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Introduction: Humans are exposed to multiple environmental chemicals via different

sources resulting in complex real-life exposure patterns. Insight into these patterns is

important for applications such as linkage to health effects and (mixture) risk assessment.

By providing internal exposure levels of (metabolites of) chemicals, biomonitoring studies

can provide snapshots of exposure patterns and factors that drive them. Presentation of

biomonitoring data in networks facilitates the detection of such exposure patterns and

allows for the systematic comparison of observed exposure patterns between datasets

and strata within datasets.

Methods: We demonstrate the use of network techniques in human biomonitoring

data from cord blood samples collected in three campaigns of the Flemish Environment

and Health Studies (FLEHS) (sampling years resp. 2002–2004, 2008–2009, and

2013–2014). Measured biomarkers were multiple organochlorine compounds, PFAS and

metals. Comparative network analysis (CNA) was conducted to systematically compare

networks between sampling campaigns, smoking status during pregnancy, andmaternal

pre-pregnancy BMI.

Results: Network techniques offered an intuitive approach to visualize complex

correlation structures within human biomonitoring data. The identification of

groups of highly connected biomarkers, “communities,” within these networks

highlighted which biomarkers should be considered collectively in the analysis

and interpretation of epidemiological studies or in the design of toxicological

mixture studies. Network analyses demonstrated in our example to which

extent biomarker networks and its communities changed across the sampling

campaigns, smoking status during pregnancy, and maternal pre-pregnancy BMI.
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Conclusion: Network analysis is a data-driven and intuitive screening method when

dealing with multiple exposure biomarkers, which can easily be upscaled to high

dimensional HBM datasets, and can inform mixture risk assessment approaches.

Keywords: network analysis, human biomonitoring, multiple exposure biomarkers, mixtures, risk assessment,

community detection

INTRODUCTION

Throughout their life-time, humans are exposed to a plethora
of environmental stressors and chemicals that independently
or in interaction may have an impact on health. Whereas,
chemical risk assessment typically evaluates single compounds,
it generally does not appropriately reflect the complexity
of concomitant exposure to multiple chemicals in real life.
Currently there is yet little insight into commonly occurring
exposure mixtures and how these mixtures change between
important covariates, e.g., gender, countries, and time. Human
biomonitoring (HBM) has the potential to provide a snapshot
of exposure to chemicals (1), and these data can be used to
screen for the presence of clusters of correlated exposures.
The identification of these communities is important for the
analysis and interpretation within epidemiological studies (which
compounds are more related, and should therefore be considered
collectively) and for the design of mixture toxicology studies
(which combined exposures do occur in the population), thereby
informing risk assessors/managers on potential concomitant
exposure pathways.

Patterns between multiple biomarkers are not commonly
presented (2). Increasingly, graphical representation of (partial)
correlation patterns such as heatmaps or circular correlation
globes (circos plots) are being used. However, here the distinction
of groups of correlated compounds is not always straightforward
as it depends largely on a-priori ordering by the presenter and
on the visual interpretation by the reader. Also, the comparison
of multiple circos plots [for example as presented in (3)], is
challenging, especially when comparing three or more plots or in
high dimensional settings. Networks provide a graphical method
to represent groups or communities in the data, which has
been used widely in the OMICs world (4–6). Applied to HBM
data, networks consist of nodes which represent the biomarkers,
and edges that represent the conditional dependence between
the biomarkers. Networks give an intuitive interpretation
of patterns in the data without prior assumptions (7). A
networkmay consist of multiple subnetworks (connected nodes).
Within a subnetwork, one or more communities of biomarkers
can be detected using community detection algorithms (8).
Communities are groups in which nodes (i.e., biomarkers)
are more connected to each other than to the rest of the

Abbreviations: CNA, Comparative Network Analysis; EGA, Exploratory
Graph Analysis; FLEHS, Flemish Environment and Health Study; HBM,
Human Biomonitoring; HCB, Hexachlorobenzene; LOD, Limit of Detection;
PCBs, Polychlorinated biphenyls; PFAS, Per- and polyfluoroalkyl substances;
PFHXS, Perfluorohexane sulfonate; PFNA, Perfluorononanoic acid; PFOA,
Perfluorooctanic acid; PFOS, Perfluorooctane sulfonate; POPs, Persistent Organic
Pollutants; p,p′-DDE, p,p′-Dichlorodiphenyldichloroethylene.

(sub)network. Communities in exposure biomarker networks
might therefore represent common exposure routes (dermal,
inhalation or ingestion), external sources (such as lifestyle, social
or environmental factors) and/or (bio)chemical properties (e.g.,
kinetics, distribution).

Further insights can be generated with comparative network
analysis (CNA), which is an analytical procedure that allows
for the comparison of two or more networks based on
(dis)similarities (9–11). Comparative network analysis can be
used to assess the impact of covariates on observed networks.
Differences between networks are presented as (dis)similar nodes
and edges, which in itself are amendable to community detection
as well (12).

To pilot and illustrate the use of network techniques in
exposure HBM data we applied this methodology to data
collected as part of the FLEHS (Flemish Environment and
Health Study) newborn campaigns (13). The FLEHS data consists
of multiple biomarkers, obtained by targeted analysis of cord
blood samples collected directly after birth in three subsequent
campaigns over a 12 year period (13–17). Time trends of multiple
biomarkers across the subsequent FLEHS newborn campaigns
(Persistent Organic Pollutants (POPs) and metals) have been
described before, showing varying rates of decline of different
biomarker over the three campaigns (16).

We were particularly interested in the use of network
techniques to visualize biomarker correlation patterns within
each FLEHS campaign. In addition, we explored the stability
of these networks across sampling campaigns, smoking status
during pregnancy, and maternal pre-pregnancy BMI using CNA.

