image, if we assume that N individuals (with N the total number of animals 

or less) are in the field of view (FOV), the output of SIPEC:SegNet is N segmentations 

or masks of the image. This step is mandatory if the analysis is for multiple animals in a 

group since subsequent pipeline parts are applied to the individual animals. Based on the 

masks, the individual animals' center of masses (COMs) are calculated as a proxy for the 

animals' 2D spatial positions. Next, we crop the original image around the COMs of each 

animal, thus reducing the original frame to N COMs and N square-masked cutouts of the 

individuals. This output can then be passed onto other modules.

SIPEC:SegNet network architecture and training

SIPEC:SegNet was designed by optimizing the Mask R-CNN architecture. We utilized a 

ResNet101 and feature pyramid network (FPN)46 as the basis of a convolutional backbone 

architecture. These features were fed to the region proposal network (RPN), which applies 

convolutions onto these feature maps and proposes regions of interest (ROIs). Subsequently, 

these are passed to a ROIAlign layer, which performs feature pooling, while preserving the 

pixel-correspondence in the original image. Per level of this pyramidal ROIAlign layer, we 

assign an ROI feature map from the different layers of the FPN feature maps. Multiple 

outputs are generated from the FPN, one of which is classifying if an animal is identified. 
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The regressor head of the FPN returns bounding-box regression offsets per ROI. Another 

fully convolutional layer, followed by a per-pixel sigmoid activation, performs the mask 

prediction, returning a binary mask for each animal ROI. The network is trained using 

stochastic gradient descent, minimizing a multi-task loss for each ROI:

L = Lmask + Lregression + Lclass

where Lmask is the average binary cross-entropy between predicted and ground truth 

segmentation mask, applied to each ROI. Lregression is a regression loss function applied 

to the coordinates of the bounding boxes, modified to be outlier robust as in the original 

Fast R-CNN paper47. Lclass is calculated for each of the proposed ROIs (or anchors) as 

a logarithmic loss of non-animal vs animal. The learning rate was adapted by an animal 

specific schedule and training was done iteratively, by first training the output layers for 

some epochs and then incrementally including previous blocks in the training process. 

SIPEC:SegNet outputs segmentation masks and bounding boxes to create cutouts or masked 

cutouts of individual animals to be used by one of the downstream modules.

SIPEC:IdNet network architecture and training

SIPEC:IdNet was based on the DenseNet architecture28 for frame-by-frame identification. 

It consists of 4 dense blocks, which consist of multiple sequences of a batch normalization 

layer, a ReLU activation, and a convolution. The resulting feature maps are concatenated to 

the outputs of the following sequences of layers (skip-connections). The resulting blocks are 

connected through transitions, that are convolutional followed by pooling layers. After the 

last dense block, we connect an average pooling layer to a Dropout48 layer with a dropout 

rate of 0.5 followed by the softmax classification layer. For the recurrent SIPEC:IdNet, we 

remove the softmax layer and feed the output of the average pooling layers for each time 

point into a batch normalization layer49 followed by 3 layers of bidirectional gated recurrent 

units29,30 with leaky ReLU activation50,51 (alpha=0.3) followed by a Dropout48 layer with 

rate 0.2 followed by the softmax layer. The input for SIPEC:IdNet is the output cutouts of 

individuals, generated by SIPEC:SegNet (for the single-animal case background-subtracted 

thresholding and centered-cropping would also work). For the recurrent case, the masks 

of past or future frames are dilated with a frames per second (FPS) dependent factor that 

increases with distance in time in order to increase the field of view. We first pre-trained the 

not-recurrent version of SIPEC:IdNet using Adam52 with an lr=0.00025, a batch size of 16 

and using a weighted cross-entropy loss. We used a learning rate scheduler in the following 

form:

LE + 1 = LE
κE (2)

where E stands for epoch, using a k=1.5. Subsequently, we removed the softmax layer and 

fixed the network's weights. We then trained the recurrent SIPEC:IdNet again using Adam52 

and an lr=0.00005, k=1.25 and a batch size of 6.
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SIPEC:BehaveNet network architecture and training

SIPEC:BehaveNet was constructed as a raw-pixel action recognition network. It consists of 

a feature recognition network that operates on a single frame basis and a network, which 

integrates these features over time. The feature recognition network (FRN) is based on 

the Xception32 architecture, consisting of an entry, middle, and exit flow. The entry flow 

initially processes the input with convolution and ReLU blocks. Subsequently, we pass 

the feature maps through 3 blocks of separable convolution layers, followed by ReLU, 

separable convolution, and a max-pooling layer. The outputs of these 3 blocks are convolved 

and concatenated and passed to the middle flow. The middle flow consists of 8 blocks of 

ReLU layers followed by a separable convolution layer. The Exit receives the feature maps 

from the middle flow and passes it one more entry-flow-like block, followed by separable 

convolution and ReLU units. Finally, these features are integrated by a global average 

pooling layer, followed by a dense layer and passed through the softmax activation. This 

