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Abstract: Staphylococcus aureus can develop resistance by mutation, transfection or biofilm formation.
Resistance was induced in S. aureus by growth in sub-inhibitory concentrations of ciprofloxacin for
30 days. The ability of the antimicrobials to disrupt biofilms was determined using crystal violet
and live/dead staining. Effects on the cell membranes of biofilm cells were evaluated by measuring
release of dyes and ATP, and nucleic acids. None of the strains developed resistance to AMPs while
only S. aureus ATCC 25923 developed resistance (128 times) to ciprofloxacin after 30 passages. Only
peptides reduced biofilms of ciprofloxacin-resistant cells. The antibiofilm effect of melimine with
ciprofloxacin was more (27%) than with melimine alone at 1X MIC (p < 0.001). Similarly, at 1X MIC
the combination of Mel4 and ciprofloxacin produced more (48%) biofilm disruption than Mel4 alone
(p < 0.001). Combinations of either of the peptides with ciprofloxacin at 2X MIC released ≥ 66 nM
ATP, more than either peptide alone (p ≤ 0.005). At 2X MIC, only melimine in combination with
ciprofloxacin released DNA/RNA which was three times more than that released by melimine alone
(p = 0.043). These results suggest the potential use of melimine and Mel4 with conventional antibiotics
for the treatment of S. aureus biofilms.

Keywords: Staphylococcus aureus; antibiotic resistance; biofilms; antimicrobial peptides; ciprofloxacin;
combined effect

1. Introduction

Staphylococcus aureus is a major human pathogen that can cause several recalcitrant
infections (deep-seated abscess, osteomyelitis, and endocarditis) due to the acquisition of
antibiotic resistance and formation of biofilm on living tissues and medical devices [1,2].
Methicillin-resistant S. aureus (MRSA) has been named as a “serious threat” by the Center
for Disease Control and Prevention [3,4]. Approximately 11,000 people die each year from
a MRSA-related infection in the United States alone [5,6]. So far, there are limited reports
on antimicrobial compounds that are able to control biofilm-associated infections caused
by S. aureus [7].

Various strategies such as physical removal of materials colonized with bacteria or
delivery of high doses of antibiotics at the site of infections have been used to treat biofilm-
associated infection [8]. However, due to poor penetration of antibiotics through the
extracellular polysaccharide matrix of biofilms and survival of biofilm-embedded cells,
even the use of high levels of antibiotics can result in low cure rates for infections [9].
Moreover, high doses of antibiotics may cause cytotoxicity to human cells. Therefore,
combinations of different antimicrobials may be required [10].

Several antimicrobial peptides (AMPs) are known to have strong antibiofilm activity
against bacterial biofilms [11–13]. They can prevent bacterial attachment to surfaces (a
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first step toward biofilm formation) and destroy already developed biofilms by causing
detachment or killing of biofilm-embedded cells [11,13,14]. They can also enhance the
activity of antibiotics against biofilms when used in combination [13,15–17]. These com-
bined treatments may become an important part of treating biofilm-related infections,
such as chronic wounds or biomaterial-associated infections caused by S. aureus [18]. In
combination treatments, one mode of action that has been proposed is that the antibiotics
bind to teichoic acids of staphylococcal cell wall which reduces the interaction with AMPs
and facilitates their interaction with bacterial membranes. In this way, AMPs act on the cell
membranes and antibiotics target cell wall and/or inhibit biosynthesis of nucleic acids and
proteins [19,20].

Melimine (TLISWIKNKRKQRPRVSRRRRRRGGRRRR) and Mel4 (KNKRKRRRR
RRGGRRRR) are cationic AMPs which have a wide spectrum of activity targeting clinical
isolates of Gram-negative and Gram-positive bacteria (including MRSA and multidrug-
resistant P. aeruginosa), fungi and protozoa such as Acanthamoeba [21,22]. Both AMPs are
non-cytotoxic at well above active concentrations [21,22]. Melimine causes hemolysis of
horse red blood cells at concentrations 15 times higher than its minimum inhibitory concen-
tration (MIC) [23] while Mel4 causes < 5% hemolysis even at concentrations 17 times higher
than its MIC [23]. Melimine and Mel4 can synergize with ciprofloxacin against planktonic
as well as biofilm forms of P. aeruginosa [24]. Ciprofloxacin is a broad-spectrum antibiotic,
active against both Gram-positive and Gram-negative bacteria. Ciprofloxacin kills bacteria
by binding to bacterial enzymes DNA gyrase and topoisomerase IV. After binding, the en-
zyme undergoes conformational changes and breaks the DNA, and ciprofloxacin prevents
religation of the broken DNA which ultimately stops DNA replication [25]. Both AMPs in
combination with ciprofloxacin destroy P. aeruginosa biofilms at concentrations lower than
their MICs [13]. Both AMPs act on the cell membranes of planktonic cells of P. aeruginosa
and this results in release of cellular contents [13]. However, it is not known whether
peptides alone or in combination with antibiotics are active against S. aureus biofilms or can
act in a similar way as they do to P. aeruginosa biofilms. The current study investigates the
interaction of AMPs melimine or Me4 alone or in combination with ciprofloxacin against
S. aureus biofilm in conjunction with their mode of activity.