MATERIALS AND METHODS

Flemish Environment and Health Study
In the newborn campaigns of FLEHS, cord blood samples have
been collected at three points in time, FLEHS I (N = 1,196): 2002-
2004, FLEHS II (N = 255): 2008-2009 and FLEHS III (N = 281):
2013-2014. The FLEHS campaigns are conducted in a population
sample that is representative for the geographical distribution
and the population density of the population in Flanders,
Belgium. A summary of the characteristics of each campaign,
including the p-value, is presented in Supplementary Table 1.
Details of recruitment, sampling, laboratories, limits of detection
and quality control measures have been reported before (13, 18,
19). Selection of the chemicals was based on health and exposure
related criteria, and technical criteria, extensively discussed
by experts as part of the biomonitoring studies (16). The
biomonitoring studies were approved by the Ethical Committee
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FIGURE 1 | Heatmap (A), circular correlation globe (B) and network including community detection (C) of FLEHS III, 19 biomarkers, n = 281. Data is corrected for

maternal age, smoking during pregnancy and maternal pre-pregnancy BMI. The heatmap is based on Pearson correlation between the biomarkers. Within the circular

globe each biomarker is presented as a color-block on the circular axis. Within the network, each dot or node represents a biomarker, each edge represents a

connection between the biomarkers, each different color represents a community within a subnetwork.

of the University of Antwerp (FLEHS I and II) and of the
University hospital of Antwerp (FLEHS III).

Biomarkers
Chemicals measured in cord blood of newborns were included
for analysis if more than 60% of the measurements was
above the Limit of Detection (LOD). In FLEHS I, seven
biomarkers fulfilled this requirement: cadmium, lead, p,p′-
DDE, HCB, PCB138, PCB153 and PCB180. In FLEHS II, 12
biomarkers: cadmium, lead, p,p′-DDE, PCB138, PCB153 and
PCB180, arsenic, copper, manganese, thallium, PFOS, and PFOA.
In FLEHS III, 19 biomarkers fulfilled this requirement: all
from FLEHS II plus the additional biomarkers: HCB, PCB118,
PCB146, PCB170, PCB180, PFHXS, and PFNA. For the CNA
comparisons between the three campaigns six corresponding
biomarkers were included, and between FLEHS II and III 12
corresponding biomarkers.

Imputations and Data Preparation
Concentrations of biomarkers were natural log transformed
because distributions were skewed. p,p′-DDE, HCB, and PCB
concentrations were expressed as concentrations per gram blood
lipid and as such corrected for differences in dietary fat intake.
Hence it is expected that the correlations are independent of
blood fat levels (20). Biomarker values below LOD were imputed
based on a maximum likelihood estimation via single conditional
imputation, dependent on observed values for the other
biomarkers (21). Missing values in biomarkers and determinants
(cholesterol, maternal age, maternal pre-pregnancy BMI, parity,
singleton or multiples, and maternal smoking during pregnancy)
were imputed by using a single imputation strategy stratified
per campaign, using the R package mice. Determinants were
imputed first, using linear regression for continuous variables,
and logistic regression for the binary variables. The determinants
and observed values were then used as prediction matrix for

single imputation of the biomarkers (completely missing, e.g.,
due to insufficient blood volume), using linear regression. The
geometric mean, minimum and maximum (based on imputed
data) biomarker concentrations, and percentage of missing
samples are presented in Supplementary Table 2. Pearson
correlation structures between the natural logarithm transformed
biomarkers per sampling campaign are presented by heatmaps
and circos plots in Figure 1 and the Supplementary Figures 1, 2.

For comparisons across sampling campaigns, analytical
datasets were created in which biomarker concentrations were
residualized using a linear model incorporating predictors for
maternal age, pre-pregnancy BMI and maternal smoking during
pregnancy, following the corrections described by Schoeters et al.
(16). For comparisons across covariate categories of smoking
and BMI, analytical datasets of FLEHS III were created. The
datasets stratified by smoking were adjusted for maternal age
and maternal pre-pregnancy BMI; the datasets of BMI strata for
maternal age and smoking during pregnancy.

Network Graph Estimation and Community
Detection
Weused undirected and unweighted network analysis to describe
the conditional independence between multiple variables,
making use of the packages huge and igraph, using R (v3.5.0)
(22, 23). A node in the network represents a biomarker, and an
edge reflects conditional dependency given all other variables
(23). For comparison purposes, weighted network analysis was
applied as well, making use of the package EGAnet (v0.9.6) (24).

The graph estimation was conducted using the graphical lasso,
which involves penalized maximum likelihood estimation (25).
This method is a simple and fast algorithm for estimation of
a sparse inverse covariance matrix using an L1 penalty. The
graphical lasso cycles through the variables, fitting a modified
lasso regression to each variable in turn. Regularization of
the graph was conducted along a sequence of 10 equally
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spaced lambdas ranging from the maximum lambda (resulting
in an empty graph) to the minimum lambda set at 10%
of the maximum lambda. Optimal lambda selection was
conducted using the stability approach to regularization selection
method (StARS) (26), which selects the optimal lambda by
variability across subsamples (26). Variability (or instability)
across subsamples is defined as the fraction of times (range: 0–
0.5) that two graphs disagree on the presence of an edge, averaged
over all edges in the graphs. We used the default variability
threshold of 0.1. Within the selected network, the walktrap
algorithm from the igraph package was used, which performs
random walks (in default of 4 steps) across the network to merge
separate communities in a bottom-up manner (27, 28). Nodes
were colored according to the community they were assigned to.
Sensitivity analysis was performed by comparing the networks
with and without inclusion of the mice imputed values (samples
missing at random, see Supplementary Table 2 for percentages
of missing’s).

The low-dimensional setting of the FLEHS data also allows
for the application of correlation networks (29). We compared
our approach to an application of weighted correlation networks
for the data in FLEHS I, II, and III. Weighted networks
were estimated by the EGAnet package, this Exploratory Graph
Analysis technique was based on the Graphical lasso model
and an EBIC tuning parameter of 0.5 was used (24, 30, 31). A
parametric bootstrap (1,000 iterations) was used to estimate the
median network structure. Communities in the EGA network
were estimated using the walktrap algorithm. The weighted
network shows the strength of the edge (absolute correlation)
by thickness of the line, and direction of the correlation by
color of the line (green for a positive correlation, red for a
negative correlation).