FRN was first pre-trained on a frame-by-frame basis using an lr=0.00035, gradient clipping 

norm of 0.5, and batch size=36 using the Adam52 optimizer. We reduced the original 

Xception architecture by the first 17 layers for mouse data to speed up the computation and 

reduce overfitting. After training the FRN, the outputting dense and softmax layers were 

removed, and all weights were fixed for further training. The FRN-features were integrated 

over time by a non-cause Temporal Convolution Network33. It is non-causal because, for 

classification of behavior at time point t, it combines features from [t-n,t+n] with n being 

the number of timesteps, therefore looking backward in time and forward. In this study, 

we used an n of 10. The FRN features are transformed by multiple TCN blocks of the 

following form: 1D-Convolution followed by batch normalization, a ReLU activation and 

spatial dropout. The optimization was performed using Adam52 as well with a learning rate 

of 0.0001 and a gradient clipping norm of 0.5, trained with a batch size of 16.

Loss adaptation

To overcome the problem of strong data imbalance (most frames are annotated as 'none', i.e. 

no labeled behavior), we used a multi-class adaptation technique Focal loss53, commonly 

used for object detection, and adapt it for action recognition, to discount the contribution of 

the background class to the overall loss:

Lfocal = − α 1 − pt γlogpt

We used a gamma = 3.0 and an alpha = 0.5. For evaluation, we used the commonly used 

F1 metric to assess multi-class classification performance while using Pearson Correlation to 

assess temporal correlation.

SIPEC:PoseNet network architecture and training

Combined with SIPEC:SegNet we can perform top-down pose estimation with 

SIPEC:PoseNet. That means, instead of the pose estimation network outputting multiple 

possible outputs for one landmark, corresponding to different animals, we can first segment 

different animals and then run SIPEC:PoseNet per animal on its cropped frame. In principle, 

every architecture can now be run on the cropped animal frame, including DLC2. The 
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SIPEC:PoseNet architecture is based on an encoder-decoder design40. In particular, we 

used EfficientNet41 as a feature detection network for a single frame. Subsequently, these 

feature maps are deconvolved into heatmaps that regress towards the target location of 

that landmark. Each deconvolutional layer is followed by a batch normalization layer and 

a ReLU activation function layer. For processing target images for pose-regression, we 

convolved pose landmark locations in the image with a 2D Gaussian kernel. Since there 

were many frames with an incomplete number of labels, we defined a custom cross-entropy-

based loss function, which was 0 for non-existing labels.

Lincomplete = CrossEntropy
0, if labels does not exist

Combined Model

To test performance effects of doing a pose-estimation-based classification in conjunction 

with SIPEC:BehaveNet, we pre-trained SIPEC:PoseNet (with classification layer on top) as 

well as SIPEC:BehavNet individually. Subsequently removed the output layers and fixed the 

weights of the individual networks and trained a joint output model, which combined inputs 

of each stream followed by a batch normalization layer, a dense layer (64 units), and a ReLU 

activation layer. The resulting units were concatenated into a joint tensor followed by a batch 

normalization layer, a dense layer (32 units), and a ReLU activation layer. This layer was 

followed by a dense layer with 4 units for the 4 behavioral classes and softmax activation 

function. This combined model was trained using Adam52 with a lr=0.00075. We further 

offer to use optical flow as an additional input, which has been shown to enhance action 

recognition performance54.

Implementation and Hardware

For all neural network implementations, we used Tensorflow55 and Keras56. Computations 

were done on either NVIDIA RTX 2080 Ti or V100 GPUs.

3D location labeling

To annotate the 3D location of a primate, we firstly create a precise model of the physical 

room (Supp. Fig. 4) using Blender. For a given mask-cutout of a primate, we place an 

artificial primate at an approximate location in the 3D model. We can then directly read out 

the 3D position of the primate. 300 samples are annotated, covering the most frequent parts 

of the primate positions.

3D location estimation

To regress the animal positions in 3D, we trained a manifold embedding using Isomap45 

using the mask size (normalized sum of positively classified pixels), the x and y pixel 

positions and their pairwise multiplications as features. We used the resulting 6 Isomap 

features, together with the inverse square root of the mask size, mask size and x-y-position 

in pixel space to train an ordinary least squares regression model to predict the 3D position 

of the animal.
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Metrics used

Abbreviations used: Pearson − Pearson Correlation, RMSE − Root mean squared error, IoU 

− intersection over union, mAP − mean average precision, dice − dice coefficient.

Pearsonxy =
∑i = 1

n (xi − x)(yi − y)

∑i = 1
n (xi − x)2 ∑i = 1

n (yi − y)2

RMSE =
∑n − 1

N yn − yn 2

N

precision = TP
TP + FP

recall = TP
TP + FN

Where TP denotes True Positives, FP False Positives, TN True Negatives, and FN False 

Negatives.