2. Results
2.1. Minimal Inhibitory Concentration and Minimal Bactericidal Concentration

Table 1 represents the MICs and MBCs values of both the peptides and ciprofloxacin.
Melimine and Mel4 had the lowest MICs of 62.5 µg/mL and 125 µg/mL, respectively,
against S. aureus ATCC 6538. For all other strains, there were slightly higher MICs,
125 µg/mL for melimine and 250 µg/mL for Mel4, except for S. aureus ATCC 25923 for
which Mel4 had the highest MIC value of 500 µg/mL (Table 1). Ciprofloxacin had similar
MICs (0.5 µg/mL) and MBCs (1 µg/mL) against all the tested strains except for S. aureus
ATCC 6538 for which ciprofloxacin had the same MIC and MBC values of 0.5 µg/mL
(Table 1).

2.2. Development of Resistance to AMPs and Ciprofloxacin

The growth curves of S. aureus ATCC 25923 at sub-MICs of melimine, Mel4 or
ciprofloxacin over 24 h are presented in Figure 1. The growth of S. aureus ATCC 25923 at
its sub-MIC for ciprofloxacin was similar to growth without the antimicrobial. Melimine
and Mel4 affected the growth rate of S. aureus after 6 h. Exposure to melimine resulted in
slightly less growth than exposure to Mel4 over 24 h.
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Table 1. MIC and MBC values of melimine, Mel4 and ciprofloxacin against S. aureus.

Bacterial Strains
Melimine Mel4 Ciprofloxacin

MIC µM
(µg·mL−1)

MBC µM
(µg·mL−1)

MIC µM
(µg·mL−1)

MBC µM
(µg·mL−1)

MIC µM
(µg·mL−1)

MBC µM
(µg·mL−1)

S. aureus 31 33.01 (125) 66.02 (250) 106.48 (250) 212.96 (500) 1.50 (0.5) 3.01 (1)

S. aureus 38 33.01 (125) 66.02 (250) 106.48 (250) 212.96 (500) 1.50 (0.5) 3.01 (1)

S. aureus ATCC 6538 16.50 (62.5) 16.50 (62.5) 53.24 (125) 53.24 (125) 1.50 (0.5) 1.50 (0.5)

S. aureus ATCC 25923 33.01 (125) 66.02 (250) 212.96 (500) 212.96 (500) 1.50 (0.5) 3.01 (1)

MBC = minimum bactericidal concentration that kills ≥ 99.99% of bacteria of bacterial population compared to positive control;
MIC = minimum inhibitory concentration that kills ≥ 90% of bacterial population when compared to the positive control.
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Figure 1. Growth curves for S. aureus ATCC 25923 at sub-MIC of the antimicrobial peptides (AMPs) 
melimine and Mel4 or ciprofloxacin (Cipro). Melimine and Mel4 reduced the overall bacterial 
growth over 24 h of experiments while ciprofloxacin and the positive control (without any antimi-
crobial) had similar growth characteristics after 24 h experiment. 

Of all the tested strains, only S. aureus ATCC 25923 was able to develop resistance to 
ciprofloxacin. Changes in MICs of S. aureus ATCC 25923 after exposure to sub-MICs of 
melimine, Mel4 or ciprofloxacin over 30 days are presented in Figure 2. The MICs of 
melimine and Mel4 did not change over time, suggesting a limited potential of re-
sistance development to these peptides. Compared to the peptides, there was rapid de-
velopment of resistance to ciprofloxacin. Resistance developed to ciprofloxacin after 7 
days of serial passage with an initial 4-fold increase in MIC. The MIC increased 64-fold 
after 15 passages and 128-fold by 30 passages (Figure 2). 

Figure 1. Growth curves for S. aureus ATCC 25923 at sub-MIC of the antimicrobial peptides (AMPs)
melimine and Mel4 or ciprofloxacin (Cipro). Melimine and Mel4 reduced the overall bacterial growth
over 24 h of experiments while ciprofloxacin and the positive control (without any antimicrobial)
had similar growth characteristics after 24 h experiment.

Of all the tested strains, only S. aureus ATCC 25923 was able to develop resistance
to ciprofloxacin. Changes in MICs of S. aureus ATCC 25923 after exposure to sub-MICs
of melimine, Mel4 or ciprofloxacin over 30 days are presented in Figure 2. The MICs of
melimine and Mel4 did not change over time, suggesting a limited potential of resistance
development to these peptides. Compared to the peptides, there was rapid development
of resistance to ciprofloxacin. Resistance developed to ciprofloxacin after 7 days of serial
passage with an initial 4-fold increase in MIC. The MIC increased 64-fold after 15 passages
and 128-fold by 30 passages (Figure 2).
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2.3. Inhibition of Biofilm Formation by AMPs and Ciprofloxacin Alone or in Combination

Ciprofloxacin did not inhibit the biofilm formation of the ciprofloxacin-resistant cells
of S. aureus ATCC 25923 at any concentration tested (p > 0.999; Figure 3A). Melimine and
Mel4 inhibited biofilm formation at 0.5X MIC by 82% and 78%, respectively, compared to
the negative control (p < 0.001). There was similar biofilm inhibition with both the AMPs at
0.5X MIC (p > 0.999). However, combined use of melimine with ciprofloxacin at 0.5X MICs
resulted in 91% inhibition of biofilm, and this inhibition was significantly higher (p < 0.001)
than the 82% produced by melimine alone at 0.5X MICs (Figure 3A). Similarly, Mel4 and
ciprofloxacin in combination at 0.5X MIC produced 83% inhibition of biofilm which was
significantly higher (p = 0.036) than the 78% produced by Mel4 alone (Figure 3A). There
was no significant difference in biofilm inhibition between melimine and ciprofloxacin, and
Mel4 and ciprofloxacin combinations at 0.5X MIC (p > 0.999).