Networks were constructed for each measurement campaign
separately. Secondly, networks were constructed for different
strata of the dataset of FLEHS III. Where FLEHS III was either
split by maternal smoking status during pregnancy (yes n=33; no
n=248), or bymaternal pre-pregnancy BMI category (≤25 kg/m²
or low-normal n= 195; >25 kg/m² or high n= 86).

Comparative Network Analysis
Systematically comparing networks, or CNA, is of interest to
assess the impact of covariates on networks derived in HBM
data. Networks can be compared on their similarities or their
dissimilarities. Multiple network comparison methods have been
described before, and some can be computationally challenging
(9, 32). In this paper, we focus on exact graph matching, which
involves the exact correspondence between two or more graphs
with the exact same set of nodes. We call an edge “conserved”
if it is present in all of the input graphs. The complement of
conserved edges is represented in a network graph (network
of conserved edges). Comparative network analysis can also
assess the presence of edges in network B which are not present
in network A. These results can be interpreted as “additional”
or different edges, and are presented in a network graph as
well (network of differential edges). The CNA as applied in
this paper focuses on differences in network structure, and
not on differences in the detected communities. To assess

the stability of the independently derived networks across the
FLEHS sampling campaigns we conducted CNA to identify the
conserved edges between the networks across campaigns. To
evaluate the influence of covariates, differences between derived
networks were assessed between the strata: high vs. low-normal
maternal pre-pregnancy BMI, and non-smoking vs. smoking
during pregnancy.Within the deduced conserved and differential
networks multiple subnetworks were distinguished, within which
the walktrap algorithm was applied for community detection
(only if the subnetwork consisted of 6 or more nodes).

RESULTS

The study population, summary statistics and time trends
of individual biomarkers over the three sampling campaign
have been described previously (13, 16). An overview of the
study characteristics and the concentrations per biomarker are
presented in Supplementary Tables 1, 2.

The FLEHS III dataset consists of 19 biomarkers, and has
been used to illustrate the network techniques since it is most
data rich. Figure 1 presents the heatmap, correlation globe and
network for the FLEHS III dataset. For comparison purposes,
we present two alternative approaches to represent correlation
structures in HBM data. In both the heatmap (Figure 1A) and
the circular correlation globe (Figure 1B) correlation structures
become apparent. The identification of communities of strongly
correlated markers using these visualizations is not straight
forward as it depends largely on the subjective interpretation of
the reader. The heatmaps and correlation globes for FLEHS I and
II are presented in Supplementary Figures 1A,B, 2A,B.

Network Estimation and Community
Detection
In the obtained network for FLEHS III, three communities
were estimated. The markers of HCB, arsenic, thallium and
lead were not part of a community. A subnetwork consisted
of two connected communities, one with PCBs and p,p′-DDE,
and one with PFAS (PFOA, PFOS, PFHXS and PFNA). The
link between the two communities, marker PFNA within the
PFOA community, was connected to PCB138 and PCB153. The
other community consisted of cadmium, copper and manganese;
and was not connected to any other communities. When we
compare these networks to weighted networks derived in the
same data (Supplementary Figure 4C), we observe the same
communities of PCBs, PFAS and the metals cadmium, copper
and manganese. Additionally, the metals thallium and lead also
form a community. The markers for HCB and arsenic remain not
part of any community.

The networks of FLEHS I and II are presented in the
Supplementary Figures 1C, 2C. In the network for FLEHS I
two subnetworks were estimated, one consisting of cadmium
and lead, and the other consisting of PCB138/153/180, HCB
and p,p′-DDE. In the network for FLEHS II four subnetworks
were found, of which two were equal to FLEHS III (PCBs and
PFAS). The community of the metals cadmium and lead was
equal to FLEHS I. The weighted network for FLEHS I (including
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FIGURE 2 | (A) Network based on individuals FLEHS III where the mother did not smoke during pregnancy (n = 248), (B) and mothers who smoked during

pregnancy (n = 33). Within both (A) and (B) networks, each dot or node represents a biomarker, each edge represents a connection between the biomarkers, the

different colors represent a community within a subnetwork. (C) Results of the CNA, dissimilar, or additional, edges when the mother smoked during pregnancy, only

nodes part of a subnetwork are colored in gray. Data is corrected for maternal age and maternal pre-pregnancy BMI.

walktrap community detection algorithm) the community for the
metals as the unweighted network (Supplementary Figure 4A).
The markers for p,p′-DDE and HCB were estimated as a
separate community, connected to PCB138/153/180. It can be
seen that between the latter two communities the edges were
strong. Within the weighted network for FLEHS II the exact
same communities as the unweighted network were estimated
(Supplementary Figure 4B). Sensitivity analysis was performed
by comparing the networks with and without inclusion of
the imputed values. No differences between those networks
were found.

Comparative Network Analysis
Differential Networks (Smoking During Pregnancy)
Figures 2A,B presents the networks consisting of biomarkers
collected during FLEHS III, stratified by smoking status during
pregnancy. Two hundred and forty-eight mothers did not smoke
during pregnancy and 33 mothers did smoke during pregnancy.
Equal to the total FLEHS III dataset, two subnetworks were
identified for mothers who did not smoke during pregnancy.
The graph of non-smoking mothers only differed by the
connection of the community PCBs with PFAS, PFOS was
also linked with the PCB community (Figure 2A). When the
mother did smoke during pregnancy, three subnetworks were
distinguished, one consisting of PCBs without p,p′-DDE, one
of PFAs, and one with cadmium, copper and manganese
(Figure 2B). Compared to Figure 2A and the network for the
total FLEHS III dataset, the network of mothers who smoked
had no connection between PCBs and PFAS. The results from
the CNA presented in Figure 2C show one small subnetwork
(colored in gray), reflecting the change in connection between
PFOS and PFOA, that were not connected when the mother
did not smoke during pregnancy, while they were connected
when the mother did smoke. The CNA of the edges only present
when the mother did not smoke during pregnancy are shown
in Supplementary Figure 5. Here multiple edges between PFNA
and PCBs, PFOS with PCB118, and p,p′-DDEwithmultiple PCBs

were shown to be only estimated within the network of mothers
who did not smoke during pregnancy.