F1 = 2 ⋅ precision ⋅ recall
precision + recall

IoU(MGT, MP) =
MGT ∩ MP
MGT ∪ MP

Where MGT denotes the ground truth mask and MP the predicted one. We now calculate the 

mAP for detections with an IoU > 0.5 as follows:

mAP = ∑
n = 0

rn + 1 − rn ρinterp rn+1

With

ρinterp rn + 1 = max
r:r ≥ rn + 1

ρ r

Where ρ(r) denotes precision measure at a given recall value.

dice =
2 * MGT ∩ MP
MGT + MP
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Extended Data

Extended data figure 1. 
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Extended data figure 2. 
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Extended data figure 3. 
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Extended data figure 4. 
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Extended data figure 5. 
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Extended data figure 6. 

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of the SIPEC workflow and modules.
a) From a given video, instances of animals are segmented with the segmentation network 

(SIPEC:SegNet), indicated by masked outline as well as bounding boxes. Subsequently, 

individuals are identified using the identification network (SIPEC:IdNet). For each 

individual, the pose and behavior can be estimated/classified using the pose estimation 

network (SIPEC:PoseNet) and the behavioral identification network (SIPEC:BehaveNet), 

respectively. b) Outcome of SIPEC:SegNet, and SIPEC:IdNet modules are overlaid on a 

representative videoframe. Time-lapsed positions of individual primates (center of mass) 

are plotted as circles with respective colors. c) Outputs of SIPEC:SegNet (boxes) and 

SIPEC:PoseNet (colored dots) on a representative videoframe of mouse open-field data.
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Fig. 2. Performance of the segmentation (SIPEC:SegNet), pose estimation (SIPEC:PoseNet), and 
identification (SIPEC:IdNet) modules under demanding video conditions and using few labels.
a) Qualitative comparison of ground truth (top row) versus predicted segmentation masks 

(bottom row) under challenging conditions; multiple animals, at varying distances from the 

camera, under strong visual occlusions, and in rapid motions. b) For mice, SIPEC:SegNet 

performance in mAP (mean average precision), dice (dice coefficient), and IoU (intersection 

over union) as a function of the number of labels. The lines indicate the means for 5-fold 

CV while circles, squares, triangles indicate the mAP, dice, and IoU, respectively, for 

individual folds. c) For primates, SIPEC:SegNet performance in mAP, dice, and IoU as a 

function of the number of labels. The lines indicate the means for 5-fold CV while circles, 

squares, triangles indicate the mAP, dice, and IoU, respectively, for individual folds. d) 

The performance of SIPEC:PoseNet in comparison to DeepLabCut measured as RMSE 

in pixels on single mouse pose estimation data. e). Comparison of identification accuracy 
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for SIPEC:IdNet module, idtracker.ai4, primnet31 and randomly shuffled labels (chance 

performance). 8 videos from 8 individual mice and 7 videos across 4 different days from 4 

group-housed primates are used. f) For mice, the accuracy of SIPEC:IdNet as a function of 

the number of training labels used. The black lines indicate the mean for 5-fold CV with 

individual folds displayed. g) For primates, the accuracy of SIPEC:IdNet as a function of 

the number of training labels used. The black lines indicate the mean for 5-fold CV with 

individual folds displayed. All data is represented by mean, showing all points.
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Fig. 3. SIPEC:BehaveNet outperforms pose-estimation (DeepLabCut) based approach (Sturman 
et al.20).
a) Comparison of behavioral classification by human annotator (ground truth), 

SIPEC:BehaveNet, and Sturman et al.20 b) Errors in the classification of mouse behavior 

in the open arena for SIPEC:BehaveNet versus Sturman et al. Each colored dot represents 

a behavioral event that is incorrectly classified by that method (while correctly classified 

by the other) with respect to the ground truth. none-classified (background class) positions 

of mice are indicated as grey dots. c) Frame-by-frame classification performance per video 

(n=20 mice) compared to ground truth. d) SIPEC:BehaveNet classification performance as 
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a function of labeled minutes. All data is represented by a minimum-to-maximum box-and-

whisker plot, showing all points. Wilcoxon paired test:* p <= 0.05; *** p <= 0.001; **** p 

<= p <= 0.0001.
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Fig. 4. SIPEC can recognize social interactions of multiple primates and infer their 3D positions 
using a single camera.
a) Performance of SIPEC:BehaveNet for individual and social behaviors with respect 

to ground truth evaluated using grouped 5-fold CV. Behaviors include searching, object 

interaction and social grooming; while the performance is measured using F1. F1 on 

shuffled labels is included for comparison. All data is represented by a minimum-to-

maximum box-and-whisker plot, showing all points. b) Evaluation of 3D position estimates 

of primates in home-cage. Black spots mark annotated positions (n=300) while predicted 

positions are marked as red-hued spots at the end of the solid arrows (color-coded using a 

red gradient with brighter red indicating higher RMSE of predicted to true position).
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