The biofilms produced by the ciprofloxacin-sensitive cells of ATCC 25923 were inhib-
ited by ≥86% by ciprofloxacin at ≥1X MIC (p < 0.001; Figure 3B). Melimine or Mel4 were
active at 0.5X MICs and produced 82% and 78% biofilms inhibition compared to negative
control, respectively (p < 0.001). The combinations of melimine or Mel4 with ciprofloxacin
at 0.5X MIC produced reductions that were significantly higher (97%) than those used
alone at 0.5X (p < 0.001). The combinations of either AMP with ciprofloxacin inhibited the
same amount of biofilm at 0.5X MICs (p > 0.999; Figure 3B).

2.4. Disruption of Pre-Formed Biofilms by AMPs and Ciprofloxacin Alone or in Combination

In comparison to the effect of the AMPs or the combination of AMPs with ciprofloxacin
on preventing the production of biofilms, all were less active in reducing pre-formed
biofilms. For melimine or Mel4 at 0.5X to 2X MIC, pre-formed biofilms of either the
ciprofloxacin-resistant or sensitive cells were 4–6 times more resistant than the biofilms
formed in the presence of melimine.

The ability of AMPs and ciprofloxacin alone or in combination to disrupt pre-formed
(24 h) biofilms of ciprofloxacin-resistant and sensitive isolates of S. aureus ATCC 25923 is
presented in Figure 4. Ciprofloxacin did not reduce pre-formed biofilms of the ciprofloxacin-
resistant isolate of S. aureus ATCC 25923 at any of the concentrations tested (p > 0.999;
Figure 4A). Both AMPs reduced the amount of pre-formed biofilms in a concentration-
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dependent manner except at 0.5X MIC. Melimine produced 42%, 69% and 100% while
Mel4 disrupted 38%, 64% and 97% at 1X, 2X and 4X MICs compared to negative control,
respectively (p < 0.001; Figure 4A). Disruption of biofilm by melimine and Mel4 was similar
at their corresponding MICs (p > 0.999). The combination of melimine and ciprofloxacin
resulted in 69% biofilm disruption and the combination of Mel4 and ciprofloxacin resulted
in 86% biofilm disruption at their corresponding 1X MIC compared to negative control
(p < 0.001). The combined treatment of either AMP with ciprofloxacin at 1X MIC resulted
in similar biofilm disruption (p > 0.999).
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sensitive (B) cells of S. aureus ATCC was inhibited by various concentrations of melimine, Mel4 and ciprofloxacin alone
or in combination. The strain was made resistant to ciprofloxacin by sub-passage for 30 days at a sub-MIC concentration.
* represent significant (p < 0.001) decreases compared to the negative control (bacteria grown in the absence of antibiotics).
# indicates significant (p < 0.001) decrease for the combinations compared to melimine or Mel4 alone while ## indicates
p = 0.036 compared to Mel4 alone. Means (±SD) of three independent repeats in triplicate. Negative control = bacteria
grown in the absence of antimicrobials, Cipro = ciprofloxacin.

Antibiotics 2021, 10, 1159 6 of 17 
 

 
Figure 4. Disruption of pre-established biofilm of S. aureus ATCC. Biofilms of the ciprofloxacin-resistant (A) and sensitive 
(B) cells of P. aeruginosa ATCC 27853 were disrupted at various concentrations by melimine, Mel4 and ciprofloxacin alone 
or in combination. * represents significant (p < 0.001), ** indicates significant (p = 0.005), *** indicates significant (p = 0.022) 
decrease compared to the negative control (biofilm treated with buffer). # indicates significant (p < 0.001) decrease for the 
combinations compared to melimine or Mel4 alone. Error bars represent means (±SD) of three independent repeats in 
triplicate. Negative control = bacteria grown in the absence of antimicrobials. Cipro = ciprofloxacin. 

Pre-formed biofilms of the ciprofloxacin-sensitive strain of S. aureus ATCC 25923 
were susceptible to the action of ciprofloxacin at 1X MIC or higher concentrations. Ciprof-
loxacin disrupted pre-formed biofilms in a dose-dependent manner by producing 86%, 
96% and 100% disruption of biofilms at 1X, 2X and 4X MICs, respectively, compared to 
control (p < 0.001; Figure 4B). Melimine disrupted 11% (p = 0.005) and Mel4 disrupted 10% 
(p = 0.022) of pre-formed biofilms compared to negative control at 0.5X MIC. At 1X MIC, 
melimine eradicated 41% of biofilm while Mel4 eradicated 37% of biofilm compared to 
buffer-treated negative controls (Figure 4B; p < 0.001). Interestingly, when AMPs were 
used in combination with ciprofloxacin, these combinations resulted in higher pre-formed 
biofilm disruption at concentrations lower than their MICs. The combination of melimine 
with ciprofloxacin at 0.5X MIC produced significantly higher (68%) biofilm disruption 
than when melimine (11%) was used alone at 0.5X (Figure 4B; p < 0.001). Similarly, the 
combination of Mel4 with ciprofloxacin at 0.5X MIC produced significantly higher (63%) 
biofilm disruption than when Mel4 (10%) was used alone at 0.5X (Figure 4B; p < 0.001). 
The combined treatment of either AMP with ciprofloxacin at 0.5X MIC resulted in similar 
biofilm disruption (p > 0.999). Similarly, at 1X MIC the combination of melimine with 
ciprofloxacin disrupted more highly (91%) than by melimine alone (41%) and Mel4 and 
ciprofloxacin disrupted more (89%) than by Mel4 alone (37%; p < 0.001). The combined 
antibiofilm effect of either peptide with ciprofloxacin was similar at 1X MIC (p > 0.999). 