Differential Networks (Maternal Pre-pregnancy BMI)
Figure 3 presents networks consisting of biomarkers collected
during FLEHS III, stratified by maternal pre-pregnancy BMI.
One hundred and ninety-five mothers had a low-normal pre-
pregnancy BMI, and 86 mothers a high pre-pregnancy BMI.
Within the network of the stratum of mothers with a low-
normal pre-pregnancy BMI (≤25 kg/m²), two subnetworks
were identified. The detected subnetworks and communities
were the same as in the total FLEHS III dataset. The PCB
community was connected to PFAS, and the community
of cadmium/copper/manganese was not connected to any
other (Figure 3A). Within the stratum of mothers with a
high pre-pregnancy BMI (>25 kg/m²) only communities for
PCBs and PFAS were estimated, which were not connected
(Figure 3B). Also, p,p′-DDEwas not part of the PCB community.
Comparative network analysis of the networks, presented in
Figure 3C, shows the dissimilar edges between the strata. The
edges additional to the network for mothers with high pre-
pregnancy BMI were identified and colored in gray: PCB118,
PCB170, and PCB180. The CNA results showing edges only
present for mothers with low-normal BMI are shown in
Supplementary Figure 5. Multiple edges between DDE and
PCBs were estimated, as well as the edges between manganese,
copper and cadmium.

Conserved Networks Across Campaigns
Figure 4A presents the conserved edges across the three
networks that were independently derived in the FLEHS I, II,
and III datasets (containing the 6 biomarkers measured in all
three campaigns). The individual networks derived on the six
biomarkers measured in FLEHS I, II, and III are presented in
the Supplementary Figure 3. Edges between PCB138, PCB153,
and PCB180 were seen in all three campaigns. p,p′-DDE, lead
and cadmium were not included as a subnetwork of this CNA, as
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FIGURE 3 | (A) Network based on individuals from FLEHS III split by low-normal maternal pre-pregnancy BMI (BMI ≤ 25 kg/m², n = 195), (B) and high maternal

pre-pregnancy BMI (BMI > 25 kg/m², n = 86). Within both (A) and (B) networks, each dot or node represents a biomarker, each edge represents a connection

between the biomarkers, the different colors represent a community within a subnetwork. (C) Results of the CNA, dissimilar, or additional, edges when the mother had

a high BMI, only nodes part of a subnetwork are colored in gray. Data is corrected for maternal age and smoking status during pregnancy.

FIGURE 4 | Results of the CNA across three campaigns (A), or between two campaigns (B). Resulting networks are the similar edges, present in either all three, or

both, of the networks per FLEHS campaign. (A) Conserved or similar edges over all three networks of FLEHS I, II and III, based on six biomarkers. (B) Conserved or

similar edges between the two networks of FLEHS II and III, based on 12 biomarkers. Conserved edges are presented as a network graph, only nodes part of a

subnetwork are colored in gray.

these were not consistently correlated across the three campaigns.
Figure 4B presents the conserved edges based on FLEHS II,
and III datasets (containing the 12 biomarkers measured in
both campaigns). Here, three subnetworks were identified:
PFOA and PFOS; p,p′-DDE and PCB138/153/180; manganese
and copper. These subnetworks identified are the biomarkers
that were consistently connected in both sampling campaigns.
Arsenic, cadmium, thallium and lead were not included in any
of the subnetworks, and therefore not connected to the same
biomarkers in both FLEHS II and FLEHS III networks.

DISCUSSION

We provide an application of network analysis in HBM data.
The primary utility of this work is to demonstrate that network

methodologies can be used to identify prevalent mixtures of
chemicals in HBM data. Conditional independence networks
provide a data-driven and intuitive approach to highlight the
presence of highly connected biomarker measurements without
prior assumptions or groupings, about for example sources,
chemical properties, pathways or mode of actions. The primary
benefit of a network over the heatmap or circos plots is
the ease of identification, formalization of the procedure to
identify communities and providing a structural approach for
comparison of exposure patterns between datasets or across
strata within the dataset.

At the same time, some information is potentially lost when
describing an HBM dataset using conditional independence
networks. Heatmaps and circos plots provide information on the
degree of correlation. As such the applied network methodology
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is an addition to other graphical presentations, not a replacement.
The networks as described in the Results section are based
on unweighted edges, which become of more value in high
dimensional HBM data such as untargeted screening data.
Weighted partial correlation networks that include information
on the degree and direction of association between biomarkers,
can provide additional information especially when the number
of nodes is not too large and a visual interpretation can be made
(31). In addition to graphical tools, approaches such as principal
components or cluster analysis (33) can provide insight into
complex correlation structures in the data, but are often more
difficult to digest visually, especially in high dimensional settings.

Network techniques can be used as a first screening
technique to assess patterns in mixture exposure biomarker
data and comparisons across strata of covariates, to assist
exposure scientists (pathway, source identification), to assist
epidemiologists in taking the communities into account during
data analysis and interpretation, and to guide toxicological
mixture experiments in identifying real-life mixtures.

Worked Example: FLEHS Datasets
The application in FLEHS provided some examples of insights
that can be acquired by applying networks in HBM data. The
community structures we detected in the FLEHS data are in
line with earlier findings that groups with similar chemical
structures such as PCBs group together (34). As expected based
on previous analyses and literature, due to their often observed
high correlation structure, we observed a PCB community
in all derived networks, which could be explained by shared
sources and similar kinetics (33, 35, 36). We also note, however,
that sometimes biomarker p,p′-DDE was included in the “PCB
community” highlighting that, when assessing the impact of
PCBs, one potentially needs to take into account concurrent
exposure of p,p′-DDE. This was also observed in a previous
analysis of the FLEHS data (37), where an association between
p,p′-DDE and birth weight was observed while correcting for
PCBs, which was not observed in a single pollutant model
between p,p′-DDE and birth weight. Such findings underline that
assessing health risks of combinations of exposure biomarkers
reflects better real-world situations and thereby allow more
effective risk assessment. Another group of typically highly
correlated compounds, the PFAS, were consistently identified
as a community in our networks. For the metals the size
and composition of the communities varied across the FLEHS
campaigns, likely reflecting rather dispersed sources of metal
exposure. Within some of the networks, some biomarkers were
not included in a subnetwork (such as HCB in FLEHS III),
which could be expected since the partial correlation with other
biomarkers was very low (no links to other markers in the circos
plot), indicating different exposure sources and/or kinetics.

The results of the CNA between the three datasets
(Figure 4A), show that the association of the PCBs with p,p′-
DDE is not always based on the same PCB, and therefore doesn’t
show as a conserved link across all three campaigns. Multiple
explanations can be hypothesized, such as a change in correlation
between source and usage over time, causing a change in

correlation. Also, the concentration of DDT/DDE/DDD changes
over time (e.g., by regulation), as well as the composition of
the PCB mixture. The smaller number of samples analyzed in
FLEHS II and FLEHS III might also mean that there is a larger
impact of random variation or error in the estimated networks,
which would explain the observed variation as well.

As an example, the FLEHS data was stratified by smoking
status and pre-pregnancy BMI, other strata such as diet (e.g.,
fish consumption) are also possible. The FLEHS III networks
stratified by smoking, both had an equal composition of
communities. With the difference that when the mother smoked
during pregnancy, an additional edge between PFOA/PFOS was
estimated. We could not identify a straightforward explanation
for this observation, yet potential explanations would include
metabolic changes due to smoking behavior, or a co-exposure
that occurs only with smoking women (38). Moreover, only 33
mothers indicated they smoked during pregnancy, which could
indicate reduced statistical power to detect true correlations.
Also, since this variable indicates if they have ever smoked during
pregnancy it could be that the actual smoking frequency was
rather low as mothers would be aware of the bad influence
of smoking on their unborn child. In the network derived
in mothers with high pre-pregnancy BMI we see that the
biomarkers form two communities, one with all PCBs and one
with PFAS. While both communities were connected when the
mother had a low-normal BMI, which could be explained in
differences in diet or other lifestyle factors. The results of the
CNA between smoking and BMI such as in Figures 2C, 3C
give direction in thinking about common exposure sources or
common exposures due to lifestyle factors (e.g., dietary habits,
low SES, smoking) that contribute to the correlation patterns in
HBM exposure biomarkers and will help to prioritize concurrent
exposures that could be considered together when assessing
exposure-effect associations.

In a biomonitoring study with relatively limited number of
markers measured, such as the FLEHS campaigns, weighted
networks can be applied as well. In our application a
weighted network provided similar insights to our conditional
independence method: communities overlap between both
methods. The only difference in community was thallium and
lead in the FLEHS III dataset, which had the weakest within-
community edge. Most likely the detection of this community
is just above the threshold; it is dropped in the unweighted
network as a result of the slightly different network estimation. In
the weighted networks the edges that connect the communities
are clearly less present (thinner) or not present at all. As such
there was no significant loss of information by choosing for an
unweighted network method. In high dimensional settings the
application of weighted networks might become unwieldy and
therefore we suggest our method in such settings.

Limitations
There were several limitations to the application of the network
analysis in the FLEHS data. First of all, this work is based on a
limited set of biomarkers, which reduced the added information
of the network estimation, but on the other hand presented easily
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interpretable networks. Due to the limited number of biomarkers
in FLEHS I and II, it was decided to focus the stratification by
covariates only on the FLEHS III dataset with 19 biomarkers.
Secondly, the amount of observations was limited. For the
comparisons of BMI category or smoking status the amount
of observations in one of the strata was limited (minimum of
n = 33). Thirdly, an underlying assumption of the temporal
comparisons between the FLEHS campaigns, is the comparability
between the campaigns. Analysis of the biomarkers was done by
the same lab in the subsequent campaigns, and control samples
were analyzed to assess the comparability of the results. However,
different individuals were measured in the different campaigns
and slight variations in demographics between participants by
campaign could result in different networks.

Future Extensions
While not opportune in our current dataset, further extensions
to the currently described methods can be foreseen. For example,
rather than focusing on differences in networks across covariates,
one could focus on differences in communities: Differential
Community Detection (12). Since the amount of different
communities per network was limited for the FLEHS data,
this would not have added much information in the FLEHS
datasets, but would in high dimensional HBM datasets. Also,
the focus on the community differences would be important
for applications in epidemiology, mixture toxicology, and
mixture risk assessment. The communities in a network can be
considered as starting points for further assessment of mixture
health effects or in the design of mixture toxicology studies,
providing information on combined exposures that occur at
population level. Mixture risk assessment might indirectly use
the community information, focusing on a common health effect
for all substances in the community. Depending on the risk
assessment purpose, it might be of use to apply overlapping
community detection, where one biomarker could be part of
multiple communities (fuzzy clustering) (39).

The application of weighted correlation networks to the
FLEHS data did not yield substantially differing insights as
compared to the results obtained with the application of the
conditional independence methods. This is likely explained by
the strong communities that exist in this data and that the
correlation matrix is largely positive. However, in other datasets
of similar dimensions, weighted network approaches can be
a useful addition by providing more information (degree and
direction) on the associations between biomarkers, underlying
the observed communities. When the number of biomarkers in
the dataset increases, the interpretation of weighted networks
is likely to become more challenging, although community
detection will facilitate interpretation to a great deal. Also, CNA
of weighted networks will become more challenging, for example
inexact graph matching where networks are assessed as equal
within certain criteria (32), or where the most important nodes
and/or edges are extracted (40).