2.5. Visualization of Biofilms 
Biofilms of the ciprofloxacin-resistant cells treated with buffer (HEPES) or ciproflox-

acin alone had an overall dimension of 90 µm by 90 µm by 21 µm and the cells were 
mainly green, indicating that they were alive (Figure 5). Biofilms treated with melimine 
or Mel4 at 4X their MICs had less biofilm mass with dimensions of 43 µm by 43 µm by 6 
µm and the cells were mainly stained red indicating many dead cells. No biofilms could 
be seen for the melimine and ciprofloxacin or Mel4 and ciprofloxacin combinations at 4X 
MICs (Figure 5). 

Figure 4. Disruption of pre-established biofilm of S. aureus ATCC. Biofilms of the ciprofloxacin-resistant (A) and sensitive
(B) cells of P. aeruginosa ATCC 27853 were disrupted at various concentrations by melimine, Mel4 and ciprofloxacin alone or
in combination. * represents significant (p < 0.001), ** indicates significant (p = 0.005), *** indicates significant (p = 0.022)
decrease compared to the negative control (biofilm treated with buffer). # indicates significant (p < 0.001) decrease for the
combinations compared to melimine or Mel4 alone. Error bars represent means (±SD) of three independent repeats in
triplicate. Negative control = bacteria grown in the absence of antimicrobials. Cipro = ciprofloxacin.
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Pre-formed biofilms of the ciprofloxacin-sensitive strain of S. aureus ATCC 25923 were
susceptible to the action of ciprofloxacin at 1X MIC or higher concentrations. Ciprofloxacin
disrupted pre-formed biofilms in a dose-dependent manner by producing 86%, 96%
and 100% disruption of biofilms at 1X, 2X and 4X MICs, respectively, compared to con-
trol (p < 0.001; Figure 4B). Melimine disrupted 11% (p = 0.005) and Mel4 disrupted 10%
(p = 0.022) of pre-formed biofilms compared to negative control at 0.5X MIC. At 1X MIC,
melimine eradicated 41% of biofilm while Mel4 eradicated 37% of biofilm compared to
buffer-treated negative controls (Figure 4B; p < 0.001). Interestingly, when AMPs were
used in combination with ciprofloxacin, these combinations resulted in higher pre-formed
biofilm disruption at concentrations lower than their MICs. The combination of melimine
with ciprofloxacin at 0.5X MIC produced significantly higher (68%) biofilm disruption
than when melimine (11%) was used alone at 0.5X (Figure 4B; p < 0.001). Similarly, the
combination of Mel4 with ciprofloxacin at 0.5X MIC produced significantly higher (63%)
biofilm disruption than when Mel4 (10%) was used alone at 0.5X (Figure 4B; p < 0.001).
The combined treatment of either AMP with ciprofloxacin at 0.5X MIC resulted in similar
biofilm disruption (p > 0.999). Similarly, at 1X MIC the combination of melimine with
ciprofloxacin disrupted more highly (91%) than by melimine alone (41%) and Mel4 and
ciprofloxacin disrupted more (89%) than by Mel4 alone (37%; p < 0.001). The combined
antibiofilm effect of either peptide with ciprofloxacin was similar at 1X MIC (p > 0.999).

2.5. Visualization of Biofilms

Biofilms of the ciprofloxacin-resistant cells treated with buffer (HEPES) or ciprofloxacin
alone had an overall dimension of 90 µm by 90 µm by 21 µm and the cells were mainly
green, indicating that they were alive (Figure 5). Biofilms treated with melimine or Mel4 at
4X their MICs had less biofilm mass with dimensions of 43 µm by 43 µm by 6 µm and the
cells were mainly stained red indicating many dead cells. No biofilms could be seen for the
melimine and ciprofloxacin or Mel4 and ciprofloxacin combinations at 4X MICs (Figure 5).

2.6. Mechanistic Studies
2.6.1. Cell Membrane Depolarization

Melimine and Mel4 depolarized the cell membrane of S. aureus in biofilms in a
concentration- and time-dependent manner (Figure 6A,B). Both peptides depolarized
the cell membrane of biofilm cells within 1 h of incubation at 1X, 2X and 4X MICs. The
fluorescence intensity produced as a result of the release of the DiSC3 (5) dye was higher
at 4X than at 2X and 1X MIC for both melimine and Mel4 (p ≤ 0.004). The rate of re-
lease of the dye increased up to 2 h and became constant thereafter for all concentrations.
There was no difference in release of dye between melimine and Mel4 at their correspond-
ing MICs (p ≥ 0.999). Ciprofloxacin did not depolarize the cell membrane at any of the
concentrations tested over the entire 6 h of the experiment. The combined membrane
depolarizing effect of melimine or Mel4 with ciprofloxacin was almost exactly equivalent
to the individual effects of melimine or Mel4 at their corresponding 1X, 2X, and 4X MICs
(p > 0.937; Figure 6A,B). There was no difference between the combinations at 1X and 2X
MICs (p > 0.999). However, at 4X MIC, the melimine and ciprofloxacin combination caused
higher membrane depolarization than the Mel4 and ciprofloxacin combination after 2 h of
incubation (p = 0.005). The positive control (DMSO 20%) gave maximum fluorescence at
2 h which became constant following this time point.
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Figure 5. Representative confocal laser scanning microscopy images of biofilms of the ciprofloxacin
resistant isolates of S. aureus ATCC 25923 after treatment with AMPs and ciprofloxacin alone or
in combination. The antibiofilm effects were evaluated at 4X the MIC of all antimicrobials after
incubation for 24 h. The biofilms of S. aureus were stained with SYTO-9 (excited at 488, green live
cells) and propidium iodide (excited at 514 mm, red dead cells). The cells exposed to ciprofloxacin
alone when excited at 514 nm had a reddish color indicating some of the cells had taken up the
propidium iodide.