The network approaches presented here will be a worthwhile
tool when applied in high dimensional HBM datasets.
Technological developments are making such datasets

increasingly possible by application of methods such as
untargeted high resolution mass spectrometry (41–43). The
application of network analysis could help identifying clusters in
the data, including parent compounds and related metabolites.
Network analysis on high dimensional data has great potential
for mixture risk assessment to describe the complex exposure
patterns, their composition and variability. Comparative
network analysis on strata of covariates may identify specific
risk groups with particular communities of biomarkers of
concern. While initial steps have been made toward the risk
assessment of mixtures, these approaches are often either
based on the assessment of chemically related compounds
(e.g., PCB congeners), or based on toxicology (44–46), and not
on common occurrence and exposure patterns. Insights into
complex correlation networks in HBM data, and the presence of
communities within these networks, provide useful information
on the presence of mixtures at population level.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following
licenses/restrictions: Access to the data can only be granted by the
data owner. Requests to access these datasets should be directed
to TZC@provincieantwerpen.be.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Ethical Committee of the University
of Antwerp (FLEHS I and II) and of the University
Hospital of Antwerp (FLEHS III). The patients/participants
provided their written informed consent to participate
in this study.

AUTHOR CONTRIBUTIONS

IO participated in the design of this research, performed the
statistical analysis, and writing the manuscript. EG contributed
to the data collection, data analysis, and writing the manuscript.
IO and EG had an equal contribution to this manuscript.
JV conceived and designed the research, participated in data
analysis, and writing the manuscript. GS, EL, and RV contributed
to the design of this research, provided feedback on the
statistical analyses, and assisted in writing the manuscript.
All authors reviewed and approved the final version of
the manuscript.

FUNDING

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under Grant Agreement No. 733032 HBM4EU and from
National Institute for Public Health and the Environment’s
Strategic Programme RIVM (SPR) in which expertise and
innovative projects prepare RIVM to respond to future

Frontiers in Public Health | www.frontiersin.org 8 February 2021 | Volume 9 | Article 590038

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Ottenbros et al. Network Analysis Multiple Biomarkers

issues in health and sustainability. The FLEHS studies
were carried out by the Flemish Center of Expertise on
Environment and Health. The studies of the Center were
commissioned, financed, and steered by the Ministry of the
Flemish Community.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpubh.
2021.590038/full#supplementary-material

REFERENCES

1. Ganzleben C, Antignac J-P, Barouki R, Castaño A, Fiddicke U, Klánová
J, et al. Human biomonitoring as a tool to support chemicals regulation
in the European Union. Int J Hyg Environ Health. (2017) 220:94–7.
doi: 10.1016/j.ijheh.2017.01.007

2. Tamayo-Uria I, Maitre L, Thomsen C, Nieuwenhuijsen MJ, Chatzi L, Siroux
V, et al. The early-life exposome: description and patterns in six European
countries. Environ Int. (2019) 123:189–200. doi: 10.1016/j.envint.2018.11.067

3. Robinson O, Basagaña X, Agier L, de Castro M, Hernandez-Ferrer C,
Gonzalez JR, et al. The pregnancy exposome: multiple environmental
exposures in the INMA-Sabadell birth cohort. Environ Sci Technol. (2015)
49:10632–41. doi: 10.1021/acs.est.5b01782

4. Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano
H, et al. Visualization of omics data for systems biology. Nat Methods. (2010)
7:S56–68. doi: 10.1038/nmeth.1436

5. Mitra K, Carvunis A-R, Ramesh SK, Ideker T. Integrative approaches for
finding modular structure in biological networks. Nat Rev Genet. (2013)
14:719–32. doi: 10.1038/nrg3552

6. Villaveces J, Koti P, Habermann B. Tools for visualization and analysis of
molecular networks, pathways, and -omics data. Adv Appl Bioinform Chem.

(2015) 11:11–12. doi: 10.2147/AABC.S63534
7. Green S, SerbanM, Scholl R, Jones N, Brigandt I, BechtelW. Network analyses

in systems biology: new strategies for dealing with biological complexity.
Synthese. (2018) 195:1751–77. doi: 10.1007/s11229-016-1307-6

8. Fortunato S. Community detection in graphs. Phys Rep. (2010) 486:75–174.
doi: 10.1016/j.physrep.2009.11.002

9. Emmert-Streib F, Dehmer M, Shi Y. Fifty years of graph matching,
network alignment and network comparison. Inf Sci. (2016) 346–347:180–97.
doi: 10.1016/j.ins.2016.01.074

10. Ideker T, Krogan NJ. Differential network biology.Mol Syst Biol. (2012) 8:565.
doi: 10.1038/msb.2011.99

11. Zhang B, Li H, Riggins RB, Zhan M, Xuan J, Zhang Z, et al.
Differential dependency network analysis to identify condition-specific
topological changes in biological networks. Bioinformatics. (2009) 25:526–32.
doi: 10.1093/bioinformatics/btn660

12. Mall R, Ullah E, Kunjia K, Bensmail H. Differential community detection
in paired biological networks. In: Proceedings of the 8th ACM International

Conference on Bioinformatics, Computational Biology,and Health Informatics.
New York, NY: Association for Computing Machinery (2017) 330–9.
doi: 10.1145/3107411.3107418

13. Schoeters G, Hond E, Den Colles A, Loots I, Morrens B, Keune H, et al.
Concept of the Flemish human biomonitoring programme. Int J Hyg Environ
Health. (2012) 215:102–8. doi: 10.1016/j.ijheh.2011.11.006

14. Flemish Center of Expertise on Environment and Health. (2020). No
Title. Available online at: from http://www.milieu-en-gezondheid.be/en/
homepage-eng (accessed July 27, 2020).

15. Koppen G, Den Hond E, Nelen V, Van De Mieroop E, Bruckers L, Bilau
M, et al. Organochlorine and heavy metals in newborns: results from the
Flemish environment and health survey (FLEHS 2002-2006). Environ Int.