2.6.2. Release of Cellular Contents

Incubation of the AMPs with pre-formed biofilms of S. aureus ATCC 25923 released a
substantial amount of ATP in a concentration-dependent manner (Figure 7). Melimine at
1X, 2X and 4X MIC induced leakage of 143 ± 15 nM, 167 ± 15 nM and 227 ± 21 nM ATP,
respectively, compared to buffer-treated negative controls (p < 0.001). Mel4 at 1X, 2X and 4X
MICs released 107 ± 25 nM, 142 ± 13 nM and 197 ± 21 nM extracellular ATP, respectively,
compared to negative control (p ≤ 0.003). The amount of ATP released by melimine and
Mel4 at their corresponding MICs was similar (p ≥ 0.999). The addition of ciprofloxacin
alone to pre-formed biofilms did not result in the significant release of extracellular ATP at
any of the concentrations tested (p > 0.999; Figure 7). However, the combination of melimine
or Mel4 with ciprofloxacin resulted in the release of higher amounts of ATP than the AMPs
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alone. At 2X MIC, the melimine and ciprofloxacin combination released significantly higher
amounts of ATP (233 ± 38 nM; p = 0.005) than released by melimine alone (167 ± 15 nM).
There was similar effect on ATP leakage of the combination at 2X and 4X MICs. The
combination of Mel4 and ciprofloxacin at 1X, 2X and 4X concentrations induced leakage
of 152 ± 24 nM, 203 ± 32 nM and 267 ± 12 nM ATP, respectively (Figure 7). At 2X MIC,
the combination of Mel4 and ciprofloxacin released significantly higher amounts of ATP
(p = 0.002) than was released by Mel4 alone at 1X MIC. Both the melimine and ciprofloxacin
or Mel4 and ciprofloxacin combination had similar effects at their corresponding MICs
(p > 0.999).

The release of nucleic acids (260 nm absorbing material) after incubation for 4 h with
the antimicrobials from pre-formed biofilms of S. aureus ATCC 25923 is shown in Figure 8A.
Melimine released a significantly higher amount of DNA/RNA at 2X MIC (7 ± 1 times;
p = 0.043) and 4X MIC (13 ± 1 times; p < 0.001) compared to control. Ciprofloxacin did not
cause significant DNA/RNA leakage from the pre-formed biofilms at any concentration
tested (p > 0.999; Figure 8A). The combination of melimine and ciprofloxacin released
10 ± 2 times (p = 0.047) more DNA/RNA compared to negative control at 2X MIC. Melim-
ine and ciprofloxacin in combination released significantly higher (p = 0.022; Figure 8A)
amounts of DNA/RNA than melimine alone at 2X MIC. The combination of Mel4 and
ciprofloxacin did not release significant amounts of DNA/RNA at any concentration tested
(p ≥ 0.480). Melimine either alone or in combination with ciprofloxacin produced higher
fluorescence at 2X and 4X MICs than other concentrations (p ≤ 0.034; Figure 8B). Mel4
either alone or in combination with ciprofloxacin did not produce significant fluorescence
at any concentration tested (p > 0.999; Figure 8B).
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Figure 7. Leakage of ATP from pre-formed biofilm cells of S. aureus ATCC 25923. Leakage of ATP
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with released DNA/RNA (B) from pre-formed biofilm cells of S. aureus ATCC 25923. Leakage of nucleic acid from pre-
formed (24 h) biofilms of S. aureus ATCC 25923 following treatments for 3 h with either of the two peptides and ciprofloxacin
alone or in combination. The strain was made resistant to ciprofloxacin by passage of 30 days at a sub-MIC concentration.
* represents significance (p = 0.043) and ** indicates (p ≤ 0.034) release of nucleic acid compared to the negative control.
# represents significant (p = 0.022) increase in the release of nucleic acid by the combination of melimine and ciprofloxacin
compared to melimine alone.
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3. Discussion

Exposure of bacteria to sub-inhibitory concentrations of antimicrobials can result in
generation of resistant mutants [26,27]. The current study demonstrated that the AMPs
melimine and Mel4 at sub-MICs did not induce resistance in S. aureus ATCC 25923. We and
others [28–31] have tested several broad-spectrum antibiotics such as gentamicin (data not
shown in the current study) and ciprofloxacin to determine whether strains such as S. aureus
ATCC 6538, ATCC 25923, 31 and 38 can develop resistance to gentamycin and ciprofloxacin.
Resistance to gentamicin or ciprofloxacin was not induced in any strain except S. aureus
ATCC 25923 which developed resistance against ciprofloxacin. Therefore, ciprofloxacin
was selected to determine its activity alone or in combination with antimicrobial peptides
against this strain. Biofilms of the resistance cells of S. aureus ATCC 25923 could be reduced
by treatment with combinations of melimine or Mel4 with ciprofloxacin whilst the biofilm
was forming or once it had developed.

S. aureus ATCC 25923 developed resistances to ciprofloxacin similar to P. aeruginosa
ATCC 27853 [13], in a step-wise manner to full resistance (>120X MIC) after 25 days of
passage. Resistance to ciprofloxacin in S. aureus can occur due to mutations in grlA/grlB
and gyrA/gyrB genes, which encode the subunits of topoisomerase IV and DNA gyrase,
respectively [32,33], or over expression of the membrane-associated protein NorA efflux
pump which leads to increased transport of ciprofloxacin out of the bacterial cell [34].
Changes in these genes may occur randomly during exposure to ciprofloxacin and this may
be why the resistance occurs sporadically during exposure to the antibiotic. In contrast to
S. aureus ATCC 25923, all other S. aureus strains (31, 38 and ATCC 6538) did not mutate and
develop resistance against ciprofloxacin. None of the S. aureus strains was able to develop
resistance against melimine and Mel4. The inability of S. aureus to develop resistance
against melimine and Mel4 may be due to the rapid killing kinetics of these peptides and
action on cell membranes [23]. Bacteria appear to rarely gain resistance to AMPs that
target bacterial membranes [23,35]. However, like other Gram-positive bacteria, S. aureus
can develop resistance to AMPs by reducing the negative charge on teichoic acid and
production of proteases that fragment AMPs [36,37], but these mechanisms appear not to
have been activated during growth in sub-MICs of melimine or Mel4.

Another mechanism whereby bacteria can protect themselves from the action of
antimicrobials is formation of biofilms [38]. Melimine and Mel4 prevented biofilm for-
mation of S. aureus at a concentration lower than their MICs. A similar effect has been
shown with the cathelicidin-derived peptide NA-CATH:ATRA1-ATRA1 against S. aureus
biofilm [39]. The AMPs esculentin-3, Tet-213 and 1010 peptides prevent biofilm forma-
tion [40,41] by stimulating twitching motility, influencing quorum sensing or degrading
signaling molecules such as ppGpp which lead to changes in the expression of genes related
to biofilm assembly [42–44].

Melimine and Mel4 killed biofilm cells and dispersed pre-formed biofilms. Similarly,
AMPs such as LL37, DL-K6L9, Seg5L, Seg5D, Seg6L, and Seg6D killed the biofilm cells and
reduced the biofilm mass by dispersing the biofilm matrix [45,46]. Both our AMPs followed
a similar mechanism, as treating biofilms of ciprofloxacin-resistant cells with either AMP
resulted in a high proportion of PI positive (stained red = dead cells) with a reduced biofilm
mass compared to buffer-treated negative controls. Disruption of pre-formed biofilm
by these two AMPs was similar to disruption of pre-formed biofilm of P. aeruginosa [13].
Like the case with P. aeruginosa, the anti-biofilm effects of melimine and Mel4 against
S. aureus were similar to their mode of action on S. aureus cells in suspension [23]; this is
depolarization of membranes and release of intracellular contents.
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However, the speed of the effects of melimine and Mel4 was decreased compared
to their effects on planktonic cells [13], which may be due to the complex structure of
S. aureus biofilms hindering the antimicrobial action of AMPs. Membrane depolarization
of biofilm cells caused by melimine and Mel4 was slower and happened after one hour
compared to only 30 s against planktonic bacteria [23]. Similarly, membrane depolarization
of S. aureus cells in biofilms occurred after 1 h with the AMPs nisin A and lacticin Q [47].
The time required to depolarize the membrane of S. aureus biofilm cells was similar to
P. aeruginosa biofilm cells [13]. Slower membrane depolarization of biofilm cells compared
to planktonic bacteria might be due to higher viscosity of biofilm which can affect the
penetration of AMPs in biofilm [47–49]. Moreover, negatively charged polymers of biofilms
may interact with the positively charged AMPs and limit penetration and diffusion of
AMPs in biofilm matrix.

Both AMPs killed the biofilm cells by damaging the membranes followed by leakage
of cellular ATP. Leakage of ATP from biofilm cells was slower and occurred after 3 h
compared to after 2 min from planktonic bacteria [23]. As discussed above, this change
in timing of events may be due to the charge of biofilm polymers or viscosity within
biofilms. Higher concentrations of AMPs above their MICs may disrupt the membrane of
biofilm cells to a greater extent and start to release larger molecules [48,50–52]. Melimine
released DNA/RNA from biofilm cells at 4X MIC. On the other hand, Mel4 alone or in
combination with ciprofloxacin did not result in release of DNA/RNA even at 4X its MIC.
The mechanism of action of Mel4 against biofilm cells seems to be similar to planktonic
cells which are independent of the release of DNA/RNA [23].

The combination of AMPs and ciprofloxacin inhibited greater biofilm formation at
0.5X than alone, suggesting that both the peptides may have additive or synergistic effects
against S. aureus. The AMPs indolicidin, cecropin (1–7) and nisin in combination with
ciprofloxacin inhibited the S. aureus biofilm at concentrations lower than their MICs [38].
The fractional inhibitory concentrations of these AMPs with ciprofloxacin were above
synergistic levels, showing additive effects instead, against planktonic S. aureus [24]. The
combination of AMPs with ciprofloxacin resulted in more biofilm disruption at 1X MIC
than alone. These results coincide with the previous study which reported that the AMPs
indolicidin, cecropin (1–7)–melittin A (2–9) and nisin in combination with teicoplanin or
ciprofloxacin disrupted the biofilm of methicillin-resistant S. aureus at 1X MIC [53]. Smaller
differences in biofilms inhibition/disruption may be due to sensitivity of the strain towards
antibiotics, maturation of biofilms and concentration of antimicrobials used. Several
peptides in combination with antibiotics have been tested against biofilms formed for 2 h to
4 h, at concentrations 2–4 times lower than their MICs. Table 2 compares these combinations
with melimine or Mel4 with ciprofloxacin tested at their 0.5X MICs against biofilms formed
for 24 h in the present study. The slightly higher effects of the combination of Citropin1.1
+ Minocycline [54] or LL37 + Teicoplanin [20] may be due to the fact the biofilms were
only produced for 4 h, whereas the current study used biofilms formed over 24 h and
these longer times might produce more robust biofilms. The effect of both the peptides
with ciprofloxacin against S. aureus biofilm is summarized in Figure 9. The ability of the
AMP-ciprofloxacin combinations to disrupt greater amounts of pre-formed biofilms might
be related to AMPs’ facilitating higher intracellular uptake of ciprofloxacin [55]. The AMPs
WR12, SAAP-148, SAAP-276 and TC84 allowed greater cellular uptake of ciprofloxacin and
teicoplanin by permeabilizing the cell membrane of S. aureus in biofilms [20,55]. Another
possible mechanism of AMP-antibiotic combinations is disrupting the biofilm matrix to
allow AMPs to target the bacterial cells in the biofilm and cause dispersion of cells in the
biofilm [56].
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Table 2. Effect of antimicrobial peptides and antibiotics at 0.5X MIC in combination against
S. aureus biofilm.