(2009) 35:1015–22. doi: 10.1016/j.envint.2009.05.002
16. Schoeters G, Govarts E, Bruckers L, Den Hond E, Nelen V, De Henauw S, et al.

Three cycles of human biomonitoring in Flanders–Time trends observed in
the Flemish environment and health study. Int J Hyg Environ Health. (2017)
220:36–45. doi: 10.1016/j.ijheh.2016.11.006

17. Schoeters G, Colles A, Hond E, Den Croes K, Vrijens J, Baeyens W,
et al. The Flemish environment and health study (FLEHS)—Second
survey (2007-2011): establishing reference values for biomarkers of

exposure in the Flemish population. Issues Toxicol. (2012) 1:135–65.
doi: 10.1039/9781849733373-00135

18. Baeyens W, Vrijens J, Gao Y, Croes K, Schoeters G, Den Hond E, et al. Trace
metals in blood and urine of newborn/mother pairs, adolescents and adults
of the Flemish population (2007-2011). Int J Hyg Environ Health. (2014)
217:878–90. doi: 10.1016/j.ijheh.2014.06.007

19. Den Hond E, Govarts E, Bruckers L, Schoeters G. Determinants of
polychlorinated aromatic hydrocarbons in serum in three age classes-
Methodological implications for human biomonitoring. Environ Res. (2009)
109:495–502. doi: 10.1016/j.envres.2009.02.007

20. O’Brien KM, Upson K, Buckley JP. Lipid and creatinine adjustment to
evaluate health effects of environmental exposures. Curr Environ Health Rep.

(2017) 4:44–50. doi: 10.1007/s40572-017-0122-7
21. Lubin JH, Colt JS, Camann D, Davis S, Cerhan JR, Severson RK, et al.

Epidemiologic evaluation of measurement data in the presence of detection
limits. Environ Health Perspect. (2004) 112:1691–6. doi: 10.1289/ehp.7199

22. Csárdi G, Nepusz T. The igraph software package for complex network
research. Inter J Comp Syst. (2006) 1695:1–9. Available online at: https://
igraph.org/ (accessed July 27, 2020).

23. Zhao T, Liu H, Roeder K. The huge package for high-dimensional undirected
graph estimation in R. J Mach Learn Res. (2012) 13:1059–62.

24. GolinoH, Christensen AP. EGAnet: Exploratory Graph Analysis: A Framework

for Estimating the Number of Dimensions in Multivariate Data Using Network

Psychometrics. (2020). Available online at: https://cran.r-project.org/package=
EGAnet (accessed July 27, 2020).

25. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance
estimation with the graphical lasso. Biostatistics. (2008) 9:432–41.
doi: 10.1093/biostatistics/kxm045

26. Liu H, Roeder K, Wasserman L. Stability Approach to Regularization Selection

(StARS) for High Dimensional Graphical Models. (2010). Available online
at: http://arxiv.org/abs/1006.3316 (accessed July 27, 2020).

27. Orman GK, Labatut V. “A comparison of community detection algorithms on
artificial networks,” in International Conference on Discovery Science. Portugal:
Springe (2009). p. 242–56. doi: 10.1007/978-3-642-04747-3_20

28. Pons P, Latapy M. Computing Communities in Large Networks Using Random

Walks. (2005). p. 284–93.
29. Yu D, Zhang Z, Glass K, Su J, DeMeo DL, Tantisira K, et al. New

statistical methods for constructing robust differential correlation networks
to characterize the interactions among microRNAs. Sci Rep. (2019) 9:3499.
doi: 10.1038/s41598-019-40167-8

30. Golino HF, Demetriou A. Estimating the dimensionality of intelligence
like data using exploratory graph analysis. Intelligence. (2017) 62:54–70.
doi: 10.1016/j.intell.2017.02.007

31. Golino HF, Epskamp S. Exploratory graph analysis: a new approach for
estimating the number of dimensions in psychological research. PLoS ONE.

(2017) 12:e0174035. doi: 10.1371/journal.pone.0174035
32. Tantardini M, Ieva F, Tajoli L, Piccardi C. Comparing methods for comparing

networks. Sci Rep. (2019) 9:17557. doi: 10.1038/s41598-019-53708-y
33. Govarts E, Remy S, Bruckers L, Den Hond E, Sioen I, Nelen V, et al. Combined

effects of prenatal exposures to environmental chemicals on birth weight. Int
J Environ Res Public Health. (2016) 13:495. doi: 10.3390/ijerph13050495

34. Den Hond E, Govarts E, Willems H, Smolders R, Casteleyn L, Kolossa-
Gehring M, et al. First steps toward harmonized human biomonitoring
in Europe: demonstration project to perform human biomonitoring
on a European scale. Environ Health Perspect. (2015) 123:255–63.
doi: 10.1289/ehp.1408616

35. Fisher M, Arbuckle TE, Liang CL, LeBlanc A, Gaudreau E, Foster WG, et al.
Concentrations of persistent organic pollutants in maternal and cord blood

Frontiers in Public Health | www.frontiersin.org 9 February 2021 | Volume 9 | Article 590038