Antimicrobial Agents Biofilm Inhibition (%) Biofilm Eradication (%)

Melimine + Ciprofloxacin 91% 69%

Mel4 + Ciprofloxacin 83% 86%

Citropin1.1 + Minocycline [54] >99% ND

Indolicidin + Daptomycin [53] 44% ND

Nisin + Ciprofloxacin [53] 50% ND

LL37 + Teicoplanin [20] ND >99%

Temporin A +Gentamycin [57] ND 90%

Indolicidin + Ciprofloxacin [38] ND 47%
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Figure 9. Effect of ciprofloxacin and peptides on the pre-formed biofilm of S. aureus. Ciprofloxacin alone did not disrupt the
biofilm while when in combination with melimine or Mel4 it destroys the biofilm matrix following release of DNA/RNA
(with melimine only) and ATP from biofilm cells.

4. Materials and Methods
4.1. Synthesis of Peptides and Bacteria

Melimine and Mel4 were synthesized by conventional solid-phase peptide proto-
col [58,59] and were procured from the Auspep Peptide Company (Tullamarine, Victoria,
Australia). The purity of the peptides was ≥90%. Ciprofloxacin was purchased from
Sigma-Aldrich (St Louis, MO, USA). Ciprofloxacin stock solution (5120 µg/mL) in milli
Q water was prepared and stored at −30 ◦C. Bacterial strains such as S. aureus 31 (mecA
positive) and S. aureus 38 (mecA negative; both microbial keratitis isolates) [60] and two
reference strains S. aureus ATCC 6538 (mecA negative; a human lesion isolate) and S. aureus
ATCC 25923 were used in the current study.

4.2. Minimal Inhibitory Concentration and Minimal Bactericidal Concentration

The minimum inhibitory and minimum bactericidal concentrations of ciprofloxacin
were determined using a standard broth microdilution method of the Clinical Laboratory
and Standard Institute (CLSI) and a modified version of the CLSI broth microdilution
method was used to determine the MIC of antimicrobial peptides [61]. The MIC was
set as the lowest concentration that reduced bacterial growth by ≥90% while the MBC
was set as the lowest concentration that reduced bacterial growth by >99.99% following
enumeration of live bacteria by plate counts compared to bacteria grown in the absence of
any antimicrobial.
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4.3. Growth Curve and Resistance Development at Sub-MIC of Antimicrobials

An aliquot (100 µL) of an overnight culture (1 × 106 CFU/mL) of bacteria was added
to an equal volume of each antimicrobial to achieve a sub-MIC (0.5X MIC) in MHB and
was incubated at 37 ◦C with shaking at 120 rpm for 24 h. The turbidity of the bacterial
suspensions was determined at OD660nm over time for 24 h. Bacteria grown in wells without
antimicrobials served as positive controls for maximum bacterial growth. Serial passages
of S. aureus ATCC 25923 were performed in the presence of each antimicrobial at 0.5X MIC.
After incubation for 18–24 h, cells were repassaged into fresh media containing sub-MICs
of the antimicrobials. After every passage, the MIC for each antimicrobial was determined,
and a new sub-MIC was adjusted if any increase in MIC was observed. This repassaging
lasted for 30 consecutive days. S. aureus 31, S. aureus 38, S. aureus ATCC 6538 and S. aureus
ATCC 25923 strains were exposed to AMPs and ciprofloxacin at sub-MIC (one-fold below
the MIC) for their ability to develop resistance against these antimicrobials. Of all the tested
strains, only S. aureus ATCC 25923 was able to develop resistance to ciprofloxacin using
this method. This strain has been shown to be able to develop resistance to ciprofloxacin
previously [28].

4.4. Inhibition of Biofilm Formation by AMPs and Ciprofloxacin Alone or in Combination

Inhibition of biofilm formation by AMPs alone or in combination with ciprofloxacin
was determined using S. aureus 25923 that had been passaged for one day (sensitive cells) or
thirty days (resistant cells). First, 100 µL of S. aureus (1 × 106 CFU/mL) was dispensed into
round-bottom 96-well microtiter plates containing serial dilutions (0.5X to 4X MIC) of me-
limine, Mel4 or ciprofloxacin. Then plates were incubated at 37 ◦C with shaking at 120 rpm
for 24 h. The combined effect of melimine or Mel4 with ciprofloxacin was determined
after adding equal volumes of each at their corresponding MICs. Wells containing bacteria
and MHB and treated with buffer served as negative controls. Following incubation, the
media were removed, and wells were then carefully washed two times with HEPES buffer
to remove non-adherent cells. Subsequently, biofilms were fixed with 200 µL of 99% v/v
methanol for 15 min and then plates were air dried. Finally, biofilms were stained with
200 µL of 1% w/v crystal violet dissolved in water for 5 min. Unbound crystal violet was
rinsed off with tap water and plates were inverted to air dry. The crystal violet absorbed
in biofilms was solubilized in 200 µL glacial acetic acid (33%, v/v), the released dye was
moved to new well and the amount of dye released was determined spectroscopically at
OD600nm. The degree of biofilm inhibition was determined as a percentage of the biofilm
produced by the negative controls (bacteria with no antimicrobials) using the following
formulae [62].