https://www.frontiersin.org/articles/10.3389/fpubh.2021.590038/full#supplementary-material
https://doi.org/10.1016/j.ijheh.2017.01.007
https://doi.org/10.1016/j.envint.2018.11.067
https://doi.org/10.1021/acs.est.5b01782
https://doi.org/10.1038/nmeth.1436
https://doi.org/10.1038/nrg3552
https://doi.org/10.2147/AABC.S63534
https://doi.org/10.1007/s11229-016-1307-6
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.ins.2016.01.074
https://doi.org/10.1038/msb.2011.99
https://doi.org/10.1093/bioinformatics/btn660
https://doi.org/10.1145/3107411.3107418
https://doi.org/10.1016/j.ijheh.2011.11.006
http://www.milieu-en-gezondheid.be/en/homepage-eng
http://www.milieu-en-gezondheid.be/en/homepage-eng
https://doi.org/10.1016/j.envint.2009.05.002
https://doi.org/10.1016/j.ijheh.2016.11.006
https://doi.org/10.1039/9781849733373-00135
https://doi.org/10.1016/j.ijheh.2014.06.007
https://doi.org/10.1016/j.envres.2009.02.007
https://doi.org/10.1007/s40572-017-0122-7
https://doi.org/10.1289/ehp.7199
https://igraph.org/
https://igraph.org/
https://cran.r-project.org/package=EGAnet
https://cran.r-project.org/package=EGAnet
https://doi.org/10.1093/biostatistics/kxm045
http://arxiv.org/abs/1006.3316
https://doi.org/10.1007/978-3-642-04747-3_20
https://doi.org/10.1038/s41598-019-40167-8
https://doi.org/10.1016/j.intell.2017.02.007
https://doi.org/10.1371/journal.pone.0174035
https://doi.org/10.1038/s41598-019-53708-y
https://doi.org/10.3390/ijerph13050495
https://doi.org/10.1289/ehp.1408616
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Ottenbros et al. Network Analysis Multiple Biomarkers

from the maternal-infant research on environmental chemicals (MIREC)
cohort study. Environ Health. (2016) 15:59. doi: 10.1186/s12940-016-0143-y

36. Lee W-C, Fisher M, Davis K, Arbuckle TE, Sinha SK. Identification
of chemical mixtures to which Canadian pregnant women are
exposed: the MIREC study. Environ Int. (2017) 99:321–30.
doi: 10.1016/j.envint.2016.12.015

37. Govarts E, Portengen L, Lambrechts N, Bruckers L, Den Hond E, Covaci A,
et al. Early-life exposure to multiple persistent organic pollutants and metals
and birth weight: pooled analysis in four Flemish birth cohorts. Environ Int.

(2020) 145:106149. doi: 10.1016/j.envint.2020.106149
38. Rovira J, MartínezMÁ, Sharma RP, Espuis T, NadalM, Kumar V, et al. Prenatal

exposure to PFOS and PFOA in a pregnant women cohort of Catalonia, Spain.
Environ Res. (2019) 175:384–92. doi: 10.1016/j.envres.2019.05.040

39. Xie J, Kelley S, Szymanski BK. Overlapping community detection in networks.
ACM Comput Surv. (2013) 45:1–35. doi: 10.1145/2501654.2501657

40. Koutra D, Shah N, Vogelstein JT, Gallagher B, Faloutsos C. DeltaCon:
principled massive-graph similarity function with attribution. ACM Trans

Knowledge Discov Data. (2016) 10:1–43. doi: 10.1145/2824443
41. Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. Trends

in the application of high-resolution mass spectrometry for human
biomonitoring: an analytical primer to studying the environmental
chemical space of the human exposome. Environ Int. (2017) 100:32–61.
doi: 10.1016/j.envint.2016.11.026

42. Pourchet M, Debrauwer L, Klanova J, Price EJ, Covaci A, Caballero-Casero N,
et al. Suspect and non-targeted screening of chemicals of emerging concern
for human biomonitoring, environmental health studies and support to risk
assessment: from promises to challenges and harmonisation issues. Environ
Int. (2020) 139:105545. doi: 10.1016/j.envint.2020.105545

43. Vermeulen R, Schymanski EL, Barabási A-L, Miller GW. The exposome
and health: where chemistry meets biology. Science. (2020) 367:392–6.
doi: 10.1126/science.aay3164

44. Boberg J, Dybdahl M, Petersen A, Hass U, Svingen T, Vinggaard AM. A
pragmatic approach for human risk assessment of chemical mixtures. Curr
Opin Toxicol. (2019) 15:1–7. doi: 10.1016/j.cotox.2018.11.004

45. Howdeshell KL, Hotchkiss AK, Gray LE. Cumulative effects of antiandrogenic
chemical mixtures and their relevance to human health risk assessment. Int J
Hyg Environ Health. (2017) 220:179–88. doi: 10.1016/j.ijheh.2016.11.007

46. Kienzler A, Bopp SK, van der Linden S, Berggren E, Worth A. Regulatory
assessment of chemical mixtures: requirements, current approaches
and future perspectives. Regul Toxicol Pharmacol. (2016) 80:321–34.
doi: 10.1016/j.yrtph.2016.05.020

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The reviewer RK declared a past co-authorship with one of the authors RV
to the handling Editor.

Copyright © 2021 Ottenbros, Govarts, Lebret, Vermeulen, Schoeters and

Vlaanderen. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Public Health | www.frontiersin.org 10 February 2021 | Volume 9 | Article 590038

https://doi.org/10.1186/s12940-016-0143-y
https://doi.org/10.1016/j.envint.2016.12.015
https://doi.org/10.1016/j.envint.2020.106149
https://doi.org/10.1016/j.envres.2019.05.040
https://doi.org/10.1145/2501654.2501657
https://doi.org/10.1145/2824443
https://doi.org/10.1016/j.envint.2016.11.026
https://doi.org/10.1016/j.envint.2020.105545
https://doi.org/10.1126/science.aay3164
https://doi.org/10.1016/j.cotox.2018.11.004
https://doi.org/10.1016/j.ijheh.2016.11.007
https://doi.org/10.1016/j.yrtph.2016.05.020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles

	Network Analysis to Identify Communities Among Multiple Exposure Biomarkers Measured at Birth in Three Flemish General Population Samples
	Introduction
	Materials and Methods
	Flemish Environment and Health Study
	Biomarkers
	Imputations and Data Preparation

	Network Graph Estimation and Community Detection
	Comparative Network Analysis

	Results
	Network Estimation and Community Detection
	Comparative Network Analysis
	Differential Networks (Smoking During Pregnancy)
	Differential Networks (Maternal Pre-pregnancy BMI)
	Conserved Networks Across Campaigns


	Discussion
	Worked Example: FLEHS Datasets
	Limitations
	Future Extensions

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