% biofilm of single or combined antimicrobial

= (OD600nm of negative control) − (OD600nm of individual or (combined) antimicrobials)
(OD600nm of negative control) × 100

(1)

4.5. Disruption of Pre-Formed Biofilms by AMPs and Ciprofloxacin Alone or in Combination

Biofilms were formed by adding 100 µL of S. aureus ATCC 25923 (1 × 106 CFU/mL)
ciprofloxacin-sensitive or resistant cells into round-bottom 96-well microtiter plates con-
taining 100 µL of MHB. Plates were incubated at 37 ◦C in static condition. After incubation,
biofilms were treated with serially diluted peptides or ciprofloxacin or their combination at
their corresponding MICs and the plates were incubated for a further 24 h at 37 ◦C in static
condition. Wells containing bacteria and MHB and treated with buffer served as negative
controls. Following incubation, the media were removed, and wells were then carefully
washed two times with HEPES buffer to remove non-adherent cells and the amount of
biofilm was determined as outlined in the previous experiment.

The ability of each antimicrobial to disrupt pre-formed biofilms formed by resistant
(30-day ciprofloxacin-passaged) S. aureus ATCC 25923 was visualized with confocal laser
scanning microscopy (FV 1200, Olympus, Tokyo, Japan). A 24 h pre-formed biofilm on
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sterile round glass coverslips in polystyrene plates was treated with 200 µL of 4X-MIC
of melimine, Mel4 or ciprofloxacin alone or in combination at 37 ◦C for 24 h. Thereafter,
biofilms were stained with Live/Dead BacLight bacterial viability kit (Invitrogen, Eugene,
OR, USA) and examined with confocal microscopy. The resulting data were processed
using the Image J software version 8 (Bethesda, MD, USA).

4.6. Mechanistic Studies

As both AMPs had similar antibiofilm effects against either 1-day or 30-day ciprofloxacin-
passaged strains of S. aureus ATCC 25923, the 30-day ciprofloxacin-passaged cells were selected
to evaluate the mechanism of action of both the AMPs and ciprofloxacin towards bacterial cells
in biofilms.

4.7. Effect on Cell Membranes

The depolarizing effect on the cell membranes of biofilm-embedded cells was deter-
mined as described previously [48].

Briefly, 24 h formed biofilms were washed with 5 mM HEPES (pH 7.2) containing
20 mM glucose and 100 mM KCl at pH 7.2. Then, biofilm cells were loaded with the
membrane potential sensitive dye DiSC3 (5) (4 µM; Sigma Aldrich, St Louis, MO, USA)) in
HEPES for 1 h in dark. Release of DiSC3 (5) following addition of serially diluted melimine,
Mel4 or ciprofloxacin alone or in combination at 1X, 2X and 4X their respective MICs was
recorded at regular intervals up to 6 h. DMSO (20%; Merck, Billerica, MA, USA) was used
as a positive control to achieve maximum membrane depolarization.

4.8. Release of Cellular Contents

The biofilm cells were incubated with serially diluted melimine, Mel4 or ciprofloxacin
alone or in combination at 1X, 2X and 4X their corresponding MICs. The supernatants
were removed after 3 h and filtered through 0.22 µm pore membranes (Merck, Tullagreen,
Ireland). Subsequently, the amount of extracellular of ATP was measured using a biolu-
minescence kit (Invitrogen, Eugene, OR, USA) according to manufacturer’s instructions.
Buffer (HEPES)-treated samples were used as negative controls [47].

Similarly, supernatant was also analyzed for release of nucleic acids (DNA/RNA) [26].
The supernatants were centrifuged at 1300× g for 10 min and then filtered through 0.22 µm
pore membranes (Merck). The OD260nm of the filtrate was measured, and the results were
expressed relative to the initial OD260nm of biofilms taken at 0 min. Furthermore, the
presence of nucleic acids in the supernatants was also confirmed with Sytox green (5 µM
Invitrogen, Eugene, OR, USA) as final concentration. An increase in fluorescence due to
the interaction of Sytox green with nucleic acid was measured spectrophotometrically at
an excitation wavelength of 480 nm and an emission wavelength of 523 nm.

4.9. Statistical Analysis

All experiments were performed in three independent assays. One-way analysis
of variance (ANOVA) with Bonferroni’s corrections for multiple comparisons was used
to compare differences between control and antimicrobial-treated cells. The data of cell
membrane depolarization were analyzed using two-way ANOVA with Tukey’s test. A
probability value of p < 0.05 was considered statistically significant.

5. Conclusions

In conclusion, S. aureus in suspension could not become resistant to melimine or Mel4
following repeated exposure in sub-inhibitory concentrations of these AMPs. Whilst both
AMPs inhibited biofilm formation, once S. aureus had produced a biofilm, the cells became
more resistant to melimine or Mel4, although they could still act against the biofilms at 4X
their MICs. Moreover, the combination of the AMPs and ciprofloxacin produced greater
effects, possibly as a result of the AMPs damaging the cell membrane of biofilm cells which
resulted in increased or facilitated uptake of ciprofloxacin. Future research should be
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conducted, using, for example, fluorescently labelled ciprofloxacin to examine whether the
combination results in greater uptake of ciprofloxacin.
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